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Strategic Capability-Learning for Improved

Multi-Agent Collaboration in Ad-hoc Environments
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Abstract—We consider the problem of distributed col-

laboration among multiple agents in an ad-hoc setting.

We have analyzed this problem within a multi-agent task

execution scenario where every task requires collaboration

among multiple agents to get completed. Tasks are also

ad-hoc in the sense that they appear dynamically, and,

require different sets of expertise or capabilities from

agents for completion. We model collaboration within

this framework as a decision making problem where

agents have to determine what capabilities to learn and

which agents to learn them from so that they can form

teams which have the capabilities required to perform

the current tasks satisfactorily. Our proposed technique

refers to principles from human learning theory to enable

an agent to strategically select appropriate capabilities

to learn from other agents. We also use two ‘openness’

parameters to model the dynamic nature of tasks and

agents in the environment. Experimental results within the

Repast agent simulator show that by using the appropriate

learning strategy, the overall utility of the agents improves

considerably. The performance of the agents and their

utilities are also dependent on the repetitiveness of tasks

and re-encounter with agents within the environment. Our

results also show that the agents that are able to learn

more capabilities from another expert agent outperform

the agents that learn only one capability at a time from

many agents, and, agents that use an intelligent utility

maximizing strategy to choose which capabilities to learn

outperform the agents that randomly make the learning

decision.

Index Terms—Multi-agent systems, learning, collabora-

tive work, ad hoc networks.

I. INTRODUCTION

Collaboration among a set of autonomous agents is an

important research topic within multi-agent systems with

applications in several domains such as robotic search

and rescue, robotic foraging, robotic pursuit evasion, etc.
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[1]. In real-life, most of the scenarios in which humans

collaborate are unstructured and ad-hoc. The scenarios

do not specify the desired collaborative behavior and

skills required by the humans beforehand, but usually

require the humans to adapt, evolve and acquire their

behaviors and skills as the collaboration proceeds to meet

the desired goal of the collaboration process. However,

in many autonomous agent-based systems, the agents

exhibit a specific, pre-determined and perhaps inflexible

behavior, which is usually controlled by a coordina-

tion mechanism. While using such preset coordination

mechanisms provides advantages such as allowing each

agent in the system to make utility-maximizing decisions

and to measure the progress of the agents’ actions

towards achieving the overall goal of the system, it

limits the flexibility or adaptation of the behaviors of

the autonomous agents. Unfortunately, such inflexible

behavior by the agents limits their suitability as human-

aids or human-substitutes in many real-life collaboration

scenarios. Therefore, it makes sense to investigate tech-

niques for building agent-based autonomous systems that

will be capable of handling diverse, dynamic and ad-hoc

collaboration situations in an efficient manner.

An attractive model for enabling collaboration among

ad-hoc teams [2] is the teacher-learner framework. We

surmise that when human agents work together, it is

inevitable that they learn from each other, and even

on occasions teach each other. Thus, it would be pru-

dent to factor this into the team formation process.

Indeed, real-world human team formation has exhibited

this phenomenon. For example, parents, teachers, and

employers have formed a team with members of lesser

joint capabilities-as long as they can afford to not solve

the task at hand optimally-so that team members have a

chance to learn or teach. Towards leveraging the above

premise, we further submit three important considera-

tions:

• First, in ad hoc team formation where team mem-

bers had no prior knowledge about each other, it

could be advantageous to consider the impact of

learning so that agents get to benefit more than just

from accomplishing a task. This type of learning
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and teaching or knowledge transfer is spontaneous,

ad hoc in many ways as well, and reflects well what

real-world ad hoc teams do.

• Second, it is appropriate and even strategic to

consider agent openness and task openness in this

context when considering this type of learning. For

example, an agent who is lacking in a particular

capability may opt to join a team with a good

opportunity to learn from another agent about that

particular capability even when the direct rewards

from accomplishing the team’s task might not be

sufficiently enticing. Thus, if the degree of agent

openness is high in the environment-i.e., it is un-

likely or very uncertain that the agent with the de-

sired capability might be around in the environment-

then it would be advisable, for example, for the

agent to lean towards joining a team now to work

with that particular agent. In addition, if the degree

of task openness is high in the environment-such

that a task that requires a uniquely particular capa-

bility is unlikely or very uncertain to appear in the

environment again-then the agent might afford to

have a relatively low motivation to want to acquire

that capability which would be in a way obsolete

or unlikely to be put into good use.

• Third, the area of education psychology, especially

in student or human learning and teaching, has de-

scribed different types of knowledge transfer when

humans are involved in teamwork. These learning

and teaching processes, implicit or explicit, direct or

indirect, come with different cost in terms of time

and effort (involvement) and cognitive loads of the

learning and teaching parties. To maintain our focus

on the impact and benefits of learning and teaching

on the decisions and dynamics involved in ad-hoc

team formation, we have not implemented the actual

learning process in our model. Instead, we have con-

sidered the learning process as a separate subsystem

or a ’blackbox’ and used mapped, discretized costs

and the effectiveness of different types of learning

in our model. The factors enabling or facilitating

each type of learning or teaching when estimating

their costs and effectiveness is a planned next phase

of our research.

Our work in this paper uses a teacher-learner approach

for ad-hoc collaboration in a multi-agent task execution

scenario. In our scenario, tasks can be completed by

a group of agents that have the necessary expertise or

capabilities for performing the task. Each agent receives

a certain utility when it performs its portion of a task,

along with a much larger utility if the task is completed

satisfactorily by the group that is selected to perform the

task. Agents are utility maximizers. Consequently, each

agent tries to improve its chances of getting selected to

perform a task by acquiring the capabilities that align

with the capabilities that are required to perform current

tasks in the environment. This problem is not straightfor-

ward as tasks are introduced dynamically in the environ-

ment and agents that possess useful key capabilities to

perform tasks might leave the environment dynamically.

