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Abstract Time series data are widely used in many applications including critical decision
support systems. The goodness of the dataset, called the Fitness of Use (FoU), used in the
analysis has direct bearing on the quality of the information and knowledge generated and hence
on the quality of the decisions based on them. Unlike traditional quality of data which is
independent of the application in which it is used, FoU is a function of the application. As the
use of geospatial time series datasets increase in many critical applications, it is important to
develop formal methodologies to compute their FoU and propagate it to the derived infor-
mation, knowledge and decisions. In this paper we propose a formal framework to compute the
FoU of time series datasets. We present three different techniques using the Dempster—Shafer
belief theory framework as the foundation. These three approaches investigate the FoU by
focusing on three aspects of data: data attributes, data stability, and impact of gap periods,
respectively. The effectiveness of each approach is shown using an application in hydrological
datasets that measure streamflow. While we use hydrological information analysis as our
application domain in this research, the techniques can be used in many other domains as well.

Keywords Fitness of Use (FoU) - Dempster—Shafer belief theory - time series data

1 Introduction

Time series datasets contain the value of a certain variable as a function of time. In the
geospatial domain, such datasets are used to store measurements for many natural and human
events at different points along the time line. Over the years, many time series datasets have
been collected in many domains such as meteorology, agriculture, biology, ecology, hydrology
and oceanography. Large amounts of these time series datasets are now universally becoming
available and being widely used (e.g., water data [1]). In many of these domains the datasets
are used to compute various pieces of information and to derive knowledge that is used as the
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basis for making critical decisions. For example, the trends in flow of streams and amount of
precipitation are often used to determine the severity of droughts [2]. This information is then
used to decide the amount and type of support that can be provided to farmers and ranchers.
In most applications, it is commonly assumed that the datasets are perfect and without any
blemish. This assumption is, of course, not true. The data is merely a representation of a
continuous reality both in space and time. It is difficult to measure the values of a continuous
space and time variable with infinite precision. Limitations are also the result of inadequate
human capacity, sensor capabilities and budgetary constraints. The discrepancy therefore
exists between the reality and the datasets that are derived to represent it. It is critical to capture
the degree of this discrepancy and incorporate it in the analysis to obtain a more accurate
picture of the temporal processes. This measure of quality of a dataset is clearly a function of
the purpose for which it is used. If the dataset is being used to analyze the long-term behavior
of'a temporal process, e.g., global warming, then it is important to have the measurements over
a long period of time without significant gaps. Similarly if a process is very dynamic, e.g.,
streamflow of a river, then it is necessary to measure its parameters at a finer temporal scale.
This aspect of the datasets is often called its Fitness of Use (FoU). For a given
application, this value varies among the datasets. Information derived from high-FoU
datasets is more useful and accurate for the users of the application than that from low-FoU
datasets. The challenge is to develop appropriate methods to evaluate this FoU measure for
a dataset in order to gain information on how the dataset can be used or how appropriate the
dataset is for a particular application [3]. This challenge and other aspects of goodness of
datasets have been identified as reasons for failure in many data warehouse projects [4], [5].
In this paper, we focus on computing the FoU of dynamic datasets that are quite
common and are widely used in many critical decision support systems. Our approach is to
develop efficient methods to evaluate the FoU of time series data using rules derived for
specific applications. While we use a specific application from the geospatial domain to
illustrate our techniques, they are applicable in many different domains. Specific examples
of these types of datasets include measurements of precipitation and other weather related
parameters, streamflow, amount of water in lakes and reservoirs, crop yield, or virtually,
any dataset that records measurement of the same quantity over a long period of time at
regular intervals We use an information theoretic approach to compute the FoU of a dataset.
The Dempster—Shafer belief theory [6] is used as the basis for our approach, in which the
FoU is represented as a range of possibilities and integrated into one value based on the
information from multiple sources. Dempster—Shafer is the primary alternative to Bayes
theory [7], [8], which requires previously known probability determinations for data fusion.
The paper is organized as follows. In Section 2, we review the related research work in
computing fitness of use. In Section 3, we define and formulate the problem of computing
the FoU for time series data. We describe the Dempster—Shafer belief theory and how it
applies to our problem. Three solution approaches-heuristic analysis, temporal variability
analysis, and time series analysis-and algorithms for computing the FoU are described in
Section 4. In Section 5, we describe the implementation and results of using the FoU
computation in a geospatial application domain. Finally, we give a summary and describe
directions for future work in Section 6.

2 Related work

The focus of this paper is not on the computation of traditional data quality, but on their
fitness of specific applications. Specifically, we seek to incorporate the FoU in knowledge
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discovery and data mining (KDD) approaches and apply this to geospatial datasets. In this
section, we first differentiate between traditional data quality and the FoU measure. Then,
we discuss approaches to computing the FoU in geospatial time series datasets.

Though related, traditional data quality and the FoU are different. Previous studies
addressed data quality as a multi-dimensional concept [9]-[13]. Data quality is commonly
evaluated along five major dimensions [3]: (1) accuracy that measures the conformity of the
recorded value with the actual value, (2) precision which is the degree of detail that can be
recorded, (3) resolution which is the level of detail that can be represented, (4) consistency
which means that the representation of the data is in the same format, and (5) completeness
which implies that all values for a certain variable are recorded. Furthermore, data quality
may also include data accessibility, appropriate amount of data, data believability, data
completeness, data representation, ease of manipulation, data interpretability, data
reputation, data security, and data timeliness [11]. In some GIS-based analysis, the quality
of geospatial data has been evaluated with uncertainty as the basis of quality [14]. Data
quality is therefore expressed as the degree of discrepancy between the data in GIS and the
data in the geographic reality. In [15], [16], the quality of geospatial data was investigated
by detecting the errors and inconsistencies in spatial datasets.

On the other hand, the definition of the FoU measures the “quality” of data from the
viewpoint of its suitability for a specific application. For example, a value with precision of
three decimal points is more accurate than the same value rounded to two decimal points.
However, both values may have the exactly the same FoU in an application, in which the
values are used as integers. In [17], the FoU was derived from the aspects of metadata
quality, data availability, data resolution, data collection methods, data classification
methods, and cost of accessing data. In [18], the authors studied the FoU obtained from
multiple sources with different levels of reliability. Compared to these studies, our work is
focused on metadata quality and considers a single data source, e.g., streamflow
measurements.

