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Abstract In many real-world applications of multi-agent systems, agent reasoning suffers
from bounded rationality caused by both limited resources and limited knowledge. When
agent sensing to overcome its knowledge limitations also requires resource use, the agent’s
knowledge refinement is affected due to its inability to always sense when and as accurately
as needed, further leading to poor decision making. In this paper, we consider what happens
when sensing actions require the use of stateful resources, which we define as resources whose
state-dependent behavior changes over time based on usage. Current literature addressing
agent sensing with limited resources primarily investigates stateless resources, such as avoid-
ing the use of too much time or energy during sensing. However, sensing itself can change
the state of a resource, and thus its behavior, which affects both the information gathered and
the resulting knowledge refinement. This produces a phenomenon where the sensing action
can and will distort its own outcome (and potentially future outcomes), termed the Observer
Effect (OE) after the similar phenomenon in the physical sciences. Under this effect, when
deliberating about when and how to perform sensing that requires use of stateful resources,
an agent faces a strategic tradeoff between satisfying the need for (1) knowledge refinement
to support its reasoning, and (2) avoiding knowledge corruption due to distorted sensing out-
comes. To address this tradeoff, we model sensing action selection as a partially observable
Markov decision process where an agent optimizes knowledge refinement while considering
the (possibly hidden) state of the resources used during sensing. In this model, the agent uses
reinforcement learning to learn a controller for action selection, as well as how to predict
expected knowledge refinement based on resource use during sensing. Our approach is unique
from other bounded rationality and sensing research as we consider how to make decisions
about sensing with stateful resources that produce side effects such as the OE, as opposed to
simply using stateless resources with no such side effect. We evaluate our approach in a fully
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and partially observable agent mining simulation. The results demonstrate that considering
resource state and the OE during sensing action selection through our approach (1) yielded
better knowledge refinement, (2) appropriately balanced current and future refinement to
avoid knowledge corruption, and (3) exploited the relationship (i.e., high, positive correla-
tion) between sensing and task performance to boost task performance through improved
sensing. Further, our methodology also achieved good knowledge refinement even when the
OE is not present, indicating that it can improve sensing performance in a wide variety of
environments. Finally, our results also provide insights into the types and configurations of
learning algorithms useful for learning within our methodology.

Keywords Observer effect · Stateful resources · Active perception · Agent sensing

1 Introduction

In many real-world applications of multiagent systems, such as collaborative group work
applications (e.g., [24]), personal information managers (e.g., [34,55]), wireless sensor net-
works (e.g., [3,36]), and robotic systems (e.g., [9,33]), agents typically suffer from bounded
rationality: a lack of knowledge about their environments and a lack of resources (e.g., CPU
cycles, memory, time) used to perform agent activities. Unfortunately, performing sensing
actions to overcome knowledge limitations can also require the use of limited resources. This
forces a tradeoff between the quality and/or quantity of information gathered during sensing
and the cost of resource consumption to gather that information. For example, in an intelli-
gent wireless sensor network (e.g., [36]), sensing the environment requires battery resources
that are limited, constraining the lifetime of the network and the number of observations
agents controlling the sensors can receive.

In this paper, we focus on a specific instance of this tradeoff that arises when agents use
stateful resources during sensing. We define stateful resources as resources whose behavior
depends on their current state, which changes with resource use. When such resources are
used during sensing, the act of sensing itself changes the state of the resource and thus alters
and potentially distorts its own outcome (and future outcomes). For example, in a user support
system, an agent must perform preference elicitation to model its user and guide its recom-
mendations [2]. Sometimes, this requires directly interrupting the user (i.e., the resource)
to inquire about her preferences, which can cause frustration (i.e., resource state changes)
[1] and reduce the user’s goodwill and patience with the system [25], especially if she is busy
[32]. This increase in frustration can then lead to fewer quality responses and inaccurate user
modeling. Thus, the sensing actions used to gather information to achieve a certain task can
actually corrupt the information gathered and hamper the quality of the solution for the task.
We call this interesting phenomenon the Observer Effect (OE) after the similar phenome-
non in the physical sciences. From the perspective of the intelligent agent, the OE creates an
important tradeoff—the OE tradeoff problem (OETP)—between satisfying the need for (1)
achieving knowledge refinement from sensing with stateful resources to improve reasoning,
and (2) avoiding knowledge corruption due to distorted sensing outcomes caused by the OE.

Although sensing with limited resources has been considered previously in the liter-
ature (c.f., Sect. 2.1), the novelty of the OE from using stateful resources makes it dif-
ficult to reuse those prior solutions. For example, in research managing the amount of
time allocated to processing raw observations into information [56,58] considered infor-
mation processing to be an anytime algorithm solved through performance profiles. This
approach requires sensing performance to be monotonic in resource use. However, sensing
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performance can be non-monotonic due to the OE. For example, additional resource use could
push the resource into a bad state, resulting in worse sensing performance, thus non-monoto-
nicity. Further, frequency adaptation solutions to sensing resource use such as those by [36]
rely on accurate observation prediction using regressions. However, simple modeling tech-
niques such as regressions will not capture resource behavior under the OE without including
a good understanding of the relationship between resource state and behavior. Thus, adding
resource state modeling is important to solving the OETP.

To properly address the OETP, we adopt the active perception perspective (e.g., [50]) to
sensing where agents actively choose which sensing actions to perform, as opposed to reac-
tively collecting whatever information is provided by the environment to the agent’s sensors
during its task-oriented actions. This perspective provides a vehicle for making decisions
about which sensing actions to perform, given their need for resources and the consequences
of resource use. In this paper, we consider active perception from a metareasoning perspec-
tive as a separate reasoning process [11], where meta-level decisions are made to control
sensing (e.g., choosing actions, deciding when to stop sensing) after analyzing the agent’s
knowledge in order to support the agent’s task-level reasoning. Using a separate reasoning
process is advantageous because it allows our methodology to integrate with any task-level
reasoning as a separate component, rather than modifying the original task-level reasoning
used by the agent. Metareasoning is also a popular approach to bounded rationality [57].

Within this methodology, we propose a decision-theoretic solution to the OETP which
models the problem of selecting sensing actions that require stateful resources as a par-
tially observable Markov decision process (POMDP), called the OE POMDP. This follows
previous uses of Markov decision processes (MDPs) in metareasoning (e.g., [39]). Using
this model, we develop a controller for selecting sensing actions capable of reasoning about
and mitigating the OE by maximizing the expected knowledge refinement performed by the
agent’s sensing. This controller models the relationship between resource state, observations
about resource state, the possible sensing actions, the current knowledge of the agent, and
the value of knowledge refinement produced by sensing. Using this model, the agent selects
sensing actions that provide a maximal amount of expected knowledge refinement given the
current states of resources, thereby limiting knowledge corruption while meeting the agent’s
informational needs. Because such a model is difficult to construct a priori (e.g., due to a lack
of knowledge by agent developers or frequent changes in the dynamic environment), we use
partially observable reinforcement learning (PORL) to learn such a controller online as the
agent interacts with its environment.

Finally, to both explore the OE in agent-based sensing and evaluate our solution, we con-
duct experiments in MineralMiner, a Tileworld [38] variant where agents must use stateful
resources during sensing in order to refine their knowledge to support task-level decision
making. Here, we consider both fully and partially observable resource states to simulate
a wide range of environments. Through these experiments, we discover that our approach
(1) learns to improve the knowledge refinement provided by sensing, (2) balances current
versus future refinement to improve long-term behavior, and (3) exploits the relationship
(i.e., high, positive correlation) between sensing and task performance to boost task perfor-
mance through improved sensing. Furthermore, our solution still achieves good knowledge
refinement even when the OE is not present, demonstrating that it improves sensing even
outside of the OETP. Additionally, we also compare various reinforcement learning (RL) and
PORL algorithms to gain insights into their advantages and disadvantages for solving the
OE POMDP, finding that discrete algorithms performed better overall than continuous in the
fully observable environments, whereas model-free generally did better than model-based
regardless of observability.
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The rest of this paper is organized as follows. We first provide background necessary
for understanding the paper and discuss related work in Sect. 2. In Sect. 3, we introduce
and formalize the OETP, followed by a description of our proposed OE POMDP solution
methodology in Sect. 4. Section 5 describes our experimental setup and solution instantia-
tion within the MineralMiner simulation environment. Section 6 presents the results of those
experiments, including a discussion of the lessons learned from our research. In Sect. 7, we
conclude by summarizing the ideas presented in this paper and describe the future work we
intend to perform.

2 Background and related work

In this section, we provide the necessary background for understanding the problem and
proposed solution studied in this paper, along with relevant related work from the artificial
intelligence and multiagent systems literature. We first discuss the problem of using lim-
ited resources during sensing, which provides the background for our problem formalized
in Sect. 3. Next, we introduce active perception and describe prior work using POMDPs to
manage sensing action selection, which is the basis of our solution in Sect. 4.

2.1 Sensing with limited resources

Commonly, agents suffer from limited knowledge about their environments. This requires
the agent to improve its knowledge by interacting with its environment so it can properly act
to achieve its goals and tasks. Sensing, also called information gathering or perception, is the
process through which an agent performs actions that produce observations, which in turn
provide the agent with new information about the current state of the environment. With these
observations, the agent can then build a more complete or more up-to-date model of the world
around itself, overcoming its initial knowledge deficiency. Finally, with refined knowledge,
the agent can then make better decisions and better accomplish its tasks and goals.

However, in many environments, resources used to produce such observations during
sensing are also limited. For example, an agent might possess a limited number of sensors to
cover the environment (e.g., [28]), each sensor might have a limited battery life and thus can
only produce a limited number of observations (e.g., [36]), or processing the raw observations
to refine knowledge could require costly computational and time resources (e.g., [56]). Thus,
not only do limited resources affect the ability of an agent to reason and accomplish its tasks,
but limited resources can also affect an agent’s sensing actions.