Our proposed teacher-learner framework addresses this

problem by developing decision-making strategies that

can be used by an agent to strategically determine what

the ’best’ capabilities to learn from other agents are,

and which agents are the ‘best’ teachers to learn those

capabilities from. Our proposed learning framework is

based on principles from human learning theory [3], [4].

Each agent also employs two parameters called agent

openness and task openness to model the dynamic nature

of the agents and tasks in the environment.

We have simulated the operation of our multi-agent

system for ad-hoc collaboration on the Repast agent

simulator. Our results show that the agents that use our

teacher-learner framework to decide what capabilities

to learn from other agents get more utility than the

agents that select capabilities to learn randomly or with

a fixed probability distribution. While we also find that

the agents in more stable environments are able to learn

and complete tasks more effectively than the agents in

more dynamic environments, in addition we also observe

an unexpected behavior where agents that try to learn all

capabilities (not necessarily optimally) outperform other

agents that optimize or select one capability to learn.

II. RELATED WORK

Multi-agent collaboration has been an important re-

search topic in multi-agent systems [5]. However, in [1]

the authors observe that not much of this research has fo-

cused on addressing the ad-hoc nature of the environment

where agents might not know the coordination protocol

used by each other, might not share the same world

model, and even might not be able to communicate di-

rectly with each other. Recently different facets of the ad-

hoc team collaboration problem have been studied. Stone

and Kraus [6] considered the problem of ad hoc team

collaboration by two agents, agent A, the teacher, and

agent B in the k-armed bandit problem. They analyzed

the task of agent A (which actions it should choose) in

order to maximize team’s utility in a setting where a

teammate has limited action capabilities and a fixed and

known behavior. In [7], the authors consider the problem

of a single ad-hoc team player leading other team-mates

that use a best response strategy to select their actions,
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Fig. 1. Task Execution and capability learning components showing agents ai and aj that work together on subtask τ within the ad-hoc

multi-agent collaboration model.

towards the optimal (cost-minimizing) joint action. They

use a graphical modeling approach to solve this type of

ad hoc game initially with three players and then with

N-players. Barrett et al. [8] propose a framework for

analyzing ad hoc team problems by describing a set

of dimensions. They analyze several traditional games

in pursuit domain and a few simple ad hoc games

using three dimensions: team knowledge, environmental

knowledge, and member reactivity.

Albrecht et al. [9] empirically evaluate five multi-

agent learning algorithms in ad hoc situations with 2

players and 3 players. They compare these algorithms

in five aspects: convergence rate, final expected payoff,

social welfare, social fairness, and rate of solution types.

In [10], the authors consider the problem of determining

the roles for a set of “inside” or controllable agents, so

that the marginal utility of an ad-hoc team comprising

both controllable and outside or uncontrollable agents is

maximized. Agent capabilities for each role are assumed

to be unchanged. In contrast, in our work, the capabilities

of agents can be dynamically updated based on expected

future interactions with other agents and the type of

future tasks and agents can improve their utilities by

acquiring sought-after capabilities. In [11], the authors

consider teams of agents working together where each

agent acquires capabilities in proportion to the utility

derived by performing tasks with other agents. Like

[10], their problem is formulated as selecting agent roles

by determining the optimum role-mapping policy. In

contrast, in our work, agents can acquire capabilities or

skills through learning/teaching, outside of doing tasks

so that they can improve their utilities by using those

capabilities later on.

Some researchers have developed personal assistant

agents to support users working within collaborative

design environments (CDE). Wua et al. [12] use personal

assistant agents to effectively work with the correspond-

ing users to achieve their goals in a collaborative envi-

ronment, while Myers et al. [13] develop an intelligent

personal assistant to help a busy worker in managing

time commitments and performing tasks. Such work on

personal assistant agents concentrates more on a user

interaction and enhancing the user experience.

Another research area related to learning in ad-hoc

environments is e-Learning, which encompasses a wide

spectrum of applications and processes such as Web-

based education, virtual classrooms and digital collabo-

ration. In [14], the authors describe a student modeling

server, a part of an architecture that allows independent

teams to develop user-adaptive components that could

interact in parallel with the same user. This architecture

can also integrate collected information, resulting in

better adaptations for the user. Baylari et al. [15] propose

a personalized multi-agent e-learning system based on

item response theory and an artificial neural network.

Their system presents adaptive tests and personalized

recommendations, where the agents add adaptivity and

interactivity to the learning environment and act as a

human instructor to guide the learners in a friendly and

personalized teaching environment.
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In contrast, the focus of our work in this paper is not

focused on collaborative learning nor human learning,

though we agree that these are critical steps that are of

interests in our next phases of research. Instead, our work

is focused on the following premise. In ad hoc team

formation (or general team formation, for that matter),

when deciding which team to join or form, an agent

often bases its decision on the expected utility of the

rewards from accomplishing a task or subtask leading

to satisfaction of a joint goal(s). What we propose here

is to add another level of “rewards” to this decision

making process-one that involves the indirect, or implicit

rewards that would come in the future from an agent

working with the others in a team. That is, the indirect

rewards stem from the agent learning from the others and

acquiring better capabilities from working in a team, or

from an agent teaching other agents how to solve a task

better.

III. MULTI-AGENT AD-HOC COLLABORATION

MODEL

We motivate our ad-hoc collaboration scenario within

a search-and-rescue domain which involves groups of

people, with different expertise and capabilities, working

together to perform search-and-rescue related tasks. In

a search-and-rescue domain, there is usually no central

coordinator to assign persons or teams to tasks. Conse-

quently, the individuals and groups have to determine by

themselves what tasks they can perform, and, collaborate

within their group as well as with other groups involved

in the search-and-rescue operations to perform the tasks.