Considering the complex nature of geospatial time series datasets and the limitation of
methods used to capture the data, different models have been proposed to model errors and
inconsistencies, on which the FoU is based. In [19], [20], the probability theory was used to
evaluate the uncertainty in the capture of geospatial data. The probability theory is
especially powerful when dealing with uncertainty that is introduced by randomness (e.g.,
digitization of a point using GIS [14]). However, the appropriateness of probability theory
becomes questionable when dealing with the uncertainty that is caused by fuzziness [21]
(e.g., the creation of a map using remote sensing classification techniques [14]). The
possibility theory, on the other hand, shows efficiency in calculation of uncertainty that is
introduced due to fuzziness but is less efficient in dealing with uncertainty caused by
randomness. In [22], the possibility theory was used in FoU evaluation. In [23], the authors
studied the uncertainty using various mathematical models, e.g., normal or Gaussian
distributions. Such uncertainty analysis is not used in our study because we focus only on
the data but not the quality of the instruments used to capture data.

KDD techniques are designed to extract interesting information and knowledge from
vast amounts of data and can play a major role in affecting the FoU of the data. Steps in a
typical KDD application are: (1) data gathering, (2) data storage, (3) data retrieval, (4) data
mining, and (5) knowledge delivery [24]. During the data gathering stage, the FoU can be
affected by the manual entry (e.g., duplicate data entry, error of measurement equipment).
At the data storage stage, inappropriate data model or structure and untimely updates may
lower the FoU. At the data retrieval stage, the problems include computational constraints
and inefficient use of memory. Data mining can be used to compute the FoU [25], [26]. For
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example, mining of association rules were employed to detect, quantify, explain and correct
data quality deficiencies in databases. In [27], a machine learning algorithm, namely C4.5,
was used to design a data auditing generator. The data auditing generator can systematically
generate and pollute an artificial benchmark that is used to audit a database. Statistical
methodologies (e.g., standard statistical tests) for detecting abnormal or missing data and
profiling the quality of a dataset have been developed [28], [29]. In [30], a module was
developed to capture data quality problems in database systems by performing data
extraction, data transformation and data loading. In [31], a data quality model was
developed to improve the query performance of database management systems.

To summarize, the focus of our work is in computing the FoU of a dataset and not the
traditional aspect of data quality. Many previous studies have investigated geospatial data
by only considering a single dimension, e.g., scale incompatibility or error detection, or by
analyzing multiple dimensions separately. Our study evaluates the fitness of use as a whole
by making use of an information fusion approach to combine the impact from all the related
data aspects/attributes into a single measurement. For example, data gap (interruptions in
measurements) is an important data attribute in FoU evaluation, which was considered in
[32] and [33]. However, those studies did not provide a systematic approach for combining
data gap with other related factors (as suggested by [34]). Specifically, our research
investigates the FoU by incorporating the impact from data gap, data stability factors, and
other data attributes. This is particularly important for analyzing geospatial time series data,
where gaps in measurement may be a significant issue. Our proposed approach is based on
the Dempster—Shafer belief theory which has been used by Eastman for uncertainty
management for decision support tools [35].

3 Problem formulation

The central problem we address in this paper is to determine the FoU of time series datasets
for applications. Assume that we are given a set of time series datasets, S={S, S,,...,S,}. A
dataset S; may consist of many types of information including (and not limited to) spatial
coordinates, metadata about the dataset, denoted by aux,, and the actual time series data,
denoted by ts;.

The metadata for a dataset includes the type of information being recorded (e.g.,
precipitation, or discharge of water in a stream), the period of record, and the frequency of
measurement. Thus,

aux; = (type;, tb;, te;, int;),

where tb; and te; denote the beginning and the ending time stamps for the measurements,
and int; is the interval at which the measurements are made. Other metadata such as the type
and age of recording device can also be added.

The time series data in a dataset consist of a sequence of measurements,

ts; = <mz71 s, 7mi7p>4

Each measurement stores both the time the measurement was taken and the actual value
recorded by the sensor. Thus, each measurement is given by:

mij = (tij, vig)-
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We assume that the measurements in the dataset are maintained in chronological order.
Therefore,

tij < tiy, forj < k.

Furthermore, the first and last measurement times should match the period of record stored
in the metadata,

tbl‘ =11 and te; = [i,p'

For our research, we consider datasets that store measurements at regular intervals. In
general, different datasets record values at different intervals. For example, some datasets
will be based on daily observations, while others at weekly or monthly intervals. The work
reported here can be extended to the case when the measurements are taken at irregular
intervals, but this is beyond the scope of this paper.

The problem of finding the suitability of a dataset for a given application is to define a
function for the FoU that computes the fitness of use of a dataset described above. The
function FoU maps a time series dataset S; to a normalized value between 0 and 1:

FoU(S;, 4) = [0, 1],

where S, is a single dataset and 4 is the intended application of the data. The application 4
is represented in the form of domain knowledge that describes how goodness of a dataset is
viewed. We use a set of rules that specify this information. Thus,

A={R\,R,- -+, Ra},

where R; is a domain rule to describe the goodness of a dataset, and d is the number of
rules. Therefore, our FoU function is defined with respect to an application domain.
Different applications can use different rules for goodness and derive different FoU values
for the same dataset.

4 Approach

The challenge in computation of the fitness of use for datasets is to identify the dimensions
that are important in the application, to formalize the domain rules, and finally to combine
them to derive an overall quality indicator. The important dimensions must be
representative and collectively be able to define the expected variance in the datasets.
The fundamental issue is the fact that the natural processes are inherently variable and
hence their measurements are uncertain. Furthermore, the FoU of a dataset can be measured
along different dimensions. For example, if the data is recorded at a daily interval, the
resulting dataset can be viewed to have higher quality than one that is recorded weekly. The
reason for this assessment is that more precise analysis can be obtained from daily data than
weekly data. One can computationally derive weekly data from daily data,. However, this
can lead to bias and trends that do not accurately reflect reality. Therefore, there is a loss of
information and hence it is not possible, in general, to derive daily data from weekly data.
Similarly, if there are missing records in the dataset, then the length of the period for which
there are no measurements is a (negative) factor in the quality of the dataset.