Previously, research from the artificial intelligence and multiagent systems communities
have looked at managing agent sensing with limited resources where resource behavior is
assumed to be independent of the use of the resource. For example, [56,58] studied the use
of computational resources (e.g., time) to process raw observations into information useful
during reasoning. Here, information processing was treated as an anytime algorithm and
increased time spent on processing led to no worse (and usually better) information. Fur-
ther, [16,17,31] considered the use of money and time in the collection of information from
sources distributed across the internet that were queried to provide information to a human
decision maker. Additionally, [36] studied sensing frequency adaptation in sensor networks
to balance the quality of information gathered through the individual sensors with the lifetime
of the network that was reduced by energy consumption through sensing. Finally, [26–29]
looked at problems such as covering an environment with a limited number of sensors to
optimize one or more objective functions (e.g., threat detection).

123



206 Auton Agent Multi-Agent Syst (2013) 26:202–244

In each of these works, while the result of sensing (e.g., increased information quality
or quantity) could improve with additional resource use, the behavior of the underlying
resources (e.g., time, money, energy) was constant for each use of the resource. For example,
the same amount of data could be transmitted across the internet or the same number of
CPU cycles could be performed while processing information during each time unit, each
unit of money had the same value, each unit of energy could power the same amount of
sensor action, and each sensor was capable of performing the same amount of sensing. In
our research, however, we study resources whose behavior does change with its use dur-
ing sensing. For example, consider an intelligent user support application. Here, the user is
a resource used by the agent to gather information about her preferences. During sensing,
the system essentially interrupts the human user from what she is doing. As a result, her
frustration with the system increases or decreases which can change her behavior [25]. We
require different solutions for sensing action selection than those proposed by the prior lit-
erature in order to account for this changing behavior of resources, as well as the impact of
resource behavior on observations during sensing. We provide more details on this need in
Sect. 3.3.

2.2 Active perception with POMDPs

In general, making decisions about what sensing actions to perform constitutes active per-
ception (also called active sensing) in intelligent agents. Specifically, active perception is the
process through which an agent actively manages its sensing behavior by choosing actions to
perform based on their observational benefit (e.g., accuracy, uncertainty reduction) or cost,
rather than passively relying on whatever observations happen to be produced by the envi-
ronment [50]. Addressing agent sensing from this perspective enables the agent to explicitly
consider the benefits and costs of sensing actions, allowing it to proactively aim to maximize
its sensing performance, as opposed to reactively rely on (potentially) suboptimal observa-
tions. All of the approaches considered in Sect. 2.1 above for managing resource use during
sensing qualify as active perception approaches. Traditionally, active perception has been
modeled as a sequential decision problem and solved using classical techniques such as the
POMDP. We take this approach in our solution, described in more detail in Sect. 4. Next, we
introduce the POMDP to provide background for our solution methodology, then describe
the prior use of POMDPs in active perception.

2.2.1 POMDP

We begin by introducing the (fully observable) MDP [23]. Formally, a MDP models a sto-
chastic decision process as a tuple 〈S, A, T, R〉 where S = {s} is a set of (fully observable)
states of the environment, A = {a} is a set of actions available to the agent, and T (s, a, s′) ∈
[0, 1] is a probabilistic transition function representing the likelihood that the environment
changes from state s to s′ if the agent takes an action a, that is T (s, a, s′) = P(s′|s, a), and
R(s, a) ∈ R is a function modeling the reward of taking an action dependent on the current
state of the process.

Given a MDP modeling the decision process facing the agent, the goal of the agent is to
build a policy π mapping states to actions that optimize the rewards received by the agent for
its actions. The values of states used to compute policies are represented by a set of Bellman
equations optimizing discounted, expected future rewards:
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V ∗(s) = maxπ E

[ ∞∑
t=1

γ t rt

]
= maxa∈A R(s, a) + γ

∑
s′∈S

T
(
s, a, s′) V ∗(s′), ∀s ∈ S

(1)

where rt is the reward for making choice π(s) by following policy π in state s at time t and
γ ∈ [0, 1] is a discount factor for weighting the consideration of expected future rewards.

Solving for an optimal policy then requires solving the corresponding set of equations:

π(s) = argmaxa∈A R(s, a) + γ
∑
s′∈S

T
(
s, a, s′) V ∗(s′), ∀s ∈ S (2)

using exact (e.g., dynamic programming) or approximation (e.g., value iteration) techniques.
When the state of the environment is not directly observable (i.e., is hidden from the agent),

a more appropriate model is a POMDP [23], which augments a MDP to form a six-tuple
〈S, A, �, T, O, R〉 where S, A, T, and R are as in the MDP discussed above, � = {o} is
a set of observations produced when an action is taken, and O(s′, a, o) ∈ [0, 1] is the proba-
bilistic observation function representing the likelihood that o is observed after taking action
a leading to (hidden) state s′, that is O(s′, a, o) = P(o|s′, a). In this decision process, the
hidden state of the process must be estimated based on the observations produced by actions.
Here, the agent maintains a belief state vector b(s) ∈ [0, 1] describing the likelihood that
the current state of the process is each s ∈ S. This vector is updated through belief revision
based on recent observation o after action a:

b′ (s′) = 1

Z
O(s′, a, o)

∑
s∈S

T (s, a, s′)b(s) (3)

where Z is a normalization factor insuring new belief values remain in [0, 1] and sum to 1
(since this vector represents a probability distribution over states), and b′ is the new belief
state.

Since in partially observable environments the agent does not know exactly which state the
process is actually in, it must now consider the possibility of each possible state in its belief
state. This makes developing a policy for a POMDP much more complicated and computa-
tionally expensive than developing one for a MDP because solving the Bellman equations
(Eqs. 1–2) for a POMDP would require creating a policy over an infinite number of belief
states. Thus, various techniques for creating POMDP policies rely on approximations, such
as point-based value iteration (PBVI) (e.g., [12,37]), or limited search, such as using short
depth decision trees which exactly solve the POMDP [41].

2.2.2 Use of POMDPs in active perception

Now that we have introduced the POMDP, we are ready to describe various prior research
using POMDPs to control active perception, which is similar to our OE POMDP approach
described in Sect. 4. First, [18] studied the problem of classification from the perspective of an
agent identifying a feature of its environment using information from observations collected
through sensing. Here, the agent represents the possible classification labels as the states of
the POMDP, observations produced through sensing actions reveal information about the
true classification, and the agent chooses actions to minimize costs associated with those
actions until it is confident in the true label based on its previous observations.
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Additionally, POMDPs have been used to manage agent sensing behavior when tasked
with supporting human users. In the Preference Elicitation POMDP [7,12], an agent chooses
sensing actions which best determine a user’s preference over a set of choices, items, or
goals, then acts in some way to support the user based on her preferences. Here, the state
space covers the possible user preferences, for example represented as a utility function over
choices [7] or individual goals [12]. Similarly, [54] studied the problem of determining user
goals in a dialog management system. In these POMDPs, observations from sensing refine
the agent’s belief state, representing a probability distribution indicating the likelihood that
any of the states (e.g., user’s utility function or goal) is the correct one. Rewards in these
POMDPs are the expected utility of the agent supporting the user based on the current beliefs
about the user’s utility function [7], including fixed costs penalizing sensing actions and
wrong intelligent support while highly rewarding correct types of support provided [12,54].

Further, [45] extended single agent active perception using a POMDP to coordinating
active perception between multiple agents. Specifically, Spaan considered a multiagent sys-
tem composed of fixed position video cameras and mobile robots responsible for monitoring
a public space for events like fires or people entering a specific space. Like in the Preference
Elicitation POMDP, these agents first manage their sensing to build an accurate world model,
then act in response to detected events. For example, the agents can tilt camera viewing angles
or get an up-close look through the mobile robots, then react to detected fires or assist humans
wanting to find locations of interest.

Of note, in each of these prior works, the states in the POMDP represented the possible
information values the agent was trying to discern through sensing: classification labels [18],
user preference functions [7], user goals [12,54], and the presence of events in an area of
interest [45]. Thus, the belief state in the POMDP, which is improved through observations,
naturally reflects the likelihood that any of the particular information values is the correct
one. Using this belief state and rewards for acting within tasks on sensed information, the
agent can determine which actions to take to revise its beliefs, or whether to stop sensing and
simply complete its task. However, since the state space only includes possible information
values targeted through sensing, this approach neglects additional factors that might affect the
quality of observations produced during sensing, such as the state of resources used during
sensing that can produce the OE. This is similar to the handling of resources in non-sensing
problems, such as hand washing assistance for the elderly [20] where user attitude, awareness,
and responsiveness that affect assisted user behavior are included in the state space. Thus,
in this paper we adapt the popular POMDP-based active perception approach by extending
the notion of POMDP states to include the state of resources used during sensing to directly
account for the effect of resource state on observations. We cover this adaptation in more
detail in Sect. 4.