Such a scenario provides an illustrative and appropriate

setting of ad-hoc collaboration. Consider a search-and-

rescue mission following a big disaster which lasts over

a period of several days or weeks. Each member of

the search-and-rescue team receives a one-time reward

based on the quality of that person’s tasks performed in

the search-and-rescue mission. Additionally, the entire

team receives a large reward at the end of the mission,

if it was successful. Events such as natural disasters

that require search-and-rescue efforts recur frequently

(e.g., once or twice a year). So, the people that took

part in a search-and-rescue team may be called on

again or another search-and-rescue effort of a similar or

different nature (type). Each member of the search-and-

rescue team has different skills for performing search-

and-rescue related tasks. Every member is also rational

he wants to perform his task as well as possible so that

he can get the maximum reward for the current search-

and-rescue mission and at the same time improve the

chances of him being invited to be a member of another

-search-and-rescue team in the future. Additionally, the

members of the search-and-rescue team are far-sighted

and they want to participate in other search-and-rescue

missions in the future to increase their rewards. To be

able to do this, the members want to learn skills or

capabilities related to the current search-and-rescue tasks

from the current members, especially from the ones who

have a good experience in such operations. Learning

capabilities incurs a learning cost. The members also

need to keep in mind that search-and-rescue missions

can be of different types. Therefore, besides learning

capabilities required for the current search-and-rescue

tasks, they should also consider learning capabilities

that might be useful in other types of search-and-rescue

missions, from other members in the team. Finally, some

members leave the team from time to time, so it might

be beneficial to learn from an expert member, in case

he has already left the team at a future time when his

skill becomes necessary. We assume that each member

of a search-and-rescue team has an autonomous software

agent associated with him that performs decision making

calculations and relays the result to the human. We

also assume that the human follows the decision made

by the software agentin a way, the software agents in

our environment represent their human counterparts. The

ad-hoc collaboration problem that we address in this

paper is the learning problem facing the members of

the search-and-rescue team - what aspects of different

types of search-and-rescue operations should they learn,

who should they learn from and when should they

learn; so that they can ultimately increase their rewards

in the long-term and receive satisfaction to offset the

learning expenditure. Our framework for multi-agent ad-

hoc collaboration consists of two main components for

each agent, a task execution model and a capability

learning/teaching model. The functionality of each of

these models is explained below:

A. Task and Capability Model

Let TTT be a set of tasks and A be a set of agents that

can perform those tasks. Each task can be decomposed

into a set of subtasks and agents complete the task by

coordinating with each other to perform the subtasks.

Each task T ∈ TTT has an associated task type Ttype
that is determined by the set of subtasks comprising the

task. T typeT typeT type is the set of all task types. For the sake

of legibility, we refer to a task and associated set of

subtasks it is decomposed into with the same notation

T . Each agent has a set of resources and can execute

actions using those resources to perform tasks. We have

abstracted the set of actions and resources of an agent

as a set of task-related capabilities of the agent. Let Cap
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denote the set of capabilities or skills that agents in A

possess and capi ⊆ Cap denote the capabilities available

with agent ai. The quality of a capability k of agent

ai, capi,k, is associated with numerical quality value,

qual(capi,k) ∈ [0, 1]. An agent can improve the quality

of its existing capabilities through learning from its own

actions or from other agents, while not using a capability

consistently results in a gradual deterioration of the

capability’s quality. The dynamic update of capabilities

through learning from other agents in this manner allows

the agents to dynamically form teams that specialize in

capabilities that are most useful to perform current task

requirements in the environment.

B. Task Discovery and Agent Selection

Let AT ⊆ A denote the set of agents that have the

capabilities to perform at least one of the subtasks of

T . The interaction and coordination between multiple

agents to allocate and perform the subtasks within a

task is implemented through a blackboard-based publish-

subscribe system [16]. Using an open interaction archi-

tecture like a blackboard, precludes the need to explicitly

provide specific coordination and communication proto-

cols between agents, as mentioned in [1]. A task is in-

troduced into the environment when an agent, adisc ∈ A

discovers it. The task discovery protocol is assumed to

be domain specific. The agent adisc decomposes the

task T into a set of disjoint subtasks such that each

subtask τ ∈ T requires exactly one capability from the

capability set Cap from one or more agents. All the

subtasks are published on the blackboard by adisc. Each

subtask τj ∈ T is associated with three parameters, the

capability capτj required for it, the minimum number

of agents, nτj with that capability required to perform

it, and, the minimum quality threshold qualThreshτj
that gives the minimum quality of the capability that

each agent performing it should have. qualThreshτj
is assumed to be a parameter that is specific to the

scenario at hand. It is determined from the scenario’s

operational conditions and provided by a human domain

expert. In general, in a scenario where optimization of

task quality is more important than, say, mere satisfaction

of task completion, the threshold should be set high. An

example of this scenario is making travel arrangements to

minimize cost while maintaining quality of serviceflight,

accommodation, etc. for a trip in a short time frame.

On the other hand, in a scenario where satisfaction of a

task completion is more viable than quality optimization,

say, due to stringent resource constraints such as lack of

qualified personnel in a disaster response situation, then

the threshold can be set lower. From another perspective,

if the system consists of mostly experts, then setting

a high threshold would ensure that lesser agents are

unlikely to be called to complete tasks, and vice versa.

Note also that effects of teaching and learning are more

likely to be felt when a team has agents of different levels

of expertise. So, in a way, to encourage teaching and

learning, it might be strategic to choose a low threshold

to increase the chance of having a mixture of agents

in a team. In our experiments to be discussed later in

Section V, we have experimented with various quality

threshold levels for different task types ranging from 0.2

(low threshold) to 0.7 (high threshold), to have tasks with

diverse quality threshold requirements.