In this paper, we propose three different approaches to compute the fitness of use of
datasets. They differ in the way in which the quality is modeled and quantified. In all three
approaches however, we use the Dempster—Shafer belief theory [6] as the basis to derive a
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composite quality indicator. The three proposed approaches are heuristic analysis, temporal
variability analysis, and predicted error estimates using time series analysis. Briefly, the
heuristic analysis uses commonsense heuristics (rules of thumb) taking into account
consistency, length, recency, resolution (e.g., spatial or temporal), completeness, and noise
to evaluate the FoU of datasets. The temporal variability analysis considers a coefficient of
variation to measure the stability of values at the same periodic time points over an interval
of measurements, with the assumption that high stability implies high FoU. The time series
approach uses a regression model to estimate the maximum predicted error, which is then
used as an inversely proportional estimate of the FoU of datasets.

The general application on which the FoU is defined is decision support systems to
providing information to users on the “goodness” of the measurement stations. Information
on the goodness of the measurement stations allow users to, for example, decide how to add
new stations or make use of existing stations to extrapolate values for regions not covered
by the stations. This general application can thus be plugged into most GIS-based
applications (e.g., hydrological analysis and drought assessment).

In the following subsections, we first briefly describe the Dempster—Shafer belief theory
and how it can be used to compute the FoU of datasets. Then we discuss the three proposed
approaches.

4.1 Dempster—Shafer belief theory

There are several limitations of applying the traditional Bayes probability theory to
represent the full scope of uncertainty [36]. For example, the probability of an outcome
occurring is measured based on how often that particular outcome occurs in a series of trials
with respect to other outcomes in the long run. However, in most uncertain scenarios, the
probability of an outcome is not known as (1) we do not have the frame of all possible
outcomes, especially in a non-discrete domain, and (2) we do not have enough data to
ascertain the frequency of an outcome. Thus, uncertainty is often represented with subjective
probability. The Dempster—Shafer belief theory addresses this limitation. Instead of a single
probability value associated with an event or measurement, the theory allows an interval-
valued probability to be associated with the event. There are several advantages of the
Dempster—Shafer belief theory. First, it does not require that the individual elements follow a
certain probability. In other words, Bayes’ theorem considers an event to be either true or
untrue, whereas Dempster—Shafer allows for unknown states [37]. This characteristic makes
Dempster—Shafer belief theory a powerful tool for the evaluation of risk and reliability in
many real applications when it is impossible to obtain precise measurements/results from
real experiments. In addition, Dempster—Shafer Belief Theory provides a framework to
combine the evidence from multiple sources and does not assume disjoint outcomes [31].
Also, Dempster—Shafer’s measures are not necessarily less accurate than Bayesian methods,
and in fact reports have shown that it can sometimes outperform Bayes’ theorem [38], [39].

The two central ideas of Dempster—Shafer belief theory are: (a) obtaining degrees of
belief from subjective probabilities for a related question, and (b) Dempster’s rule for
combining such degrees of belief when they are based on independent items of evidence.
For a given proposition, P and given some evidence, we derive a confidence interval,
defined by an interval of probabilities within which the true probability lies within a certain
confidence. This interval is defined by the belief and plausibility supported by the evidence
for the given proposition. The lower bound of the interval is called the belief and measures
the strength of the evidence in favor of a proposition. The upper bound of the interval is
called the plausibility. It brings together the evidence that is compatible with the proposition
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and is not inconsistent with it. The values of both belief and plausibility range from 0 to 1.
The belief function (bel) and the plausibility function (pl) are related by:

pl(P) =1 —bel(P)

where P is the negation of the proposition P. Thus, bel (F) is the extent to which evidence is
in favor of P. It should also be noted that it is not necessary that pl(P) +p1(1_3) =1.
Likewise, it is not necessary that bel(P) + bel(P) = 1.

The term Frame of Discernment (FOD) consists of all hypotheses for which the
information sources can provide evidence. This set is finite and consists of mutually
exclusive propositions that span the hypotheses space. For a finite set of mutually exclusive
propositions (/) the set of possible hypotheses is its power set (29), i.e., the set of all
possible subsets including itself and a null set. Each of these subsets is called a focal
element and is assigned a confidence interval [belief, plausibility].

Based on the evidence, we first assign a probability mass to each focal element. The
masses are probability-like in that they are in the range [0, 1] and sum to 1 over all
hypotheses. However, they represent the belief assigned to a focal element. In most cases,
this basic probability assignment is derived from the experience and rules provided by some
experts in the application domain.

Given a hypothesis, H, its belief is computed as the sum of all the probability masses of
the subsets of H as follows:

bel(H) = " m(e),

eCH

where m(e) is the probability mass assigned to the subset e. The probability mass function
distributes the values on subsets of the frame of discernment. Only to those hypotheses, for
which it has direct evidence, are assigned non-zero values. Thus, the Dempster—Shafer
belief theory allows for having a single piece of evidence supporting a set of multiple
propositions being true.

If there are multiple sources of information, we can derive probability mass functions for
each data source. These mass values are then combined using Dempster’s Combination
Rule to derive joint evidence to support a hypothesis from multiple sources. Given two
basic probability assignments, m, and mp for two independent sources (4 and B) of
evidence in the same frame of discernment, we can compute the joint probability mass,
m g, according to Dempster’s Combination Rule:

S mlayn(®
e ST

ANB=()

Furthermore, the rule can be repeatedly applied for more than two sources sequentially, and
the results are order-independent. That is, combining different pieces of evidence in dif-
ferent sequences yields the same results.
Finally, to determine the confidence in a hypothesis H being true, we multiply belief by
plausibility:
confidence(H) = bel(H) - pl(H).

Thus, the system is highly confident about a hypothesis being true if it has high belief and
plausibility for that hypothesis being true.
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For all of our approaches, we use three discrete FoU outcomes of the datasets: suitable (s),
marginal (m), and unsuitable («). Thus,

9 = {S7 m? u}7
and the frame of discernment is:

FOD = 2% = {0, {s}, {m}, {u}, {s,m}, {s,u}, {m,u}, {s,m u}}.

4.2 Heuristic analysis

As described before, the assignment of probability masses can be done in different ways. In
our first approach, we use a set of domain heuristics for this purpose and then use the
combination rule to compute the fitness of use of the datasets. The heuristics can be based
on common sense knowledge or can be based on expert feedback. We use the following
criteria to judge the FoU of geospatial time series datasets for general GIS applications.