Finally, in some applications of multiagent systems, the only task of the agent is to con-
tinually monitor its environment—a task that has no rewards aside from refining the agent’s
knowledge. Thus, traditional task rewards (such as those employed in the previously men-
tioned research by [7,12,45,54]) are not available to guide the sensing actions of the agent.
To handle this problem, [4] developed an extension of the POMDP called the ρ POMDP that
uses changes in the belief state (i.e., agent knowledge) as the rewards received for sensing
actions, as opposed to non-existent task rewards. This allows the agent to focus solely on the
improvement in its knowledge based on the sensing actions chosen through active perception.
We use a similar reward formulation in our approach (c.f., Sect. 4), but we add reinforcement
learning to learn the dependence of knowledge refinement on the state of the underlying
resources used during sensing.
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Table 1 OETP definitions

Symbol Definition

K The agent’s current knowledge

D = (di ) Task-level decision sequence faced by the agent

AC = {ac j } Set of sensing activities

S = {sk } Set of information sources

C = {ac j , sk } Set of sensing actions (i.e., valid activity/source pairs)

R = {rl } Set of stateful resources

RN (ac j , sk ) Set of resources needed by ac j , sk

St Set of all possible resource states

Strl Set of possible states of rl

σ(rl ) Current state of rl

δ(rl , σ, ac j , sk ) State transition function for rl

Obs Set of all possible observations about resource state

Obsrl Set of possible observations about the state of rl

φ(rl ) Most recent observation about the state of rl

θ(rl , σ, ac j , sk ) Observation of the state of rl from ac j , sk

in f o(ac j , sk , RN , σ ) State-dependent set of information provided by ac j , sk

⊗ Knowledge refinement operator

K ′ Refined knowledge from information provided by sensing

K R(ac j , sk , RN , σ, K , di ) State-dependent value of knowledge refinement from ac j , sk with respect
to di

V (K , di ) Value of knowledge with respect to di

in f oRequired(K , di ) Determines whether or not the information required for decision di is in K

3 OE tradeoff problem

In this section, we describe and formalize the focus of this paper: the OETP. We begin by
providing a brief overview of the context of our problem by representing sensing with limited
resources as a sequential decision problem. Then, we focus on a specific subset of possible
resources used during sensing: stateful resources. Next, we present a consequence of using
stateful resources during sensing: the OE. Finally, we define the OETP, which arises out of
the OE. We provide a summary of the notation used in this section in Table 1.

To begin, we consider the general active perception problem where an agent over time
must make task-level decisions from a sequence D = (di ). Each decision di requires infor-
mation from the environment. Such information is available either (1) in the agent’s internal
knowledge base1 K or (2) from a sensing activity selected from a set of possible activities
AC = {ac j } performed on a source of information selected from a set of possible sources
S = {sk}. Together, the valid combinations of sensing actions (i.e., activity/source pairs) form
a set of two-tuples C = {〈ac j , sk〉}. Thus, for each decision di , the agent must also sequen-
tially choose which sensing actions to perform in order to gather the necessary information
missing from its current knowledge. Specifically, the agent performs a series of sensing

1 Here, K represents the knowledge held by the agent from an abstract perspective. The specific representa-
tion used by the agent, such as a POMDP belief state (c.f., Sect. 2.2.1) or a set of probabilistic beliefs (c.f.,
Sect. 5.1), depends on the implementation of the agent.
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actions until it has the information necessary to support its task-level decision, then it acts
on its task. In the following, we refine this problem to include the OETP.

3.1 Stateful resources

To perform sensing actions, the agent must use limited resources. In this paper, we are focused
on what happens when the agent uses a specific category of resources, which we call state-
ful resources. We define stateful resources as resources whose behavior depends on some
notion of internal state for the resource that changes over time based on resource usage. This
is in contrast to stateless resources, which always behave the same way regardless of past
usage.

Stateful resources exist in a variety of multiagent applications and environments. For
example, a network shared by multiple agents can be a stateful resource whose behavior
depends on its bandwidth (resource state). Here, sensing actions by agents called active
monitoring [30] that monitor network state actually introduce additional traffic into the net-
work, thereby changing the state (e.g., bandwidth) of the resource. Depending on the network
protocols used within the application (e.g., whether or not they delay packet delivery based
on earlier packet loss), different network states can create different behaviors (e.g., latencies),
limiting the usefulness of the network to the agents. Another example of a stateful resource
is a human user whose behavior depends on her current frustration (again resource state).
Here, interrupting the human user to gather information about her preferences and activi-
ties, such as in a recommender system (e.g., [2]) or personal information management (e.g.,
[10,34,55]) application, can distract the user’s cognitive processes [32] leading to higher
frustration levels [1,32] and affecting future interactions with the user.

However, while such examples of stateful resources exist, previous research involving
agent sensing (c.f., Sect. 2.1) has generally assumed resources used during sensing were
stateless. As a result, agents would reason about or perform sensing without considering the
impact of sensing actions on the states of the very resources used during sensing. Potential
negative consequences of this type of sensing behavior are described in Sect. 3.2 as we
formalize the OE.

In our problem formulation, stateful resources are represented by the set R = {rl} which
can take on possible states St = Str1 × Str2 ×· · ·×Str|R| , where Strl is the set of possible states
for resource rl . The current state of a resource is denoted by σ(rl) with σ : R → Strl . The
set of specific resources needed by a sensing choice 〈ac j , sk〉 are denoted by RN (ac j , sk)

with RN : AC × S → 2R . Using each stateful resource potentially changes the state of the
resource, depending on the activity and source chosen. This transition function is represented
by:

σ ′(rl) = δ
(
rl , σ, ac j , sk

)
(4)

with δ : R × Strl × AC × S → Strl and could be deterministic (i.e., always return the same
state for each combination of inputs) or stochastic (i.e., return different states according to
an internal probability distribution).

However, the state of the resource might be hidden from the agent (e.g., user frustration),
so state must be estimated using information contained in observations produced by sensing.
These possible state observations are represented by Obs = Obsr1 × Obsr2 ×· · ·× Obsr|R| ,
where Obsrl is the set of the possible observations about the state of resource rl . The most
recent observation of a resource is denoted by φ(rl) with φ : R → Obsrl . The specific
observations observed depend on the state of the resource and the sensing action performed,
which is represented by:
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φ(rl) = θ
(
rl , σ, ac j , sk

)
(5)

with θ : R × Strl × AC × S → Obsrl which could also be deterministic or stochastic, as
with the state transition function (Eq. 4).

Please note these observations used to estimate resource state may or may not be the
primary targeted information of the agent’s action to refine the agent’s knowledge. For exam-
ple, an intelligent user interface agent chooses sensing actions to learn about the user’s pref-
erences, but these actions also produce secondary information about the user’s frustration.
On the other hand, the primary targeted information of sensing might also be used to pre-
dict resource state. For example, in a network monitoring application the agent’s sensing
measures network bandwidth, which is also the state of the resource.

Further, we have assumed in the above formalism that the behavior of each resource is
independent of every other resource. That is, the state transitions and observations produced
by a resource depend only on that resource. However, this formalism could be easily extended
such that resources are dependent on one another, in which case the transition and obser-
vation functions would represent the joint probabilities of the resources changing state and
producing observations.

3.2 Observer effect

As seen from the examples of stateful resources provided in the previous section, in general
using stateful resources requires the agents to consider the impact of the resource usage on
the resource’s behavior. This is because sensing actions change the state of the resource used
during sensing, and the resulting state change can lead to a different behavior of the resource,
thus affecting the outcome of the sensing action. In other words, using stateful resources
during sensing produces a phenomenon where the act of making an observation can distort
the observation itself (and potentially future observations). We term this phenomenon the
OE after a similar phenomenon in the physical sciences.

In our problem formalism, performing a sensing activity ac j on an information source
sk produces in f o(ac j , sk, RN , σ ). This information is used to refine the knowledge of the
agent through the domain dependent knowledge operator ⊗ (e.g., belief state updates from
Sect. 2.2.1):

K ′ = K ⊗ in f o(ac j , sk, RN , σ ) (6)

Here, we include the resources and their states because the actual information produced can
be distorted through the OE. Thus, considering the state of resources used during sensing
is important to the agent’s sequential (sensing) decision process to address such knowledge
distortion.

Such distortion from the OE can occur for several reasons, depending on the influence
of resource behavior on sensing outcomes. One example of the OE occurs when sensing
accuracy depends on the behavior of the resource, resulting in a situation where a sensing
action reduces its own accuracy. In our earlier example of the stateful network resource, the
additional traffic produced by active monitoring reduces bandwidth [30], which increases
congestion and latency [14]. As a result, observations produced do not reflect the true state
of the network when sensing is not performed. Thus, using stateful resources and OE can
cause a cost with respect to information quality (e.g., reduced accuracy).

Similarly, even if an agent is not monitoring its network but is communicating with other
agents to share information, the reduced bandwidth from communications can cause infor-
mation sent by other agents to be outdated and inaccurate by the time it is received. This
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problem can also arise when the agent uses a wireless sensor network to gather information
about its environment even without interacting with other agents. For example, when using
an energy-aware communication protocol (e.g., [5,43]), as the energy level of the nodes in
the sensor network is diminished, the nodes will change their communication behavior. If the
protocol chooses to use longer routes through energy-rich hops along the network (e.g., [5]),
this longer route could cause the information transmitted to be stale before it is received by
the agent responsible for refining knowledge and making decisions.

To clarify, in this latter example, it appears at first that a stateless resource (sensor energy
level) directly causes the OE (outdated information). This would be in contrast to our earlier
claim that the OE is the result of stateful resources. However, this example actually contains a
stateful resource—the wireless sensor network, whose behavior depends on the energy of the
individual nodes. Specifically, it is the behavior of the stateful wireless sensor network that
changes based on sensing actions, not the static stateless energy behavior (whose units always
power the individual sensors in the same way). Thus, it is possible for a stateless resource to
indirectly lead to the OE, if that resource is actually the state of the stateful resource used by
the agent.

A final example of the OE occurs when the quantity of information provided by sensing
depends on the behavior of the resource. For instance, in our earlier user preference elicitation
example, prompting the user to elicit her preference is an interruption that affects her feelings
towards the system [25], which can lead to less willingness to provide responses, resulting
in fewer responses. Similarly, in our energy-aware wireless sensor network example, if the
network’s protocol is unsuccessful and key sensors run out of energy, the network is unable
to transmit as much information back to the agent. Thus, using stateful resources and the OE
can also cause a cost with respect to information quantity (i.e., reduced quantity).