Each agent ai uses a distributed auction mechanism

given in Algorithm 1 to select subtasks [17]. In the

auction-based task assignment mechanism, each subtask

τj is associated with a virtual price pj that is initialized

to 0. The algorithm proceeds in rounds. In each round,

an agent ai that does not have a subtask assigned to it

selects two subtasks, τj1 and τj2 , which it is capable of

performing, and, for which ai has the largest and the

second largest difference between its quality of the ca-

pability and the current price of the subtask, respectively.

Agent ai then submits a bid bi given by the difference

between these highest and second highest values, plus

a small, real-valued, bid increment denoted by δ. The

bid-increment ensures that the algorithm terminates if

multiple agents have the same quality of capability for

doing a certain subtask. If the bid bi is non-zero, agent ai
is assigned subtask τj1 . If the number of agents assigned

to perform τj1 exceeds nτj1
, then the agent with the

lowest bid is removed. The virtual price corresponding to

τj1 is also updated by bi. The algorithm terminates when

every agent has an assigned subtask. On termination, the

algorithm guarantees that the nτj agents that have the

highest quality of capabilities for subtask τj are allocated

to perform it. Agents that are allocated to perform the

same subtask coordinate with each other using some

coordination protocol [16] to perform their actions on

the task. Because task allocation and agent coordination

are not central to the collaboration problem discussed

here, we do not detail it further in this paper. We assume

that different existing techniques [16] could be used for

performing these activities depending on the application

domain.

C. Agent Utility Model

Let τi ⊆ T denote the set of subtasks of T that agent

ai is performing and τi,j denote its j-th subtask. When

a subtask τi,j is completed, the agent ai that performed

it using capability k at quality level qual(capi,k), as-

sociates a numerical satisfaction value to denote how
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selectSubTasksWithAuction(Blackboard b)

Set S; // set with assignment pairs (ai, τj)
foreach subtask τj of T in b do

// Determine subset of agents that have

capability to do subtask τj
A′

j ← {ai|(capτj = capi,k) ∧ (qual(capi,k) >
qualThreshτj )}

end

S ← {∅};
foreach τj ∈ T do

pj ← 0;
end

repeat

Let ai ∈ A′
j be an unassigned agent that is

capable of doing τj
//Find subtasks τj1 and τj2 which offer highest

and second highest difference between quality

and current price

j1 ← argmaxk|(i∈A′

j1

(qual(capi,k)− pk)

j2 ← argmaxk|(i∈A′

j2
,k 6=j1(qual(capi,k)− pk)

//Compute ai’s bid increment for τj1
bi ←
(qual(capi,j1)− pj1)− (qual(capi,j2)− pj2) + δ

if bi > 0 then
//Assignment of agent to subtask

Add the pair (ai, τj1) to the assignment S

if number of assignments of τj1 in S > nτj1

then

remove (a′i, τj1) from S where a′i had

minimum bid for τj1
end

pj1 ← pj1 + bi
end

until every agent ai has an assigned subtask;
Algorithm 1: Auction algorithm used by agents to

select subtasks

satisfactorily the subtask was completed. This value is

given by a local satisfaction function localSat : T
×[0, 1]nτ → [0, 1]. localSat(τi,j, qual(capi,k)) = 1(0)
means that the subtask was completed most satisfac-

torily (unsatisfactorily). When all of the subtasks of

task T are completed, a global satisfaction function,

globalSat : ×τ∈T τ × [0, 1]nτ → [0, 1], is used to

denote how satisfactorily the task was completed. It

is calculated and provided by an external “reviewer”

entity that assesses the outcome of the overall task

based on the outcome of the subtasks. The external

entity could be a human or a software agent. It is

assumed to have sufficient domain expertise to assess

the quality of the task’s outcome and assign a reward

value for the performers (agents) of the task. As before,

globalSat(·) = 1 denotes the task was completed most

satisfactorily. The value derived by an agent ai ∈ AT

for performing task T is given as a function of the

local and global satisfaction levels, i.e., Vi(T ) =
∑

τ∈T
Vi(τ, localSat(·)) + Vi(T , globalSat(·)). That is, the

value that the agent ai receives at the completion of

the whole task T consists of the value that the agent

ai gets for performing a subtask τ of the task T and the

value the agent ai gets for participating in completing the

whole task T , after all the subtasks associated with task

T are finished. Local satisfaction value is determined as

Vi(τ, localSat(·)) ∼ N (qual(capi,k, 1) and the global

satisfaction function is set as: Vi(T , globalSat(·)) ∼

N (
∑|τi|

j=1 localSat(·), 1).
Each agent ai ∈ AT incurs an expenditure or cost

denoted by cτi,j for the actions it does to perform subtask

τi,j and the total cost to agent ai for performing task T
is given by the sum of its costs for each subtask in T that

it performed, Ci(T )=
∑

τi,j∈T
cτi,j . We have assumed

that each agents utility is calculated independently based

on its performance of the each subtask it performs. In

addition, the final outcome of the task also contributes a

portion of the utility received by the agent through the

value of global satisfaction of the task that is calculated

by an external entity for each agent. Specifically, each

agent ai has a utility for task T given by the following

utility function:

Ui(T ) = Vi(T )− Ci(T ). (1)

Thus, the utility agent ai receives after completing task

T is the sum of the values it receives for performing

subtasks related to T and the value it receives after T
is completed, minus the costs the agent ai incurs for

performing subtasks of T .

Figure 1 shows the task and capability models that is

used by an agent in our proposed framework.

D. Capability Learning Model

When agents especially humans collaborate, it is likely

that agents learn from their collaborative experiences,

and these learning episodes lead to changes in their

capabilities and subsequent decision making. Moreover,

in an ad-hoc environment, tasks appear dynamically and

the distribution of the arrival of tasks is not known a

priori to the agents. Consequently, the set of capabilities

and corresponding qualities that are required to perform

tasks can vary dynamically. In a way, an agent should

acquire or improve capabilities that are in high-demand,

so that it can participate in performing tasks requiring

those capabilities as experts and improve its utility.