* Consistency—A dataset is consistent if it does not have any gaps. A consistent
dataset has a higher fitness value.

*  Length—The period of record for the dataset is also an important factor in the
quality. Longer periods of record generally imply higher fitness value.

*  Recency—Datasets that record more recent observations are considered to be of
higher fitness value.

*  Temporal Resolution—Data are recorded at different time scales (sampling
periods). For example, the datasets can be recorded daily, weekly or monthly.
Sometimes data are recorded daily, but summarized weekly or monthly. Depending
on the application higher or lower resolution may be better. The higher resolution
had more information, but is noisier as well. This is also called the granularity [40].

o Completeness—A data record may have many attributes, e.g., time, location, and
one or more observations. For example, a weather station may record the daily high
and low temperature, daily precipitation, moisture level, etc. A dataset is complete
if all the relevant attributes are recorded. Incomplete datasets are considered to be
inferior [40].

* Noise—All datasets have some noise due to many different factors. They include
severe weather conditions during data collection, human factors, and inaccuracy of
measurement devices. All these factors may lead to lower FoU values for a dataset.

For each of the above criteria, we can define one or more heuristics to determine the
subjective probability mass for different data quality values. We specify the heuristics in the
form of rules as follows:

C1(Si) A Ca(Si) A -+ - A Cy(S;) — mass(S;, {qtype}) = m,

where C; specifies a condition of the dataset, C; (S;) evaluates to true if the condition C;
holds for the dataset S;, and mass(S;, {qtype}) denotes the mass of evidence that the dataset
S; contributes to the FoU outcome types in {qtype}. The symbol A is used for logical
conjunction (and) and the symbol — is used for logical implication (implies). We say that
the rule is triggered or fires [41] if all the conditions are met. When the rule fires, we
evaluate the right-hand side of the rule, which assigns a value m to the probability mass for
a given set of outcome types, which in this case can be described in the following
formulation: {qtype} < {suitable, marginal, unsuitable}.
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Applying a set of rules as defined above to dataset S; thus yields a set of masses for
different combinations of outcome types. These masses are then combined using the
Dempster’s Combination Rule, as discussed in Section 4.1, to yield a coherent set of masses
for each element of FOD. We then further reduce the result by considering only the
singletons: {suitable}, {marginal}, and {unsuitable}, which allows us compute the belief,
plausibility, and confidence values on only these three outcome types.

It should be noted that the criteria and the corresponding rules should not be treated as
universal. For example, if the historical context is of great importance in an application, the
recency of the dataset will be of less significance than its “oldness.” The rules can then be
adjusted accordingly.

4.3 Temporal variability analysis

In addition to the generally recognized factors that affect the FoU, as described in the
previous section, we note that the stability of the datasets is also important. Many natural
processes follow periodic patterns, the periodicity guided by factors including diurnal,
seasonal or annual fluctuations. Other than exceptional events (e.g., severe floods),
measurements at the same point time in a cycle should be similar (i.e., without much
variation). An unstable dataset with random variations will generally not be useful in
developing predictive models. To illustrate, Table 1 shows the measurements of two stream
gauges during the same period on the same date of the year. Station No. 1 (or dataset S;) has
stable measurements while the second station shows dramatic changes. Thus it is more
difficult to derive a concrete pattern from the measurements for Station No. 2 (or dataset S;).
We deem the FoU of S; to be lower than that of §;.

To capture the above patterns of goodness, we use the temporal variability of the
datasets. Suppose that a geospatial time series S; has the following measurements, as
previously defined in Section 3:

ts; = <mi,1,mzxz7 e 7mi,p>7 andm;; = <tiJ7ViJ>'

Suppose that the measurements are collected periodically at a regular interval. For example,
measurements can be collected three times a day, at 0900 h, 1200 h, and 1600 h, for
31 days between 2006-01-01 and 2006-01-31; or collected once a day, for 365 days, for
10 years between 1991 and 2001. The period of record for the first dataset is 31 days while
it is 10 years for the second dataset. Suppose that we define the periodicity of a data series
as the time between two measurements collected at the same spatial location at the same
time mark. Thus, in our examples, the periodicity of the first data set is 1 day, while the
period of the second data set is 365 days. Given this notion of periodicity, we can compute
the average value of all measurements at each particular time mark over the entire period of
record. In this case, we can compute the average of 31 measurements at 0900 h, the average

Table 1 Parts of records of two

stream flow gauges (i.e., of two Time stamp Station no. 1 (S,) Station no. 2 (S))
datasets, S; and ;) showing dif-
ferent patterns 1978-11-01 5.0 22.0
1979-11-01 5.0 25.0
1980-11-01 53 85.0
1981-11-01 52 70.0
Datasets are obtained from 1982-11-01 5.1 75.0
USGS.
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of 31 measurements at 1200 h and 31 measurements at 1600 h for the first data set.
Similarly we can compute the average of ten measurements for each day of the week for the
second data set. Formally, ts,=(m; ;, m;, -, m; ) can be re-written as:

ts; = <mi,1 s M2,y mi,period7 mi.period+1 ) mifperiod+27 B} mi,Z*period’ mi,Z*period+17 Ty mi‘k*period>7

such that ¢ j#perioq — %1 = int; Given the above representation, we can derive the periodic

mean at each time mark j as:

k
2:0 mi.p*period+j

mean; ; — L
ij — k

Likewise, we can derive the periodic variance for the time marks ; as:

2
k k
kYo m? -l Xm .
i, p* period-+j o G periodt

p=0 p

k(k—1)

var;; =

Given the set of means and variances for all time marks in a period, we can further compute
the coefficient of variation at each time mark j:

The temporal variability of the dataset S; can then be defined as the average value of
coefficient of variation for all time marks:

period
> covy;
_ j=1
() =———.
(5) period

We can then use heuristics to assign probability masses to the different outcomes based on
the value of ¢. For example, to assign probability masses to the outcomes, we divide the
temporal variability into three ranges: the upper (largest) one-third, the middle one-third and
the lower (smallest) one-third. For each range, we define one or more heuristics to
determine the probability mass for different FoU values. The heuristics are specified in the
form of rules as follows:

(¢(S;)within range k) — mass(S;, {qtype}) = m

where ¢(S;) is the average coefficient of variation of the dataset S;, and the range & is one of
the three ranges mentioned above. For a given dataset S;, we evaluate the right hand side of
the above rule and assign a value m to the probability mass for a given type (suitable,
marginal, or unsuitable). We can also combine these probability masses with those
described in Section 4.2 using Dempster’s Combination Rule.