3.3 Observer effect tradeoff problem

Considering all of these examples, we see that the OE is an important challenge during
resource-based sensing. Specifically, because the ultimate purpose of sensing is to gather
information to refine the agent’s knowledge that is used to produce good decisions during
reasoning, the OE leads to the following difficult problem:

Observer effect tradeoff problem (OETP): determining how to gather information
with stateful resources to refine knowledge used in decision making while balancing
the tradeoff between satisfying the need for (1) knowledge refinement from sensing
with stateful resources, and (2) avoiding knowledge corruption due to distorted sensing
outcomes caused by the Observer Effect.

That is, as an agent chooses to perform more sensing actions to provide more information
to support its reasoning, the benefits might be offset by a decrease in sensing performance
caused by the OE from increasing resource usage, leading to wrong decisions and incorrect
agent behavior. On the other hand, if an agent chooses to perform less sensing to reduce the
OE by avoiding resource state change in the hope of maintaining sensing performance, the
agent might end up with insufficient or outdated knowledge, again leading to wrong decisions
and improper agent behavior. Thus, the OE places stress on the sensing action selection of
agents to collect information used to refine the agent’s knowledge, necessary to properly
achieve its goals.

Specifically, the agent is concerned with the value of a change in knowledge, which we
measure as the difference between the value of the revised and previous knowledge with
respect to the current decision di using the function: KR: AC × S × 2R × St × K × D → R:
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KR(ac j , sk, RN , σ, K , di ) = V (K ′, di ) − V (K , di ) (7)

where V (K , di ) with V : K × D → R measures the domain-dependent value of the subset
of agent knowledge necessary for making a given decision. For example, this value might be
the confidence or uncertainty the agent has in its knowledge, changing with new information
observed. We note that this measure is very similar to value of information measures (e.g.,
the contribution of information towards a particular decision) used elsewhere in the sensing
literature, such as by [16,17] and [7] (c.f., Sect. 2). However, our value (1) is calculated over
agent knowledge refined after sensing which might be used for any arbitrary collection of
decisions, and (2) includes the impact on knowledge of the OE. Further, this equation also
represents an objective function for sensing, similar to the OSP studied by [26–29].

Given these definitions, we can describe the primary goal of each agent under the OETP:

Given K , di , RN , σ, C

Choose (ac j , sk) ∈ C according to KR(ac j , sk, RN, σ, K , di ) (8)

Until in f oRequired(K , di ) is satisfied (9)

Here, the goal of the agent is to select sensing actions (i.e., activity/source pairs) based on
the value of refinement in agent knowledge with respect to its current reasoning decision.
This occurs until the agent has the knowledge it needs to successfully make a decision in
order to achieve its goals, as defined by a domain-specific in f oRequired(K , di ) function.
For example, the agent could stop when it has collected the necessary information to make
a decision: in f o(di ) ⊆ K , or the agent’s knowledge confidence is high enough to make a
decision: con f idence(K ) ≥ con f idence(di ).

The choice mechanism used in Eq. 8 might depend on the application and/or the decisions
facing the agent. For example, it could myopically choose the sensing action maximizing
knowledge refinement:

argmax(ac j , sk )∈C KR(ac j , sk, RN , σ, K , di ) (10)

Additionally, if the agent knows what decisions it will be facing in advance, it can also non-
myopically choose sensing actions which maximize the knowledge refinement for all known
decisions, for example by using the following choice mechanism2:

argmax(ac j , sk )∈C

n∑
t=i

K R(ac j , sk, RN , σ, K , dt ) (11)

for the next n known decisions. However, the agent should not over sense and use resources
too much, increasing the likelihood of pushing resources into bad states and corrupting
knowledge. Thus, the agent should only sense until it has the required information for its
decision(s), handled by the constraint in Eq. 9. Overall, by maximizing knowledge refinement
without over-sensing, the agent effectively balances the OE Tradeoff between the need for
knowledge refinement to make decisions and the need to avoid knowledge corruption due to
the OE.

We would like to note that other constraints might be added to the selection process,
depending on the application and environment. For instance, in applications where specific

2 This mechanism could easily be modified to maximize expected future decisions by including a likelihood
of the agent facing each decision if the decisions instead are not known for sure in advance. Additionally, a
discount factor (c.f., Sect. 2.2.1) could be included for uncertain future decisions to avoid gathering infor-
mation which might not be necessary by de-emphasizing future refinements that become more uncertain the
farther out the decision.
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Fig. 1 Methodology overview

states of a resource should be avoided, where these states can be predicted as those which
provide expected knowledge corruption, an additional constraint can be included. Here, the
agent also stops sensing when no expected refinement is possible, modeled as:

K R
(
ac j , sk, RN , σ, K , di

) ≤ 0 (12)

For example, this constraint might be useful in our user preference elicitation example. Here,
over-frustrating the user should be avoided or the user might lose faith in the system [25] and
quit wanting to use the system altogether.

4 OE POMDP

In this section, we present our proposed decision theoretic solution to the OETP. We begin
by mapping the OETP formalization defined in Sect. 3 into a POMDP, which we brand the
OE POMDP. This approach follows a popular approach to managing sensing action selection
in active perception (c.f., Sect. 2.2). Afterwards, we detail how a sensing action selection
controller following the OE POMDP can be learned through reinforcement learning in order
to solve the OETP when the relationship between resource state and knowledge refinement
must be learned through experience.

The overall solution methodology is summarized in Fig. 1. In short, an agent uses sensors
to collect information through observations from the environment, which is then processed
and used to revise its limited knowledge. This requires the use of stateful resources whose
behavior influences the observations collected. To control the agent’s sensors and use of
stateful resources, the agent uses active perception, specifically by modeling sensing action
selection as an OE POMDP and using reinforcement learning to build and revise a sensing
controller. This sensing controller is a metareasoner that decides how to gather information
to support the agent’s task-level reasoning. After describing the details of this methodology
in the following subsections, we will summarize this approach from a high level algorithmic,
step-wise perspective.

4.1 OE POMDP mapping

Recall (c.f., Sect. 2.2.1) that a POMDP models a sequential decision process as a tuple
S, A, �, T, O, R, where an agent chooses actions maximizing a reward function based on
the hidden state of the environment estimated through observations. Here, we demonstrate
how to solve the OETP by modeling it as a special OE POMDP, summarized in Table 2.
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Table 2 Transformation from OETP to OE POMDP

OE POMDP OETP transformation Description

s = 〈RS , KS〉 ∈ S RS = 〈σ(r1), σ (r2), . . . , σ (r|R|)〉 The sensing states are combinations of resource
and knowledge statesKS = state(K )

a ∈ A a = 〈ac j , sk 〉 ∈ C The sensing actions are the valid sensing
activity/source pairs

T (s, a, s′) δ(rl , σ, ac j , sk ) Sensing state changes depend on the changes in
resource and knowledge states due to a chosen
sensing action

K ⊗ in f o(ac j , sk , RN , σ )

o = RO , KO ∈ � RO = 〈φ(r1), φ(r2), . . . , φ(r|R|)〉 The observations are combinations of
observations about resource states and fully
observable knowledge stateKO = state(K )

O(s′, a, o) θ(rl , σ, ac j , sk ) The observation function depends on the
observations of resource state and the changes
in knowledge state

K ⊗ in f o(ac j , sk , RN , σ )

R(s, a) K R(ac j , sk , RN , σ, K , di ) The reward for making choices given the
current sensing state is the value of knowledge
refinement as the result of sensing

We define the current sensing state s ∈ S as a tuple 〈RS, KS〉 consisting of the current
state RS of all resources and the current state of the agent’s knowledge KS , with

RS = 〈σ(r1), σ (r2), . . . , σ (r|R|)〉 (13)

KS = state(K ) (14)

where state(K ) is an implementation-specific description of the current knowledge of the
agent (e.g., quantity of information, top belief state value). For example, in a user prefer-
ence elicitation scenario, the resource state could represent the user’s frustration, and the
knowledge state could represent the amount of evidence supporting the agent’s belief about
the user’s preference. In our model, we include both resource state and knowledge state in
the sensing state because both play a role in the value of knowledge refinement (Eq. 7):
resource state through the OE and knowledge state through the improvement in knowl-
edge.

We define the active perception actions a ∈ A in the POMDP to be the set of possi-
ble sensing activity/source pairs 〈ac j , sk〉 ∈ C in the OETP. In our example, the actions
represent the different combinations of sensing activities the agent can perform to gather
information about the user’s preference (e.g., asking the user directly, observing her behav-
ior in a task) with the different sources of such information (e.g., the user herself, her
peers).

Furthermore, we define the transition function T (s, a, s′) in the POMDP as a probability
measure over the changes to resource state σ(rl) and knowledge state state(K ′) by a sensing
action 〈ac j , sk〉 determined by Eqs. 4 and 6. In our example, interrupting the user to ask
about her preference increases frustration [1,32], changing her state. Based on the user, her
frustration could increase by different amounts at different times for the same interruption
dependent on her current frustration. Also, the information gathered through the interruption
revises the agent’s knowledge, changing the knowledge state.

123



216 Auton Agent Multi-Agent Syst (2013) 26:202–244

In many environments, the true state of the resource might be hidden from the agent, thus
it must be estimated from observations3 that result from taking actions using the resource.
However, we generally assume that the knowledge state of the agent is not hidden. Since the
overall sensing state is a tuple with two parts, we also represent the observations o ∈ � in
the POMDP as a tuple 〈RO , KO 〉, with:

RO = 〈φ(r1), φ(r2), . . . , φ(r|R|)〉 (15)

KO = state(K ) = KS (16)

For example, the speed of the user’s responses to interruptions, audible expressions, or her
heart rate could provide evidence indicating her current frustration level. Note that since we
assume full observability of knowledge state, there is a one-to-one correspondence between
observations about knowledge state and actual knowledge states.