However, due to the openness in the environment, an
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agent needs to decide what capabilities to learn, when to

learn them and from whom to learn capabilities, without

pre-coordination.

To this end, we have used the learning-teaching model

between humans as a basis for the corresponding model

used in our ad-hoc collaboration scenario. Human learn-

ing is characterized by different learning types. In [18],

the authors describe six different learning types. Each

learning type is associated with a learning cost and a

learning efficiency that denotes how effective the learn-

ing type is. Table I shows the different learning types and

the ranking of corresponding costs and efficiencies. For

our model, we consider the four learning types that have

distinct costs and efficiencies in the table. We denote

Ltype as the set of learning types and clearn(lt) and

elearn(lt) as the cost and efficiency of learning type

lt ∈ Ltype respectively.

Rank of Cost and Eff. Learning Type

4 Teaching/Guiding

4 Being taught

4 Apprenticeship

3 Learning by Discussion

2 Learning by Practice

1 Learning by Observation

TABLE I

DIFFERENT LEARNING TYPES AND RANKING OF THEIR COSTS

AND EFFICIENCIES. HIGHER RANK MEANS HIGHER COST AND

EFFICIENCY.

The first step for an agent ai that intends to acquire

useful capabilities is to determine the set of capabilities

that give it the highest learning gain. In human learning

scenarios, when one human learns from another the

amount of information transferred from the teacher to

the learner is proportional to the knowledge gradient

between them. Following this approach, we model the

learning gain between two agents ai and aj for capability

k to be proportional to the capability difference between

them given by qual(capi,k) − qual(capj,k) (in the rest

of the paper we assume aj ∈ AT \ {ai}). Designing

an appropriate function to quantify the learning gain

while modeling human learning requires some insight.

Vygotsky’s zone of proximal development (ZPD) theory

[4] suggests that it may be difficult for two persons

to teach/learn from each other if the amount of prior

knowledge they have on a topic is vastly different from

each other or almost identical to each other. At the same

time, as the learner’s knowledge increases, the amount

of learning gain that it can obtain also diminishes, as

its knowledge starts to converge with that of the teacher.

Based on this theory, we have designed the learning gain

function between agents ai and aj for capability k using

learning type lt ∈ Ltype as the following function:

Gain(lt, ai, aj , k) =















η

qual(capi,k)+ǫ
, if lt = self-learning

c2−[(qual(capi,k)−qual(capj,k))−c]2

qual(capi,k)+ǫ
,

otherwise

where η is a constant denoting the increment in knowl-

edge from self-learning, ǫ is a small number in case

qual(capi,k) is zero and c is a constant to cap the

learning gain. For learning types other than self-learning,

the learning gain between agents ai and aj is maximum

when their qualities for capability k have a difference c.

When their quality values are very close to each other or

very far apart, the learning gain decreases towards zero.

Agent and Task Openness. The learning gain calcu-

lated by an agent identifies its potential benefit from

learning different capabilities from different agents.

However, it does not address the question whether the

capability learned by the agent will be useful for it

to perform tasks in the future and improve its task-

execution utility (given in Equation 1). In an ad-hoc

environment, if an agent is deciding on whether to learn

about the capabilities required for a particular subtask, it

should also consider the likelihood that it will encounter

the same subtask again in the future. Likewise, if an

agent ai has to make a decision on whether to learn

capability k1 or capability k2 from agents aj1 and aj2
respectively, it should include the likelihood that it will

encounter agent aj1 or aj2 again in the future and have a

chance to learn the capability from it later on. Combining

the above factors, the expected utility of learning about

a capability should weigh the knowledge gain from

learning by the likelihood of working with an agent

again and of encountering a task requiring that capability

again in the future. To address this question each agent

uses two parameters called the task openness and agent

openness to respectively model the type of tasks that can

be expected in the future, and, the expected availability

of agents from whom the capabilities required to perform

the expected future tasks can be learned. Let pi(aj | AT )
denote the likelihood of ai working with aj in ad hoc

team AT . Agent openness is defined as 1− pi(aj | AT ).
Let pi(capi,k | T ) denote the likelihood of agent ai
using capability k to solve a subtask in task T and

p(T ) denote the likelihood of task T appearing again

in the future. Task openness is defined as the product

of these two probability values, pi(capi,k | T ) · p(T ).
If the agent openness is high, new agents appear more

often and pi(aj | AT ) is low. If task openness is high,

new types of tasks appear more often and capability k of

agent i, capi,k, might not be needed again. In that case,
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p(capi,k | T ) will be low. And vice versa.

E. Capability Learning Strategies

The expected utility of an agent ai learning from aj
about a capability k using the learning type lt is given

by:

Ui(lt, aj , k) =

elearn(lt) ·Gain(lt, ai, aj , k) · pi(aj | AT )

− clearn(lt)

+ pi(capi,k | T ) · p(T ) · Ui(Ttype). (2)

The first term in Equation 2 is the weighted learning

gain multiplied by the likelihood of ai encountering

aj again in the future. The second term is the cost of

performing a particular type of learning. The third term is

the look-ahead term corresponding to the potential utility

of gaining knowledge in capi,k. To select a capability to

learn, the agent to learn from and the learning type to

employ, an agent ai can use three strategies:

(a) Strategy 1 (Optimizer): Select the learning type,

agent and capability < lt, aj , k > triplet that maximizes

Ui(lt, aj , k):

< lt, aj , k >∗
opt= max

lt

[

max
k

{

max
aj

Ui(lt, aj , capi,k)

}]

(b) Strategy 2 (Agent Selector): Select the agent aj that

maximizes the sum of Ui(lt, aj , k) for all capabilities

k. This strategy allows an agent to learn all capabilities

from the agent in AT that is the most ’well-rounded’ in

its capability set.