4.4 Time series analysis (predicted error estimate)

Another approach to determine the goodness of a data set is to apply a regression model to
the data and estimate the maximum predicted error. The maximum error will be inversely
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proportional to the fitness of the dataset for use in our application. Ordinary regression
analysis assumes that the error variance is the same for all observations. When the error
variance is not constant, the data are said to be heteroscedastic, and ordinary least-square
estimate methods are inaccurate [42]. More efficient use of the data and more accurate
prediction error estimates can be made by models that take the heteroscedasticity into
account. Time series data are often autocorrelated and hence are heteroscedastic. It is
particularly so in hydrological datasets which are strongly correlated to seasonal trends. In
such cases, generalized autoregressive conditional heteroscedasticity models are more
appropriate since they correct for serial correlation.

Autoregressive models augment the regression model with an autoregressive model for
the random error to account for the autocorrelation of the errors. The model is given by:

=Py +xpBy +vi,

where x and y are the independent (regressor) and dependent (response) variables and are
functions of time, B and S, are the intercept and the slope in a linear model, and v, is the
autocorrelated error given by:

Vi= =PV — —PoVp2 — " — —PuViem + &,

where ,’s are the model parameters and &, is the error estimate that is independent and is
normally distributed with a zero mean.

By simultaneously estimating the regression coefficients 3, and §; and the autoregressive
error model parameters ¢;’s, we can predict the upper and lower confidence limits with a
fixed probability value (say 0.98).

This approach can be used to estimate the maximum error value for gaps in the time
series. Typically, a time series consists of a set of observations made at a succession of
equally spaced points in time. However, in practical applications, some measurements may
not be recorded due to various reasons, such as equipment malfunction or human errors.
The missing data records or gaps impact the quality of the dataset. The degree of the impact
is dependent on the nature of the datasets; some gaps may heavily impact the quality of
dataset while some other gaps may have minor or even no impact on the quality of dataset,
if we can accurately predict the values at the gaps. To illustrate, Table 2 shows two datasets
with the same gap (the gap period from 1957-10-03 to 1957-11-04). In the case of the first
dataset, the gap has little impact. It is very likely that the stream is dry during the gap period
if it was dry both before and after the gap period. On the other hand it is not clear what the
value should be during the gap period for the second dataset since stream volumes before
and after the gap period are not consistent.

We use the upper and lower confidence limits of the predicted values using an
autoregressive model to guide the quality of the dataset. Figure 1 shows an example of the

Table 2 Parts of records of two

stream flow gages (i.e., two Time stamp Station no.1 (S)) Station no. 2 (S))
datasets, S; and ;) showing dif- 06875500 06453600
ferent patterns
1957-10-01 0.0 122.0
1957-10-02 0.0 125.0
1957-11-05 0.0 85.0
1957-11-06 0.0 70.0
Datasets are obtained from 1957-11-07 0.0 75.0

USGS.
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Fig. 1 The predicted value and the lower and upper bounds on it using the autoregressive model. The
dataset corresponds to the USGS stream gauge 06462000

confidence limits using autoregressive analysis. The blue line represents the predicted values
of the corresponding dataset. The upper bound shows the maximum values the prediction
can reach whereas the lower bound shows the minimum values the prediction can reach.

We use the maximum range of the confidence interval during the gaps as a guide to the
FoU the dataset. We then use heuristics to assign probability masses to the different
outcomes based on the value of confidence interval. To assign probability masses to the
outcomes, we divide the confidence interval into three ranges: the upper (largest) one-third,
the middle one-third and the lower (smallest) one-third. For each of the three ranges, we
define one or more heuristics to determine the probability mass for different FoU values.
The heuristics are specified in the form of rules as follows:

(confidence_interval(S;)within range ) — mass(S;, {qtype}) =

where confidence interval(S;) is the maximum range of the confidence interval computed
using the predicted error estimate defined above of a given dataset S;, and the range » is one
the three ranges mentioned above. For a given dataset, S;, we evaluate the right hand side of
the above rule and assign a value m to the probability mass for a given type (suitable,
marginal, or unsuitable). Using Dempster’s Combination Rule, we can also combine these
probability masses with the other heuristics (described in Section 4.2 and 4.3) to get an
overall estimate of the FoU.

5 Implementation and results
5.1 Application domain

The focus of this paper is to describe an approach that can be used to compute the fitness of
use of time series data for geospatial applications. As described in Section 4, FoU is a
function of a dataset and a given application. To illustrate the use of the approach, we
choose the hydrological analysis as our application domain. The water cycle is a complex
process that includes precipitation, surface water runoff, groundwater flow, and evapo-
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transpiration (directly from the surface of the water or indirectly via plants). In order to
understand each component of the water cycle, an elaborate sensor network has been put
into place. For example, the National Weather Service has been collecting data about
precipitation at various locations for over a hundred years. The US Geological Survey
(USGS) maintains thousands of stream gauges to measure the flow of water in streams.
State and local agencies also maintain a large network of groundwater monitoring wells to
measure the water level at a variety of locations. For example, there are 273 stream gauges,
251 weather stations and 4,160 groundwater monitoring wells in the state of Nebraska,
many of which have long periods of record. To illustrate our approach, we will apply the
Dempster—Shafer belief theory to determine the FoU of the datasets from the 274 stream
gages.

Hydrological data processes, while being periodic, are inherently difficult to model due
to noise and multiple contributing factors. Local hydrological processes, for example, are
affected by the global climate cycles. In some datasets the recorded measurements are
estimates. For example, during winter months, the instruments in streams may be
inoperable because of ice. Some components of the water cycle are measured at regular
intervals while others are measured intermittently. Some stations record data every hour,
others once a month and still others a few times a year. Furthermore, water-related
monitoring stations are distributed in space. The overlap between different networks is
inconsistent both spatially and temporally. While at any given point in space and time, there
may be only a small number of measurements (if any), there are sufficient measurements in
space to obtain an overall picture of the state of the hydrological resources.