The specific observations about sensing state made by an agent are determined by the
observation function O(s′, a, o) in the POMDP, defined as the probability of the agent mak-
ing observation o ∈ � about sensing state when action a produces state s′. For example,
once a user becomes more frustrated after a recent sensing interruption, she might respond
faster to return to her original task. However, she might also respond slower (with a differ-
ent probability) because she delayed answering until she was finished with what she was
already working on. At the same time, the agent’s knowledge is revised based on the targeted
information collected during sensing. Since knowledge state is fully observable, the correctly
corresponding observation/state values in the observation function have probability 1 and all
other values have probability 0.

Finally, we define the R(s, a) reward function in the POMDP as the value of knowledge
refinement optimized in the OETP: K R(ac j , sk, RN , σ, K , di ) (Eq. 7). For our exam-
ple, this could be the increase in the possibility [21] the agent ascribes to the user’s correct
preference.

Using this approach, we see that building a policy (using any of the approaches briefly
introduced in Sect. 2.2.1) for the POMDP optimizes the reward function based on making
choices given the estimated sensing state. Since our problem mapping assigns the reward
function to be the value of knowledge refinement, following the POMDPs policy thus opti-
mizes the value of knowledge refinement function K R(ac j , sk, RN , σ, K , di ) given a
current reasoning-level decision di from the OETP. Thus, the policy created by the POMDP
provides a controller for choosing sensing actions to solve the OETP, which can be either
myopic for current refinement or non-myopic for long-term, discounted refinement, depend-
ing on the POMDP solver used. This behavior is made possible due to the fact that the sensing
state includes resource state, so the reward function explicitly considers the current state of
the resource and the action chosen, which is necessary for calculating the expected value of
knowledge refinement due to the OE. However, since the OETP has a set of constraints on
when to stop choosing sensing activities, we require the following in the controller: the con-
troller should stop if (1) more knowledge refinement is unnecessary, or (2) positive knowledge
refinement is not expected to occur (if this second optional constraint from Eq. 12 is included,
c.f. Sect. 3.3) or following any other optional constraints. Each of these “safeguards” is in
place in order to avoid knowledge corruption and unnecessary resource usage. Otherwise,
the controller should only follow the policy created by the POMDP.

3 Please note that these observations might be secondary to the task-level observations used to refine the
agent’s knowledge that are also produced by the sensing action chosen. Here, in the context of POMDPs, these
observations refer to the information gathered by the agent used to estimate hidden state in the POMDP [23].
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Of note, an initial belief state of the OE POMDP must be specified. For example, in envi-
ronments where information about resource state are known a priori (e.g., the resource always
starts in a given state), then the belief state can incorporate such information by centering its
mass based on what is known about resource state (e.g., starting with a belief of 1.0 on the
sensing state with the known initial resource and knowledge states). However, if no such a
priori information is known about the resource state, then the belief state can be a uniform
prior over all sensing states with the initial (known) knowledge state and all possible resource
states.

Finally, we note that for some environments (e.g., energy aware wireless sensor networks,
c.f., Sect. 3.2), resource state (e.g., sensor energy levels) might be fully observable to agents
and thus a simpler MDP formulation can be used for the OE POMDP. Here, the model
remains the same, except the agent does not require state estimation through observations.
For the remainder of this section, we assume that resource state is hidden and a POMDP is
required.

4.2 Learning a sensing activity controller

When an explicit, parameterized OE POMDP model of the active perception decision process
is not provided by the agent designer, an agent must instead learn to make sensing action
choices. This lack of an a priori model might occur due to insufficient prior knowledge about
the domain or because the underlying environment is inherently dynamic and the POMDP
model’s parameters change over time. For such learning, we turn to the field of RL in general,
and partially observable RL PORL algorithms in particular.

Briefly, RL (e.g., [22,46]) is a process through which agents learn how to act through
feedback from the environment during exploration. RL commonly comes in two forms:
(1) model-based RL, where the agent first learns an explicit model of the environment
(often an MDP or POMDP), then uses that model to determine an optimal action policy, and
(2) model-free RL, where the agent instead only learns the outcomes of actions dependent on
environment states, then chooses actions maximizing its learned rewards. Below we discuss
the relative advantages and disadvantages of these two types of approaches for our method-
ology. Further, when the environment is partially observable, specialized PORL algorithms
must be used which learn how to estimate environment state based on observations in addition
to RLs learning.

Given our assumption that an explicit, parameterized model of the OE POMDP is not
provided to agents that use stateful resources during sensing, agents can use PORL to learn a
controller for choosing sensing actions. For such learning, the agent can either (1) use model-
based PORL to actually learn the entire parameterized model for the OE POMDP (e.g., the
transition probabilities between resource states and the likelihood of observations about
each resource state) then solve the POMDP to generate its controller, or (2) use model-free
PORL to learn the controller directly by only learning which actions maximize (immediate
or long-term) knowledge revision based on estimates about resource state. For instance, in
our intelligent user support application example, model-based PORL would entail learn-
ing the likelihoods of user frustration changes and the relationship between user frustration
and observations about frustration. It would also include learning how knowledge about the
user’s preferences is refined based on different levels of user frustration and sensing actions.
Model-free learning, on the other hand, would only focus on learning this latter information.

We conjecture that either type of PORL algorithm is acceptable (c.f., Sects. 5 and 6
for experiments evaluating this conjecture), but note that one type might be more appro-
priate depending on the specific domain and application to which the agent is deployed.
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Table 3 OE POMDP solution

1. Map the OETP to a corresponding OE POMDP which defines resource state and OE behavior

2. Use a RL/PORL algorithm to learn a controller to solve the POMDP

3. Build a policy for sensing action selection using the learned controller

4. Follow the policy to choose sensing actions to gather information

5. Repeat steps 2-4 until the agent is ready to make a task-level decision

For example, if the environment is very dynamic, using a model-free PORL algorithm might
be more appropriate than a model-based PORL algorithm since the parameters learned by the
latter might become outdated as the environment changes, decreasing the usefulness of the
learned model and potentially leading to improper decisions by the controller. Here, model-
free algorithms should better adapt to the dynamic environment since they do not need to
“unlearn” as much outdated information. If the environment is static, however, leveraging
the additional environment model learned by a model-based PORL algorithm could result in
better proactive behavior through considering the probability of each state transition before
taking an action and thus achieve potentially higher long term rewards.

However, although the two types of algorithms differ in whether or not they learn a model
of the OE POMDP parameters, one requirement is that whatever PORL algorithm is chosen,
it must learn the reward function R(s, a) which represents the expected value of knowledge
refinement of a given sensing action and sensing state. Without learning this reward function,
the agent will not be capable of considering the OE (whose effect on knowledge is captured
in the reward function) during its sensing activity selection and thus cannot solve the OETP.
How the agent performs this learning depends on the specific PORL algorithm chosen. Con-
crete examples of how this reinforcement learning process works in the OE POMDP for
various PORL algorithms is provided with the descriptions of the experimental setup used
to evaluate our solution approach in Sect. 5.2.

4.3 Summary

Now that we have presented the details of our solution, we summarize by looking at it again
from a high-level perspective, as we did in Fig. 1. Specifically, we outline the steps required
in our solution as an abstract algorithm in Table 3, using the individual components of the
methodology described in Sects. 4.1 and 4.2 as configurable pieces of the overall solution.

In the following, we will give an example of Step 1 by describing a mapping from a
specific instance of the OETP into an instance of our OE POMDP. Then, we will discuss
several RL/PORL algorithms used to learn a controller for the POMDP that are used in Step 2.
Finally, we will conduct experiments using the mapping used in Step 1 and chosen RL/PORL
algorithms in order to study the OETP and validate our approach.

5 Implementation and experimental setup

In this section, we detail the experimental setup used to investigate the OE and validate
our OE POMDP solution methodology for solving the OETP. Specifically, we consider the
MineralMiner simulation environment implemented using the Repast Agent Simulation Tool-
kit [35]. This environment features (1) parameterized stateful resource behavior for investi-
gating a range of OE influence on agent sensing, and (2) both fully and partially observable

123



Auton Agent Multi-Agent Syst (2013) 26:202–244 219

resource state for evaluating our methodology with respect to the agent’s ability to perceive
the resource state that governs the OE. In the following, we first describe the environment
and then detail the instantiation of our solution. Finally, we present the objectives of our
experiments, along with the specific parameters defining our experimental setup.

5.1 MineralMiner: a robotic mining simulation

For our experiments, we utilize MineralMiner, a modified Tileworld [38] similar to Packet-
World [51] and RockSample [44]. In this environment, an intelligent agent is randomly placed
in a 2D grid consisting of mines of various minerals (gold, silver, uranium) and is tasked
with sequentially collecting minerals that must be returned to a base according to firm time
deadlines. To accomplish these collection tasks, the agent must first find mines containing
the appropriate type of mineral requested in its tasks, then drill to collect enough minerals to
complete each task. Drilling requires a different action for each mineral type, and choosing
the wrong type destroys the mine. Thus, there is a strong need for correctly determining
the type of each mine. If an agent fails to accomplish a task before its deadline, that task is
discarded and any minerals collected are saved for later tasks.

An agent begins with a map of the location of all mines and the base, but with no a priori
knowledge about the contents of those mines. Thus, it must perform sensing activities with
a stateful resource (called an electronic microscope) to determine mine contents:

(1) advanced mine test, which uses a large amount of energy but is highly accurate,
(2) basic mine test, which uses a low amount of energy but is not very accurate, and
(3) wait, which produces no observations but allows the microscope energy to recharge.