< lt, aj,− >∗
Ag= max

lt

[

max
aj

{

∑

k

Ui(lt, aj , capi,k)

}]

(c) Strategy 3 (Capability Selector): Select the capability

k that maximizes the sum of Ui(lt, aj , k) for all agents

aj in AT . This strategy allows an agent to learn about

the ’most qualified’ capability in the team from all other

agents in the team.

< lt,−, k >∗
Cap= max

lt



max
k







∑

aj

Ui(lt, aj , capi,k)











As a result of learning, the quality of agent ai’s capa-

bility capi,k gets updated by a quantity proportional to

the effectiveness of the learning type, as given in the

following equation:

qual(capi,k)← qual(capi,k)+∆qual(elearn(lt),Gain(lt, ai, aj , k))
(3)

where ∆qual : Ltype × R → R
+ is a quality update

function based on the learning type. It is calculated as

∆qual = elearn(lt)Gain(lt, ai, aj , k) (4)

∆qual determines by how much the quality of capability

capi,k is changed based on the learning type, e.g.,

whether the increment in the quality of the capability

will be more when learned by being taught than when

learned through observation. In case no learning occurs

for capability capi,k and the agent does not use capability

capi,k either, the quality of the unused capability capi,k
decreases with time, as qual(capi,k)← qual(capi,k)−γ,

where γ is a small real value.

The overall expected utility of the agent ai from

executing task T of type Ttype followed by learning

capabilities is given by a weighted sum of its expected

utility from executing the task (from Equation 1) and

expected utility from learning and teaching related to the

subtasks of that task (from Equation 2), as given below:

Ui(Ttype)← Ui(Ttype)

+ w · Ui(T ) + (1− w) ·
∑

k∈capi

∑

aj

Ui(lt, aj , k),(5)

where w ∈ [0, 1] is the weight that represents the

importance of performing the task.

The algorithm used by an agent ai in our ad-hoc

collaboration environment is shown in Algorithm 2.

IV. EXPERIMENTAL RESULTS

We implemented our multi-agent ad-hoc collaboration

model in Repast Simphony (repast.sourceforge.net), an

agent- based simulation framework. The main objective

of our simulations is to demonstrate the usefulness and

correctness of our learning framework and to compare it

with a fixed behavior. We do this by analyzing qualities

of the capabilities, number of finished subtasks and

average utilities of the agents over time. In particular, in

our experiments we evaluate the following hypotheses:

(1) task openness parameter controls how many tasks

are completed, (2) agent openness parameter impacts

the quality of the task but not so much the task com-

pletion, (3) agents using a utility maximizing strategy

to make a decision about learning obtain higher utility

and complete more tasks than agents not using such

strategies, (4) agents that try to learn all capabilities

(not necessarily optimally) outperform other agents that

optimize or select one capability to learn, and (5) agents

that dynamically learn capabilities from other agents

get higher utility and complete more tasks than agents

that use a fixed learning strategy. We simulate a search-

and-rescue operation scenario comprising a set of tasks
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selectAndExecuteTasks()

Blackboard b;

foreach timestep do

if Subtask in last timestep was completed then
selectSubTasks(b);

if subtask queue not empty then
execute first subtask from subtask

queue;

if task corr. to subtask is complete then
1: calculate utility of task using

Eqn. 1;

2: calculate learning utility and

choose

< lt, aj , capi,k > using Eqn. 2;

3: update quality of learned

capability using Eqn. 3;

4: decrement quality of capabilities

not used for this subtask;

5: update util. of task type corr. to

task using Eq. 5;
end

end

else
// subtask queue empty because no

cap-s at desired quality to do available

subtasks

// learn the ’best’ capability to perform

expected future tasks

execute steps 2-5 above;
end

end

else
continue unfinished subtask from last time

step;
end

end
Algorithm 2: Algorithm used by agent ai to select and

execute subtasks

that need to be accomplished during the operation. In

all our simulations one task is introduced at each time

step and we use 50 agents representing human members

of a search-and-rescue team. The task types and the

order in which tasks arrive are predetermined for our

simulation purposes. We consider a maximum of 5
unique subtasks (removing debris, extracting a victim,

providing medical assistance, navigation, tracking); thus

there can be 251 = 31 unique task types. Each subtask

requires one type of agent capability and thus there are

5 agent capabilities. We ran our simulations for different

value combinations of task openness and agent openness

parameters - task openness ∈ {0, 0.5, 1} denotes the

Name Value
η(self learning gain) 0.01
c(learning gain cap) 2
ǫ(learning gain zero-offset) 0.001
γ(decrease in quality) 0.01
elearn({1, 2, 3, 4}) {0.2, 0.4, 0.6, 0.8}
clearn({1, 2, 3, 4}) {0.2, 0.4, 0.6, 0.8}
w(wt. in Eqn. 5) 0.5
qualThresh{1,2,3,4,5} {0.7,0.5,0.4,0.3,0.2}
cτi,j (cost of subtask j to ai) N (qual(capi,j), 1)
globalSat(τi,j , qual(capi,j)) N (localSat(τi,j , qual(capi,j)), 1)

TABLE II

PARAMETERS AND THEIR VALUES USED IN OUR SIMULATION

EXPERIMENTS.

fraction of new tasks that are introduced at the end

of each time step and agent openness ∈ {0, 0.5, 0.9}
denotes the fraction of new agents entering at the end

of every time step. The local satisfaction obtained by

an agent for completing a subtask, localSat(·), is drawn

from a Gaussian distribution with the mean at the quality

level qual(capi,k) used for completing the subtask. Cor-

responding, the global satisfaction value, globalSat(·),
that an agent receives after a task, in which it had

participated by performing a subtask, is completed is

drawn from a Gaussian distribution with the mean at

the sum of the values Vi(τ, localSat(·)) for all subtasks

τ ∈ T associated with task T . We assume that there is a

domain-expert, external entity (human or software agent)

that calculates the value of globalSat(·). The values of

the different parameters we have used in our experiments

are given in Table II. All results were averaged over 10
simulation runs.