The quality of individual monitoring stations is different and can be viewed as inversely
proportional to the noise, incompleteness, irregularity, and inaccuracy found in a dataset.
For example, the FoU from a stream gauge that records daily streamflow with a 50-year
record without any gaps will be deemed higher than a stream gauge that has only 30 years
of weekly measurements with a 5-year gap in the middle.

5.2 Geographic scope

In our study, we consider the datasets that store surface water measurements in the state of
Nebraska [43]. There are a total of 273 surface water measurement sites in the state, many
with records that go back to over 50 years. The measurements are recorded daily. Many
stations have gaps in their record reducing the quality of the data. The datasets are obtained
from US Geological Service (http://water.usgs.gov). Each dataset consists of series of
records that consists of the measuring station ID, geographic coordinates of the station, the
date of measurement and the streamflow measurement in cubic feet per second. Table 3
shows part of a sample dataset.

5.3 FoU using Heuristic approach

Based on the criteria defined in Section 4.2, we have designed two rulebases (i.e., Rulebase
1 and Rulebase 2) to compute the quality of the time series datasets. In the two rulebases,
the criteria length and consistency are measured with different temporal resolutions. In
Rulebase 1 we use a yearly time scale in the specification of rules. In contrast, the rules in
Rulebase 2 use a monthly time scale. The temporal resolution affects the data consistency
since it is determined by the number of gaps in the data record. In Rulebase 1, the gaps are
coarser (i.e., yearly), while they are finer (i.e., monthly) in Rulebase 2. There are a total of
21 rules in Rulebase 1 and 30 rules in Rulebase 2. Sample rules that match the records for
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Table 3 Some measurement records of surface water Station 06455500

Source ID Latitude Longitude Date Value (ft¥/s) Type
USGS 06455500 42°27'23.47" 103°04'07.75" 1946-10-01 1.9 daily
USGS 06455500 42°27'23.47" 103°04'07.75" 1946-10-02 1.9 daily
USGS 06455500 42°27'23.47" 103°04'07.75" 1946-10-03 1.9 daily
USGS 06455500 42°27'23.47" 103°04'07.75" 1946-10-04 1.9 daily
USGS 06455500 42°27'23.47" 103°04'07.75" 1946-10-05 1.9 daily

Station 6445500 (period of record from 1936-10-1 to 1944-1-31 with no gap) are given
below:

[surfacewater(S;) A daily(S;) A —ten_year_old(S;) A —current(S;) A 1940s(S;) A —gap(S;)]
— mass(S;, {suitable}) = 0.380

surfacewater(S;) A daily(S;) A —ten_year_old(S;) A —current(S;) A 1940s(S;) A =1950s(S;)
A [record_length(S;) < 500] A —gap(S;)
— mass(S;, {unsuitable}) = 0.770

The first rule states that if the station (1) is a surface water station, (2) records
measurements daily with an interval of record less than 10 years, (3) is not current, (4)
has data period overlapping 1940s, and (5) has no gap, then the assertion that “the FoU
recorded for the station will be suitable” will have a probability mass of 0.38, a rather low
value. Similarly, the second rule assigns the probability mass of the assertion that the “FoU
for the station is unsuitable.” Thus for the Station 6445500, we will have the following
probability mass assignments.

mass (6445500, {suitable}) = 0.380
mass (6445500, {unsuitable}) = 0.770

After the individual masses are assigned, the overall quality of each dataset is obtained by
combining them using Dempster’s Combination Rule as explained in Section 4.1. Table 4
shows the FoU classification results for all the datasets using Rulebase 1 and Rulebase 2.

Results show that Rulebase 1 classifies 270 datasets as good and three as unsuitable
while Rulebase 2 classifies 183 datasets as good and 85 datasets as unsuitable. We analyzed
the results using common sense reasoning and input by domain experts and determined that
the Rulebase 2 to be more reasonable. For example, Rulebase 1 classifies the Station
6445500 (illustrated in this section) as suitable while Rulebase 2 classifies it as unsuitable.
As suggested by common sense knowledge and confirmed by domain experts, the FoU of
station 6445500 should be considered unsuitable as suggested by Rulebase 2.

Table 4 Summary of FoU com-

putation using Rulebase 1 and Rulebase 1 Rulebase 2
Rulebase 2
Fitness of use Suitable 270 183
Marginal 0 5
Unsuitable 3 85
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Table 5 FoU of some sample stations using Rulebase 2

ID Recency Granularity ~ Consistency (gap) Fitness of use

Start date  End date Suitable Marginal Unsuitable
6453500  1949-10-1  1994-9-30  Daily yes (no gap) 0.962 0.000 0.000
6459200 1962-10-1 1981-9-30  Daily yes (no gap) 0.101 0.331 0.014
6445500 1936-10-1  1944-1-31  Daily yes (no gap) 0.015 0.000 0.770

Bold values correspond to the classifications of the stations.

Table 5 shows some sample stations classified using Rulebase 2. The FoU of Station
6445500 is considered unsuitable with a high degree of confidence (0.770) since it has low
recency and a short record. The FoU of Station 6453500 is suitable with almost 100%
confidence as it has a long record of measurements (about 45 years) and is quite recent
(1994). The FoU of Station 6459200 is marginal with a confidence value of 0.331, and
suitable with a confidence value of 0.101. Thus, the system decides that the station is
marginal in its fitness value.

5.4 FoU based on temporal variability analysis

In Section 4.3, dataset stability is defined based on temporal variability of a dataset S; using
the average of coefficient of variance:

period
> covi;
=1

c(si) = period
In our implementation, we set period to 365 days, with each time mark being the particular
day of a year. The mean is then taken over k periods (or k years), where & is defined as in
L k¥*period — fi) = int;, as presented in Section 4.3. Essentially, for this implementation, we
compute the mean and variance of streamflow measurements for day 1 of a year, the mean
and variance of streamflow measurements for day 2 of a year, and so on. We also compute
the coefficient of variation for each day, and arrive at the average as above. Thus, in this
implementation, ¢ is the average value of the daily variations.