The specific amount of energy required for each test is random up to a maximum value
(c.f., Table 7 in Sect. 5.3), representing an uncertain amount of work required to perform
a test. Furthermore, the accuracy of each test is affected by (1) the current energy level of
the microscope, where the microscope’s accuracy decreases with energy usage, and (2) the
test’s sensitivity to microscope energy level, where the advanced test is more sensitive to the
microscope’s status.

Agent knowledge is represented by evidence-based opinions [21] for each possible min-
eral type in each mine. Each observation from the microscope yields evidence in favor of one
mineral type and against the others for the mine tested. Knowledge is refined by counting
this evidence for each opinion per mine. To support its drilling decisions for each task, the
agent senses a mine until (1) the expectation (Exp) of the top opinion for the mine is above a
confidence threshold, indicating the agent has sufficient information for its decision (Eq. 9),
or (2) the agent no longer believes it can converge to a confident opinion (explained in the
following paragraph)—an additional constraint to the OETP. Here, the Exp of an opinion is:

Exp = b + w ∗ u

b + d + u
(17)

where b and d are the amounts of evidence in favor of and against the opinion, respectively,
u is the amount of uncertain evidence (fixed to 1 in our simulations), and w is a weighting
factor for u (fixed to 1/3 in our simulations for the three possible mineral types, called rel-
ative atomicity in the original paper by [21]). We use a confidence threshold of 0.7 in our
experiments to require several agreeing observations before an agent is confident in a mine’s
contents.

Since the observations produced through sensing are uncertain and noisy and this Exp
formula (Eq. 17) suffers from diminishing returns as b and d increase, it is possible that
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Table 4 MineralMiner OE POMDP

OE POMDP MineralMiner characteristics

Stateful resource Electronic microscope

Sensing states S = {〈RS , KS〉} RS = Microscope energy,

KS = # of Previous observations

Sensing actions A Advanced/basic mine test, wait

Observations � Noisy microscope energy readings

Transition probabilities T (s, a, s′) Change in energy from a test or self-recharge during wait,
increased number of observations

Observation probabilities O(s′, a, o) Probability of noisy energy readings based on actual
energy level

Knowledge refinement reward R(s, a) Increase or decrease in the believed possibility of the true
mineral in the supply

an agent will never actually converge on a confident opinion about the mineral type inside
any particular mine (i.e., never have sufficient information for its drilling decision). Thus,
the agent periodically estimates whether or not it believes it can still reach the confidence
threshold at its current mine by comparing the knowledge refinement produced in the top
opinion for that mine over a previous window of observations (Sensing Window) with the
amount of refinement still required to reach the confidence threshold. It continues sensing if
the previous refinement is more than the amount still necessary, else it goes to an unsensed
mine. Agents also move on to another mine if its best action (in terms of expected knowledge
refinement) is the wait action and it believes the microscope is fully charged4. Otherwise,
the agent would be stuck indefinitely since waiting will not change the sensing state, thus
the agent will choose to wait repeatedly.

5.2 OE POMDP instantiation

In the MineralMiner environment, each microscope is a stateful resource used during sens-
ing whose behavior depends on its state (energy): using a microscope reduces the available
energy in its battery which leads to less accurate observations. Thus, an agent must tradeoff
through the OETP the need for knowledge refinement necessary for accomplishing its current
tasks against knowledge corruption due to sensing distortion from the OE. To handle this
tradeoff, we model the process of selecting microscope-based sensing actions using our OE
POMDP solution methodology, summarized in Table 4.

Within MineralMiner, we consider two types of observability of the microscope energy
(resource state): (1) fully observable and (2) partially observable. In the fully observable case,
the agent always accurately reads the current amount of energy in the microscope and simply
uses an MDP representation of the OE MDP. In the partially observable case, on the other
hand, the energy reading is noisy and provides observed values near the true value based on:

φ (r) = σ ′ (r) + uniform(−dist, dist) (18)

where uniform(x, y) returns a uniformly sampled value in the range [x, y] and dist is a dis-
tortion parameter (c.f., Table 6) determining the amount of additive noise in the observation.

4 However, for the RL and PORL agents described in Sect. 5.2, it is possible that the agent’s learning will
cause it to choose a different action at the same mine when its energy is full. Thus, after a learning update, we
allow these agents to return to such mines.

123



Auton Agent Multi-Agent Syst (2013) 26:202–244 221

For knowledge state, on the other hand, we use the number of previous observations for
the mine being tested, equal to b + d in Eq. 17 since these combine with the constant prior
u = 1 to be a weighting factor on the influence of the next update. Thus, they determine how
much (or little) knowledge refinement is possible from a sensing action.

Further, we represent the value of knowledge refinement (i.e., reward) as the change in
the agent’s Exp (Eq. 17) for the correct mineral type in each supply, known after drilling
regardless of whether the mine is collected from or destroyed. Thus, knowledge refinement
rewards are calculated and agent learning can occur only after each drilling action since the
agent must wait for ground truth before calculating knowledge refinement.

Finally, we assume no a priori knowledge about the state of the microscope resource.
Thus, we start with an initial belief state containing a uniform prior over all possible resource
states.

To learn a controller for the OE MDP in the fully observable case, we consider three RL
algorithms: (1) RMax, (2) Q-Learning, and (3) REINFORCE. For the partially observable
case, we use two PORL algorithms to learn a controller for the OE POMDP: (1) Bayes-
adaptive POMDPs (BAPOMDP), and (2) recurrent policy gradients (RPG). Note that the RL
algorithms were chosen due to (1) their similarity to the chosen PORL algorithms, or (2) their
popularity. The two PORL algorithms, on the other hand, were chosen because they represent
the state-of-the-art in model-based and model-free PORL, respectively. A comparison of the
algorithms and the parameters used are provided in Table 5. Next, we only briefly introduce
the RL and PORL algorithms and point the reader to their original references for more details.

Of note, for the discrete RL and PORL algorithms (RMax, Q-Learning, and BAPOMDP),
we discretize the RS values into discrete bins of equal size across their range [0, 100], and KS

values are limited to 0, 1, . . ., |KS | − 1 in order to create a finite set, with all values greater
than or equal to the final count mapped to the same state5. Observations about resource state
are discretized in the same manner as RS . The specific number of states and observations used
is given with the RL algorithm parameters in Table 5, with |S| = |RS | · |KS| and |RS | = |KS |.
For the continuous RL and PORL algorithms (REINFORCE and RPG), on the other hand,
such discretization is not necessary.

5.2.1 Reinforcement learning algorithms

RMax [8] is a popular, polynomial-time, probably approximately correct model-based RL
algorithm that uses evidence counting to learn the parameters of the underlying MDP. Spe-
cifically, it counts the number of observed transitions between states and fills in part of the
state transition function using these counts once their sum from any state exceeds a thresh-
old. To learn rewards, it first assumes a maximal value for all state/action pairs to encourage
exploration, then updates values based on the first reward received for the state/action pair.
However, since knowledge refinement might not be deterministic for state/action pairs due to
the stochastic accuracy of the microscope, we extend the reward update in RMax to follow a
similar counting-based learning strategy as learning state transition probabilities in order to
learn a stochastic reward function. Our controller learned using RMax solves the MDP using
exhaustive search on the Bellman equations (Eqs. 1–2, c.f., Sect. 2.2.1) with a finite horizon
(of 5 to provide some look ahead without expanding too far into the future).

Second, Q-Learning [48] is a popular model-free RL algorithm which learns an approx-
imation of the underlying MDPs utility function in tabular form based on rewards received
from the environment. Specifically, it maintains a Q(s, a) entry for every state/action pair

5 Chosen because of diminishing returns on knowledge refinement as the number of observations increases.
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Table 5 Reinforcement learning algorithms

Algorithm RL versus Model-based Description Parameters
PORL (MB) versus

model-free (MF)

RMax [8] RL MB Tabular count-based
learning

RMax = 1

Learns state transition and
reward function

|S| = 100

|R(s, a)| = 10

Horizon = 5

Q-Learning [48] RL MF Tabular geometric
averaging-based
learning

α = 1
n

Learns reward function γ = 0.3

ε = 0.1
|S| = 100

REINFORCE [53] RL MF Neural network-based
learning

α = 0.3

Learns stochastic
controller and reward
function

Hidden nodes = 10

BAPOMDP [40] PORL MB Dirichlet count-based
learning

|S| = 25

Learns probabilities over
POMDP models

|�| = 5

|R(s, a)| = 10

RPG [52] PORL MF LSTM RNN-based
learning

α = 0.3

Learns stochastic
controller and reward
function

Hidden nodes = 10

representing an approximation of the utility of taking action a in state s. These values are
updated whenever an explicit reward is received from the environment for a state/action pair
by mixing the old value with the new reward. For the mixture, we use a discounted learning
rate 1/n where n tracks the number of previous updates to the cell in the Q table being
updated, which encourages faster convergence of the agent’s learning. Our controller uses
an ε-greedy strategy, where the agent explores a suboptimal action with probability ε and
exploits the action for the current state with the highest Q(s, a) value with probability 1− ε.

Finally, REINFORCE [53] is a model-free RL algorithm using neural networks to simul-
taneously learn (1) a reward function R(s, a), and (2) a stochastic controller determining
the probability the agent should select each action given the state of the environment. The
former is learned using traditional backpropagation [42], whereas the latter is learned through
eligibility backpropagation [53] based on the received rewards.