A. Effects of Task and Agent Openness Parameters

In our first set of experiments, we analyze the effect

of task and agent openness on the performance of

quality of tasks and completion rate of tasks for different

combinations of the task and agent openness parameter

values. All agents use Strategy 1 (Optimizer) to make a

decision about learning capabilities. At the beginning of

the simulation each agent randomly selects how many

and what capabilities it possesses along with an initial

quality value in U [0, 1] for each selected capability.

Figure 2(a) shows changes in average quality of all

agents over time for the capability that was selected by

the largest number of agents. The maximum observed

standard deviation for these experiments was obtained as

0.11. Figure 2(b) shows changes in average quality of all

agents over time for the capability that was selected by

the smallest number of agents. The maximum observed

standard deviation for these experiments was obtained
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parameters.
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as 0.08. We observe that the quality decreases slightly

initially but then it tends to increase over time as agents

learn capabilities from each other. The reason for the

initial decrease in quality is due to a bootstrapping period

during which agents discover what capabilities are most

in demand and then learn those capabilities. The boot-

strapping period is also evidenced in Figure 2(c), where

the number of unfinished subtasks at the end of each time

step increases initially and then starts decreasing when

agents acquire capabilities to perform the tasks. Also,

in Figure 2(a), we observe that when agent openness

and task-openness are both equal to 0, the quality of

tasks performed is the highest as the environment is least

dynamic. When agent-openness = 0, agents perform

tasks with 15− 32% higher average qualities than when

agent openness = 0.9, irrespective of the task openness

value. This is because with a static agent population,

the capabilities learned by the agents remain within the

population and can be reused. However, varying the task

openness between 0 and 1 while keeping agent openness

fixed, only marginally reduces the task performance

quality. Overall, these results illustrate that the agent

openness parameter is more critical than task openness

parameter in determining the performance quality of

tasks for an ad-hoc collaboration scenario. The task

openness parameter on the other hand is more crucial in

determining how many tasks get completed. In Figure

2(c), we see that the number of unfinished subtasks is

higher when task openness = 0 because agents require

more time to learn capabilities so that their possessed

capabilities are aligned with the tasks’ capabilities.

We further analyze the above hypothesis about the

effect of agent and task openness parameters on the

completion rate of tasks in the following experiment

where we record the number of finished subtasks at

every time step averaged over the number of agents.

Results are shown in Figure 3(a). We observe that when

all of the tasks are of the same task type, i.e., when

task openness is 0, agents complete 49% more subtasks

than when all of the tasks are of different task type. We
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Fig. 4. Average utility of the agents for different strategies described in Section III-D that are used by the agents to make a decision about

learning when (a) task and agent openness are 0, (b) task and agent openness are 0.5, (c) task openness is 1 and agent openness is 0.9.

also note that when the same agents remain throughout

the simulation (agent openness = 0), 4% more subtasks

are finished than when only 10% of the agents are the

same throughout the simulation (agent openness = 0.9).

We posit that the difference in the number of finished

subtasks is not very significant when agent openness

changes from 0 to 0.9 because new agents still have

some capabilities and are able to perform and complete

subtasks. On the other hand, task openness parameter

affects the rate of completion of subtasks - a lot more

subtasks are finished when task openness is 0 than when

it is 1. This is because with task openness = 0 agents

learn the capabilities for the subtasks of that one task

type throughout the duration of the simulation and more

agents are therefore able to perform the subtasks of that

particular task type with time.

B. Analyzing costs and benefits of learning capabilities

Learning Effectiveness. Our results show that intelli-

gently learning capabilities based on task requirements

produces higher agent utilities for most scenarios. This

is especially true in more static environments (with low

task and/or agent openness), where LE > 1. However, as

shown in Figure 3(b), for more dynamic environments,

the benefit of learning capabilities may diminish. When

the task and agent openness values are very high, LE

is initially negative and does not reach 1 up to the end

of the experiments. This may happen because in highly

dynamic environments, the required capabilities change

rapidly as the tasks that are introduced at each time step

are almost all new tasks. Meanwhile, the agents that are

there from which to learn capabilities are mostly ‘new’,

non-expert agents as only 10% of the agents persist from

one time step to the next. Therefore, the quality values

of an agents capabilities may take considerable time to

reach a level at which their utility from task execution

is high enough to offset the expenditure for learning. As

long as this offset does not happen, the utility from learn-

ing is negative. Consequently, we can conclude that the

openness parameters for tasks and agents play a crucial

role in determining the performance and convergence in

ad-hoc coalition formation, and thus important factors to

consider when studying ad-hoc coalitions.

Learning Population Makeup. For our next experi-

ment we consider a setting with different types of agents.

We allow for two types of agents - zero intelligent and

intelligent agents, where intelligent agents use strategy 1
to make a decision about learning while zero intelligent

agents do not use utility maximizing strategies to make

decision about learning, instead they randomly select

the capability they want to learn and the agent they

want to learn it from. We vary agent population into

setups where (1) all agents are zero intelligent, (2) all

agent are intelligent, and where (3) the agent population

is divided evenly into zero-intelligent and intelligent

agents. We keep the other parameters fixed with: task

openness = agent openness = 0.5, no. of agents = 50,

and all agents are intelligent. The utility averaged over

all agents in the population is shown in Figure 5(a) and

(b). In Figure 5(a), we observe that the zero intelligent

agents get 38% less utility on average and complete

60% less tasks on average than the intelligent agents.