Figure 2 shows a distribution of surface water stations against the average daily
variations. Based on the distribution, we divide the variations into three ranges: (a) upper
one third (¢ > 2), (b) the middle one-third (0.75 < ¢ < 2), and the lower (smallest) one-

Fig. 2 Distribution of surface 25
water stations against the aver-
age daily variations
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Table 6 FoU of some sample stations using Rulebase 2 and temporal variability analysis

ID Recency Granularity Length ¢ Fitness of use

Start date  End date Suitable ~ Marginal ~ Unsuitable
6796973  1982-10-1  1992-09-30  daily 5,478 1.10  0.099 0.000 0.496
6459200 1962-10-1  1981-09-30  daily 6,940 0.11  0.500 0.061 0.003
6460900  1958-03-1  1974-10-02  daily 6,060 0.83  0.011 0.207 0.048

Bold values correspond to the classifications of the stations.

third (0 < ¢ < 0.75). Of the 273 datasets, 91 datasets have ¢ values lower than 0.75, 96
datasets have ¢ values between 0.75 and 2, and 86 datasets have ¢ values higher than 2.

Some sample rules to assign probability masses based on the above classification are
given below:

UpperThird(S;) — mass(S;, {unsuitable}) = 0.7
MiddleThird(S;) — mass(S;, {marginal}) = 0.5
LowerThird(S;) — mass(S;, {suitable}) = 0.7

The predicate UpperThird returns true if the average daily variation (¢) belongs to the upper
one-third range and returns false otherwise. Similarly, the predicates MiddleThird and
LowerThird return true when the average daily variation (¢) is in middle and lowest thirds,
respectively. It should be noted that these assignments are determined experimentally and
can be adjusted based on domain expertise.

We then use Dempster—Shafer belief theory to combine the probability masses, which
are assigned according to the average daily variations (¢), with the rules included in the
heuristic approach. Sample rules used for assignment of probability masses in temporal
variability analysis have been described above. The following example illustrates how we
combine the probability mass assignment rules in the heuristic approach with those in the
temporal variability analysis. In the example, the station 6454100 has the record period
from 1957-10-1 to 1991-9-30 (daily record); the record length is 12,418 days; no gap
period; and the ¢ value is 0.35. Based on the rules defined in Section 4.2, using Dempster’s
Combination Rule, we assign the probability mass to the station as follow:

surfacewater(S;) A daily(S;) A twentyplus_years_old(S;) A —current(S;) A 1990s(S;) A —gap(S;)

A [10,000 < record_length(S;) < 15,000] A LowerThird(S;)
— mass(S;, {suitable}) = 0.986

Table 6 shows the FoU for some sample stations using this approach. For example, station
6796973 has a length of record of 5,478 and is the most recent among the three datasets.
However, its average daily variation is extremely high and results in its FoU being assigned
unsuitable. Station 6460900’s average daily variation is moderately high, and even though

Table 7 Summary of FoU com- ._ —
putation using heuristic and tem- Heuristic Temporal variability
poral variability study

Fitness of use Suitable 183 184
Marginal 5 3
Unsuitable 85 86
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Table 8 Sample stations that change classes after temporal variability analysis is added to the system with
Rulebase 2

1D Recency Consistency Length ¢ Fitness of use

(gap) , . .
Start date  End date Suitable Marginal Unsuitable

Old New Old New Old New

6796973 1982-10-1 1992-9-30 no gap 5,478 1.10 0.324 0.099 0.003 0.000 0.137 0.496
6459200 1962-10-1 1981-9-30 no gap 6,940 0.11 0.101 0.500 0.331 0.061 0.014 0.003
6803170 1989-8-16 2001-3-30 has gap 4,398  0.85 0.308 0.190 0.003 0.001 0.158 0.276

it has a suitable length of record, it is considered to have marginal FoU. The confidence in
the classification is also weak (0.207) as the system considers it to be possibly suitable
(0.114). Comparing Stations 6796973 and 6460900, we see that the system tends towards
the length of records and the average daily variation.

Table 7 compares the results using Heuristic Analysis and the results from Temporal
Variability Analysis. We see that with the inclusion of the temporal variability analysis, the
number of suitable stations increases from 183 to 184, the number of unsuitable stations
increases from 85 to 86, and the number of average datasets decreases from 5 to 3.

Table 8 shows the old and new confidence values for three stations whose classifications
changed. The FoU for Station 6796973 changes from suitable to unsuitable since it has a
large variability. The confidence in classification is also higher, from 0.342 to 0.469. This
clearly demonstrates the impact of the temporal variability analysis on the classification.
Station 6459200, on the other hand, benefits from a low temporal variability and has its
FoU changed from unsuitable to marginal. Station 6803170 also changes from suitable to
unsuitable and compared to Station 6796973, it has a relatively low confidence value 0.276
in the classification.

5.5 FoU based on time series analysis

In time series analysis, we explicitly model the impact of gaps on the fitness of use. As
described in Section 4.4, we use the confidence interval of the gap to determine the data
quality. If it is small, it means that the error in the predicted value for a measurement in the
gap is low. Consequently, the gap has only a minor impact on the FoU. On the other hand,
if the confidence interval is large, then the error in the predicted value will be high and the
gaps will have a significant impact on the FoU. In our dataset, we had 25 stations that have

Fig. 3 Distribution of surface
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dence interval values
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Table 9 FoU of some sample stations using Rulebase 2 and time series analysis

ID Recency Record length  Confidence interval Fitness of use

Start date  End date Suitable Marginal Unsuitable
6770478 1983-10-1 1989-6-27 2,045 1,800 0.000 0.000 0.959
6804900 1990-8-28 2001-9-30 4,051 33 0.251 0.001 0.182
6811000 1954-10-1 1969-9-30 5,499 4 0.031 0.410 0.040

Bold values correspond to the classifications of the stations.

gaps of various sizes. Figure 3 shows a distribution of the confidence intervals. Based on
the distribution, we divide the confidence interval into three ranges: (a) large (confidence
interval>1,000), (b) medium (250 < confidence interval < 1000) and (c) small (confi-
dence interval<250). Using this scheme, 7 stations have large confidence interval, 7 have
medium confidence interval and 11 have small confidence interval.

Sample rules to assign probability masses are given below:

Large Confidencelnterval(S;) — mass(S;, {unsuitable}) = 0.7
Medium Confidencelnterval(S;) — mass(S;, {marginal}) = 0.5
Small Confidencelnterval(S;) — mass(S;, {suitable}) = 0.7

The predicates LargeConfidencelnterval, MediumConfidencelnterval, and SmallConfi-
dencelnterval have obvious meanings. These assignments are determined experimentally
and can be adjusted based on domain expertise. To reduce the subjectivity of this approach,
one may elicit knowledge from a group of experts using one of three group-appropriate tech-
niques: brainstorming, consensus decision making, and the nominal group technique [44].