5.2.2 PORL algorithms

BAPOMDP [40] is a state-of-the-art model-based PORL approach which is similar to RMax
[8] but for partially observable environments. Specifically, this algorithm relies on experi-
ence tracking (in Dirichlet distributions) to model the conditional transition and observation
probability functions. However, because the resource state is hidden, the entries in these
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vectors cannot be counted deterministically. Instead, the agent considers the possibility that
a number of possible counts are correct. Here, the states in the BAPOMDP are augmented
with the Dirichlet distributions themselves. Thus, the new (larger) POMDP contains multiple
possible state/learned model pairs as its states, allowing the agent to consider multiple possi-
ble models and all possible states with a single belief state. The agent learns which model is
best by favoring more likely models and states with higher values in the belief state after each
belief update. Our agent learns a controller by first learning the corresponding BAPOMDP
model, then solves the POMDP model for each complex state and chooses actions online
using 1-step decision trees (c.f., Sect. 2.2.1). Of note, to learn the reward function for use
with BAPOMDP, we use a similar experience counting approach as that with RMax (c.f.,
Sect. 5.2.1). However, since the state of the environment is hidden and estimated by the belief
state, we actually increment fractional counts based on the amount of belief for each state,
rather than a full 1.0 count for a known state in fully-observable environments.

Additionally, we also employ a state-of-the-art model-free PORL approach called the
RPG algorithm [52] which extends REINFORCE [53] to partially observable environments.
Specifically, for its neural networks, it trains long short-term memory (LSTM) [15,19] recur-
rent neural networks (RNNs). These networks can implicitly discover and consider patterns
of environment behavior based on observing the results of previous actions, allowing the
agent to implicitly estimate hidden state through observations. Training the action controller
and reward function neural networks in RPG follows backpropagation-through-time [49] for
LSTMs [15,19].

5.3 Experimental setup

5.3.1 Objectives

Within the MineralMiner simulation environment, we conduct experiments to evaluate the
use of the OE MDP and POMDP for controlling agent sensing with stateful resources. Spe-
cifically, we have two objectives:

Sensing performance objective: Evaluate the sensing performance of agents under the
OETP.

Specifically, we evaluate the sensing performance of agents suffering from the OETP
in both fully and partially observable MineralMiner. This evaluation entails comparing the
previously mentioned three RL and two PORL algorithms (Sect. 5.2) for learning to choose
sensing actions within the OE MDP and POMDP to solve the OETP against baseline agents
which follow sensing policies that do not consider resource state or the OE. These baseline
agents are: (1) Advanced and (2) Basic, where the agent always chooses the advanced and
basic mine test (ABT) sensing actions, respectively, and (3) Random, where the agent ran-
domly chooses one of the three sensing actions, including wait. Further, we consider two
more elaborate baselines (4) OE MDP and (5) OE POMDP, which contain a priori models
of the OE MDP and POMDP, respectively. OE MDP solves its model in the same manner
as RMax (c.f., Sect. 5.2.1), whereas the OE POMDP solves its model in the same manner as
BAPOMDP (c.f., Sect. 5.2.2). Further, both use the following structure parameters, similar6

to the learning approaches (c.f., Table 5): |S| = 100 (|RS | = |KS | = 10), |�| = 10 for OE
POMDP and |S| = 400 (|RS | = |KS | = 20) for OE MDP. Together, these baselines serve

6 BAPOMDP only uses |S| = 25, |�| = 5 rather than 100, 10 due to the high computational complexity of
this approach, whereas OE MDP uses twice as many resource and knowledge states due to its low complexity.
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as an upper-bound for agent learning and demonstrate the performance of our solution if the
application were such that learning would not be required.

To evaluate these approaches, we measure sensing performance as the average knowledge
refinement per sensing activity. This measure was chosen because it is knowledge refinement
that agents aim to optimize in the OE POMDP in order to balance the OETP. In MineralMiner,
average knowledge refinement is defined as the average change in the Exp of the agent’s opin-
ion of the correct mineral type in the mine tested (known by the agent for sure once it drills
the mine, even if the mine is destroyed).

Task performance objective: Evaluate the task performance of agents under the OETP.

Second, we evaluate the impact of the OETP on the task performance of agents given its
impact of sensing performance in both fully observable and partially observable Mineral-
Miner. This evaluation is motivated by the Performance Hypothesis:

Performance hypothesis: Improving agent sensing performance will lead to improved
agent task performance through proper decisions informed by knowledge refined through
sensing.

This Performance Hypothesis motivates research on agent sensing: the primary value of
sensing is in knowledge refinement for the sake of informing decisions to support task and
goal accomplishment, especially for bounded rational agents. Without such improvement,
there is no need for high quality sensing. Instead, an agent could minimize the amount of
sensing performed to minimize costs. While we assume this hypothesis holds in many MAS
environments, it might not due to several factors, including ease of task accomplishment,
faulty (i.e., non-perfect) actuators, or a lack of need for sensing due to sufficient a priori
knowledge about the environment.

To evaluate the Performance Hypothesis in both fully and partially observable Miner-
alMiner, we consider the task performance of agents in each simulation. If sensing perfor-
mance does lead to improved task performance (confirming the Performance Hypothesis), we
should expect to see higher levels of task performance when sensing performance increases.
In MineralMiner, task performance is measured as the total number of tasks completed by
the agent. We chose this measurement because the primary goal of the agent is to complete
as many tasks as possible. If sensing performance does lead to improved task performance,
we should expect to see more tasks accomplished through drilling more properly identified
mines.

5.3.2 Environments

In order to understand the impact of the OE on agent behavior, we consider the following
environments in our experiments. Specifically, we use six environments with varying lev-
els of OE in the microscopes, using different amounts of state-dependent accuracy error by
varying the noise factor (NF):

error = (100 − energy)

100
∗ N F ∗ Sen (19)

where Sen is the test’s sensitivity to the OE and a larger N F produces more error and
OE. Thus, using the microscope for sensing decreases its energy, which increases error and
reduces sensing accuracy. Here, accuracy is then the test’s fully charged accuracy (given in
Table 7) minus error . For each of the NF values considered in our experiments, we present
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Fig. 2 Microscope test accuracy for various levels of OE

Table 6 MineralMiner
experiment parameters

Parameter Value

Grid size 40×40

# Supplies 600

# Tasks 600

Microscope recharge rate 10%/time unit

PO noise dist 10%

Sensing window 5

N F 0, 0.1, 0.2, 0.3, 0.4, 0.5

Table 7 MineralMiner sensing
action parameters

Sensing activity Max energy drain (%) Accuracy Sensitivity

Advanced 40 0.9 4

Basic 20 0.5 1

the accuracy-energy relationship curve due to this error in Fig. 2. These curves show that
increasing NF not only produces lower accuracies in the two tests, but also shifts the ranges
of energy values where each test is the optimal choice due to their different sensitivities to the
OE. For example, for the lowest values of NF environments, advanced dominates, whereas
for the highest levels, basic is more accurate for most energy values. Therefore, depending
on the NF value, agents have reason to choose different sensing activities to minimize OEs
impact on knowledge refinement.

5.3.3 Parameters

The parameter values to the fully and partially observable MineralMiner simulations impor-
tant to our experiments are presented in Tables 6, 7. To reduce the variance of the results, we
average the results over 30 runs (each with a different random seed).

We chose these parameters for the following reasons. First, we wanted enough learning
opportunities to demonstrate the effects of RL/PORL, so we chose 600 mines and tasks
(200 mines each of 3 types of minerals). We also wanted sufficient difference in the effect
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of the OE on sensing and to provide incentive for agents to choose various sensing activities
dependent on microscope energy. Choosing the parameters from Table 7 gave us this behav-
ior, as shown in Fig. 2. We chose a dist value of 10%, which distorts energy observations
for partial observability, based on the size of the discretized RS state space (Table 5) to allow
observations above and below the correct state to occur. Finally, we picked a microscope
recharge rate near the cost rate of the other sensing actions, and we chose a Sensing Window
of 5 (c.f., Sect. 5.1) to allow the agent to sense a mine enough times to gather the necessary
information but not be stuck forever.

6 Results

In this section, we analyze the results of the experiments outlined in the previous section,
used to evaluate our OE POMDP solution in solving the OETP. We begin by evaluating the
results of the experiments for the sensing performance objective, followed by the results of
experiments for the task performance objective. For both objectives, we consider the results
in both fully observable as well as partially observable MineralMiner. Finally, we conclude
the section with a discussion of the results across all experiments, including common trends,
differences, and significant discoveries.

6.1 Sensing performance objective

We begin our results analysis by considering the sensing performance of agents suffering from
the OETP in both fully and partially observable environments. Recall that these experiments
were conducted to determine (1) how the OE impacts the sensing performance of agents
using various sensing action selection strategies, and (2) validate that our OE POMDP meth-
odology can handle the OETP and improve agent sensing performance by considering the
relationship between OE and resource state during sensing.

To perform our evaluation, we present the sensing performance results of our experiments
in Figs. 3 and 4 for the fully and partially observable experiments, respectively. Recall that
we measure sensing performance as the average value of knowledge refinement for all obser-
vations during agent sensing (including during training for the RL/PORL agents). For both

Fig. 3 Sensing performance in fully observable MineralMiner
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Fig. 4 Sensing performance in partially observable MineralMiner

figures, we also provide error bars representing 95% confidence intervals. From the sensing
performance results in Figs. 3 and 4, we observe several important trends.

6.1.1 Impact of OE on sensing performance

First, we note that in both Figs. 3 and 4, as OE (i.e., NF) increased, almost all agents gen-
erally achieved lower sensing performance. This demonstrates that the decreased accuracy
representing the OE is affecting agent sensing performance as expected. That is, as sens-
ing actions changed the state of the stateful microscope resource used for sensing, sensing
accuracy was affected, which in turn reduced the average knowledge refinement produced
by noisy information gathered during sensing. Therefore, the OE did impact agent sensing
to produce the OETP.