In Figure 5(b), we observe that when the population

comprises of 50% intelligent and 50% zero intelligent

agents, the zero-intelligent agents get more utility than in

the all-zero intelligent case. This indicates that being in a

population with agents that intelligently learn capabilities

improve utility for zero intelligent agents too as more

tasks get completed by the intelligent agents and the zero

intelligent agents derive the utility from those completed

tasks. The number of subtasks that are finished at each
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Fig. 5. (a) Avg. utility of agents in a population when the population has all intelligent(All-intelligent), all zero-intelligent agents(All-zero

intelligent) or 50% intelligent and 50% zero-intelligent(Half-intelligent) (b) Avg. utility of agents for the same settings as in (a) but showing

the division of utilities between intelligent and zero intelligent agents in the 50% intelligent(Half-intelligent) and 50% zero-intelligent(Half-

zero intelligent) population, (c) Avg. no. of finished subtasks for the different agent population setups.

time step averaged over all agents in shown in Figure

5(c). Overall, we observe that intelligent agents are able

to get more utility than zero intelligent agents by using

strategic decisions about learning capabilities.

Openness-based Learning Strategies. Next, we an-

alyze the performance of the three different capability

learning strategies given in Section III-D. Each setting

has 50 agents and all agents use the same strategy in

one simulation. The task openness and agent openness

parameters are varied over 0, 0.5, and 1(0.9) respectively.

All other parameters are retained from the previous

experiments. Figures 4 (a)-(c) show the utility averaged

over all agents for the different strategies. We observe

that Strategy 2 (Capability Selector), where an agent first

selects the most suitable or expert agent to learn from and

then learns all the other capabilities (opportunistically)

from it, gives the highest utility when task and agent

openness are 0.5 and 1. Strategy 3 (Agent Selector),

where the agent learns the same capability from all

agents gives the lowest utility. These results indicate

that it is a better strategy to learn all capabilities “in a

bundle” from one expert even though not all capabilities

learned will be optimal rather than to try to become an

expert in each capability by learning it separately from

each corresponding expert respectively. This indication

is more pronounced when the environment is more

dynamic (task and agent openness are 1 and 0.9 resp.):

the difference between the agent utilities from Strategies

2 and 3 increases by about 25% compared to a less

dynamic environment (task and agent openness are both

0). Overall, these results indicate that being all-rounded

in terms of capabilities is also a better game plan, and

it also pays off better as the dynamic nature in the

environment increases.

Dynamic vs. Fixed Learning Strategies. For our

final set of experiments, we compare the benefit of

dynamically learning capabilities from other agents using

our framework vs. a fixed learning strategy. We consider

two populations of agents - agents with a dynamic

strategy use Strategy 1 to select the capability to learn

and which other agent to learn from, while agents with

a fixed strategy select each capability to learn with

a fixed probability of 1
|Cap| = 1

5 . We consider two

agent populations, one where all agents are dynamic and

compare it with a population where all agents use fixed

strategy. We vary the task openness parameter and set

agent openness = 0. All other parameters are kept at

the values from the previous experiment. The average

utility for all agents for different values of task openness

is shown in Figure 6(a-c), and the number of subtasks

that are finished at each time step averaged over all

agents for different values of task openness is shown

in Figure 6(d-f). We observe that fixed strategy agents

get 64% less utility on average and complete 52% less

tasks on average than the dynamic strategy agents when

task openness is 0. This is because fixed agents waste

resources by learning different capabilities other than

just the necessary ones in the stable environment where

tasks’ types do not change. Fixed strategy agents do

better when task openness is 1, but they still get 47%
less utility on average and complete 26% less tasks on

average than the dynamic agents. These results clearly

illustrate that dynamic agents are able to make smart

decisions about learning capabilities as well as improve

their own utilities, while fixed agents make arbitrary

learning decisions and adversely affect task performance

in the environment as well as their own utilities.
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Fig. 6. Average utility of the agents when task openness is (a) 0, (b) 0.5, (c) 1, and the average number of finished subtasks when task

openness is (d) 0, (e) 0.5, (f) 1 for different agent populations.

V. CONCLUSION AND FUTURE WORK

In this paper, we described a framework for agents to

perform tasks in an ad-hoc collaborative manner while

strategically learning capabilities to perform the tasks.

Novel features of our model account for agent and task

openness within a multi-agent learning and teaching

model. Our experimental results indicate that agents

learn and perform the best in more stable environments,

while in more dynamic environment strategic decision-

making by the agents to learn capabilities improves the

agent utilities and their task performance. Finally, we

observed that even if only a part of the agent population

strategically learns capabilities, they are able to improve

the overall task performance in the environment, and,

consequently, increase the utility of the less intelligent

agents in the population. This result has an important

repercussion - in environments where learning capabili-

ties is a costly operation, only a fraction of the population

can learn capabilities strategically, but still improve the

task performance of the environment and contribute

to the utility of the entire agent population. Besides

search-and-rescue scenarios, we foresee our work to be

applicable to military operations, where soldiers hav-

ing different capabilities have to work together on one

operation; to task force collaborations, where experts

from different institutions use their skills and collaborate

in response to a particular crisis or event; to distance

learning students working on group projects; to business

companies where different groups inside the company

have to work together on a specific goal, etc.

Future work includes investigating other stress factors

in ad-hoc collaboration environments such as priorities

of tasks, noise, tight time constraints, and disappearing

team members (i.e., team members who leave an ad

hoc team due to other emergency commitments) and

determining optimal values for the learning gain cap

and zero offset parameters in Table II. We also plan

to investigate different learning models and the use

of different communication protocols (both direct and

indirect) that impact the learning effectiveness and costs.

Another relevant direction we plan to investigate is

designing more complex protocols for disbursing the

global satisfaction value that the agent receives after the

whole task is completed using concepts from coalitional

game theory such as the core and the Shapley value

[17]. We also look into more varied task types where

capabilities of each agent is a significant subset of the

total number of capabilities. And finally, we plan to
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conduct more extensive simulations to get a better idea

of how selective agents can be in learning and teaching

by increasing the number of agent capabilities, so that

each agent can only be good at a few of them, and by

having more diverse task types.
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