Similar to our implementation that incorporates temporal variability analysis, we use
Dempster—Shafer belief theory to combine the probability masses, which are assigned
according to confidence intervals, with the rules included in the heuristic approach. The
following example illustrates how we combine the probability mass assignment rules in the
heuristic approach with those in the time series analysis. In the example, the station
6462500 has the record period from 1948-1-1 to 1994-9-30 (daily recorded); the record
length is 16,709 days; there is one gap event from 1975-9-30 to 1976-10-1; and the
confidence interval value is 86. Based on the rules defined in Section 4.2, we assign the
probability mass to the station as follow:

surfacewater(S;) A daily(S;) A twentyplus_years_old(S;) A —current(S;) A 1990s(S;)

A oneyear_gap(S;) A [15,000 < record_length(S;) < 20,000] A SmallConfidencelnterval(s;)
— mass(S;, {suitable}) = 0.986

Table 10 Summary of FoU

computation using heuristic and Fitness of use Heuristic Time series

time series analysis analysis analysis
Suitable 13 11
Marginal 1 1
Unsuitable 11 13
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Table 12 Average confidence values in the FoU classes

Fitness Approaches
of use
Heuristics analysis Temporal variability analysis Time series analysis
Suitable 0.83 0.80 0.79
Average 0.27 0.24 0.21
Unsuitable 0.60 0.53 0.56

Table 9 shows some examples of the classification using time series analysis. Station
6770478 has a large confidence interval and hence is classified as unsuitable with close to
100% confidence. In contrast, Station 6811000 is classified as marginal even though the
data records are very old because it has a very low confidence interval. Station 6804900,
received a suitable FoU rating, since it is more recent and has a relatively small confidence
interval. However, it does not receive a high confidence (only 0.251) in the classification.

Table 10 lists the new results about the gap datasets. We find that FoU of two datasets
changes from suitable to unsuitable. The change indicates that the gaps have significant
impact on the FoU of these two datasets, as shown in Table 11. The classes of other datasets
remain unchanged.

Table 11 shows the confidence values for the two datasets whose FoU has changed.
Station 6852000 has a moderately large confidence interval. The system is not very decisive
in the classification; it thinks that the FoU of the dataset is unsuitable with only 0.286
confidence and suitable with 0.197 confidence. The system believes that the station is either
a suitable one or an unsuitable one. The confusion is caused by high values for the dataset
in its recency, granularity, consistency, and length. The FoU of Station 6681999 also
changes from suitable to unsuitable due to the relatively large confidence interval. In
contrast with Station 6852000, Station 6681999 has a higher confidence value 0.603, which
implies that the system is confident that the FoU is unsuitable.

5.6 Comparison of the approaches

Table 12 summarizes the confidence values for each of the three approaches. It shows the
average confidence values assigned to classifications into suitable, marginal, and
unsuitable categories. This value reflects the overall confidence in the assignment into
classes. In general, the system is able to label a station with suitable FoU with high
confidence (~0.80). It is able to label a station unsuitable FoU with lower confidence
(~0.55). It is only marginally confident in labeling marginal FoU stations. This matches the
experience of our domain experts. They are more confident in labeling a station as suitable
or unsuitable, and not as confident in labeling stations that are in-between.

Table 13 shows the confusion matrix for the classification using the three approaches.
The table shows that the three approaches are consistent with each other. For example, of
the 183 stations labeled as suitable by the Heuristic Analysis, 171 were also labeled as
suitable by Temporal Variability Analysis and 181 were labeled as suitable by the Time
Series Analysis. Similarly, 87 stations labeled as unsuitable by Time Series Analysis, 85
were labeled as unsuitable by Heuristic Analysis and 75 were labeled as unsuitable by
Temporal Variability Analysis. This provides another kind of validation for the three
approaches.

Figure 4 shows the FoU of the surface water stations for the State of Nebraska. With
respect to our decision support application for identifying regions with adequate or
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Fig. 4 Distribution of surface water stations with FoU labels

inadequate measurement of streamflow, the above approach achieves its objective. The map
shows the major stream segments as well as the watersheds. The three kinds of FoU values
are shown in different colors. The map shows that while there are a number of stations with
unsuitable FoU, they are geographically distributed. Similarly, the suitable stations are also
distributed, thereby facilitating accurate hydrological analysis based on these datasets. The
results show that many of the unsuitable datasets are associated with measuring stations in
the central and east—central parts of the state. This is important since this area is a part of the
large agricultural belt of the state that relies heavily on irrigation. This information will be
useful for both decision makers when they consider requests for irrigation permits. This is
also important for decision makers who are responsible for the addition of new and removal
of old measuring stations. This region would benefit from additional monitoring stations
that would in the long run produce suitable datasets for hydrological analysis and for
monitoring water resources.

6 Summary and conclusion

In our study, we have devised a framework to determine the FoU of geospatial time series
datasets. As these datasets become widely available and get used in critical decision support
systems, the significance of this problem grows even more. We define the FoU of a dataset
as its suitability in a given application. This is in contrast with traditional data quality which
is designed as an inherent characteristic of a given dataset. We have proposed three
approaches (heuristic analysis, temporal variability analysis, and time series analysis) to
compute the FoU. They have been evaluated with a specific application in the domain of
hydrological analysis, i.e., to provide decision support for decision or policy makers in
determining the adequacy or coverage of measuring stations. The heuristic approach
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computes the FoU from the characteristics of a dataset such as data record starting time and
ending time, data record gap periods. Applying this approach to our surface water datasets
for the state of Nebraska, we found that fine measurement of FoU judging criteria helps
improve the accuracy of FoU results. The temporal variability analysis approach computes
the FoU of datasets by evaluating the fluctuation within datasets. Stable and long records
help improve the FoU of a dataset. The time series analysis approach is a good method to
evaluate how deeply record gaps impact the FoU of geospatial datasets, particularly for
those datasets largely impacted by gaps.

While our approach has been tested in a specific domain, it is applicable in many other
domains. In some cases (e.g., weather station records) some of the heuristics described here
can be directly used. In other applications, one can develop heuristics (e.g. based on spatial
data quality metrics) along the same lines as we have described here.
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