However, we also observe that this trend did not hold for the OE MDP (Fig. 3) and OE
POMDP (Fig. 4) approaches. Recall these two agents started with a priori models of the
fully and partially observable versions of the OE POMDP methodology, respectively. Here,
we note that these approaches actually improved their performance from 0.2 NF to 0.5 NF,
in spite of the increase in the OE. Upon further investigation, this phenomenon occurred
because once the OE was large enough (as reflected in the agent’s known reward function),
the two a priori model approaches increased the frequency with which they chose the wait
action to allow the microscope to recharge before sensing (i.e., improve resource state). This
behavior limited the impact of the OE, which only distorted observations when the micro-
scope energy was not full. Looking closer at this behavior, we observe that at lowest levels
of OE (NF < 0.2), these approaches did not wait at all since the OE was small enough (0.0,
0.1 NF). This result is shown as the proportion of wait actions Figs. 5b and 6b. Then, for
higher levels of OE (NF = 0.2–0.5), the OE MDP and POMDP approaches not only started
to choose wait, but did so at a progressive rate in response to the increasing difficulty of
agent sensing. From these results, we conclude that our OE POMDP methodology properly
adapted its sensing behavior depending on the amount of OE in the environment. Specif-
ically, when the OE was minimal, the agent did not worry much about resource state and
sensed frequently. Then, when the OE had a larger affect on agent sensing, the agent became
more concerned with resource state and acted to improve resource state at the sacrifice of
immediate sensing in order to minimize the OEs affect on knowledge refinement.

123



228 Auton Agent Multi-Agent Syst (2013) 26:202–244

Fig. 5 Sensing activities selected in fully observable MineralMiner a ABTs ratio. OE MDP has missing
values in a because it only chose advanced for 0 and 0.1 NF. b Wait selection percentage

Further, we note that how long the agent waited was determined by the discount factor
in the expected knowledge refinement calculations (Eq. 1) when building a sensing policy.
Thus, for lower levels of OE, sensing before the microscope had been fully charged had
higher expected reward than waiting now and receiving higher but discounted future rewards
from more accurate sensing. If we were to increase the discount factor to its maximum of 1,
we would expect the approach to always wait until the microscope energy is maximal, then
perform an advanced test to achieve maximum accuracy and no OE distortion. However,
given the task’s real-time constraints (i.e., firm deadlines), this could result in too slow of
sensing and less task accomplishment, thus smaller discount factors are useful. Overall, this
observation shows that while the OE POMDP methodology was capable of adapting to the
OE when necessary, it could be adjusted to further adapt sensing behavior to its environment.
We intend to investigate such improvements as future work.

6.1.2 Sensing action selection approach comparison

Now that we have established that the OE impacted sensing performance as predicted by
the OETP and our OE POMDP methodology was capable of adapting to the OE, we next
compare the agents employing our methodology versus the baseline agents. Specifically, we
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Fig. 6 Sensing activities selected in partially observable MineralMiner a ABTs ratio. OE POMDP has missing
values in a because it only chose advanced for 0 and 0.1 NF. b Wait selection percentage

observe that agents using some variant of our methodology had the highest performance in all
environments. These include OE MDP and Q-Learning in the fully observable experiments,
as well as OE POMDP and RPG in the partially observable environments. This demonstrates
that not only was our methodology capable of adapting to the OE to solve the OETP, it also
leveraged this adaptation to outperform baseline sensing action selection strategies which
do not consider resource state. Therefore, considering resource state was not only important
to adapt to the OE, but also to improve sensing performance under the OETP. Further, we
observe that agents using our methodology gracefully handled the case where the OE was
not present as they still performed well for 0 NF, indicating that our methodology was useful
for sensing action selection in environments without the OETP, as well.

Further, we also note some important relationships in the sensing performances of the var-
ious approaches. First, the OE MDP and POMDP approaches performed almost identically
to the Advanced approach for lowest levels of OE (NF = 0, 0.1) and to the Random approach
for NF = 0.2 in terms of sensing performance (Figs. 3, 4). This occurred because the ideal
strategy for the lowest OE environments was to simply choose the advanced test because of
minimal impact on accuracy from microscope energy levels (Fig. 2), which was followed
by both the Advanced approach (by design) and by the OE MDP and POMDP approaches
(by maximizing expected knowledge refinement). Further, in the NF = 0.2 environment, the
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advanced and basic actions produced very similar accuracy levels for all microscope energy
levels (Fig. 2), so randomly choosing between them yielded roughly similar performance as
always selecting the most ideal one. Since the Random approach followed such a random
selection strategy, along with randomly choosing the wait action to recharge the microscope,
Random performed very similarly to the ideal strategy followed by OE MDP and POMDP,
which chose the optimal action and began to choose to wait to recharge the microscope to
improve accuracy (Figs. 5b, 6b). Then, as the impact of the OE (i.e., NF) increased, both
(1) the ABTs became easier to distinguish between again, and (2) the need for more waiting
increased, so the OE MDP and POMDP improved their performances, as discussed previ-
ously, whereas all other approaches decreased in performance. Finally, we observe that the
OE MDP and POMDP approaches performed very similarly to one another for all environ-
ments in terms of both behavior and performance, in spite of the differences in their models
(e.g., fully vs. partially observable).

Similarly, we note that the Q-Learning and RPG RL/PORL approaches were able to learn
how to outperform the non-ideal baselines (Advanced, Basic, and Random) for environments
with more OE (NF = 0.2, 0.5 and > 0, respectively). Thus, reinforcement learning did pro-
vide a means for learning to improve agent sensing when necessary, even when the agent
started with no knowledge about the effects of OE on knowledge refinement. Unexpectedly,
the RPG PORL approach also outperformed (on NF = 0–0.4) the related OE POMDP base-
line that started with a priori knowledge about the impact of the OE on agent sensing and
knowledge refinement. In the following, we will investigate these results further.

6.1.3 Learning a controller for the OE POMDP

Effects of learning on sensing action selection

Next we consider how learning affected the sensing performance of agents using RL and
PORL to solve our OE POMDP methodology. First, we consider the impact of learning on
sensing action selection, which in turn leads to various levels of sensing performance. We
observe that in the environments with the lowest levels of OE (NF = 0.0, 0.1), the RL/PORL
agents learned to favor the advanced test, as indicated by an ABT ratio (based on the number
of times each is selected) of greater than one in Figs. 5a and 6a. This was the appropriate
choice because the advanced test achieves a higher accuracy than the basic test for these
OE levels (Fig. 2), making the advanced test the optimal choice in all sensing states (also
chosen by the OE MDP and POMDP agents). Further, the RL/PORL agents still favored
the advanced test for the highest levels of OE (NF = 0.4, 0.5), but only after learning to wait
more frequently (again as done by the a priori OE MDP and POMDP approaches), as shown
in Figs. 5a–6b. Thus, the general behavior of the RL/PORL agents was to learn to behave
similar to the agents starting with a priori of the OE POMDP, indicating that they learned the
appropriate behaviors to handle the OETP while accounting for resource state during sensing.
However, we note that the model-based RMax and BAPOMDP approaches did not learn to
wait as much as the model-free approaches, which we will discuss in more detail below.

On the other hand, the RL/PORL agents still used the basic test more frequently than
the OE MDP and POMDP agents, which was a direct consequence of having to explore all
actions in various resource and knowledge states to learn when the advanced test was better
than basic. Therefore, exploration during learning affected the quality of the RL/PORL solu-
tions, as expected. Further, the basic test was a better choice than advanced for the highest
levels of OE (NF = 0.4, 0.5) as indicated by its higher accuracy in these environments (Fig. 2),
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so the RL/PORL agents were still making good choices, but not necessarily the ideal choices
(wait, then use advanced) as frequently as the a priori OE MDP and POMDP agents.

Effects of learning on sensing performance

Taking a closer look at the individual learning algorithms used to learn how to solve our
methodology, we next highlight the advantages and disadvantages of each with respect to
learning a controller for the OE POMDP to solve the OETP. Here, we go beyond their simi-
larities in learning how to select sensing actions to determine why they exhibited differences
in their sensing performances.

Most importantly, we observe that the RPG agent not only outperformed all of the base-
line agents unaware of resource state and the OE (Advanced, Basic, and Random), it also
learned to achieve higher sensing performance than the OE POMDP approach with an a priori
model for all but the highest level of OE (NF = 0–0.4). We believe that this highest level of
performance was caused by the implicit non-myopic reasoning of the RPG agent, since RPG
trained over sequences of observations when learning a controller to choose sensing actions.
Thus, the agent considered not only current rewards for sensing, but also future rewards for
later sensing actions dependent on the change in resource state from the currently chosen
sensing action. Recall from Sect. 5.3 that we restricted OE POMDP to build 1-step decision
trees to form a policy for choosing sensing actions. Thus, OE POMDP was myopic. This was
done to keep the comparison fair with BAPOMDP, which also solved a (learned) POMDP
model using 1-step decision trees—an approach chosen to reduce computational complexity
because BAPOMDP must actually solve multiple possible POMDPs (one for each complex
state, c.f., Sect. 5.2.2) to choose an action. We postulate that that OE POMDP would have
also done better had it used a non-myopic approach for solving the POMDP model, such as
larger depth decision trees or approximation techniques such as PBVI [37]. Therefore, we
believe that non-myopic solutions could be very important for solving the OE POMDP with
or without learning, even if the agent does not explicitly consider non-myopic rewards. We
intend to further investigate this issue in the future.

However, when the OE was highest (NF = 0.5), we note that the a priori OE POMDP
approach achieved the best sensing performance. With so much effect from resource state on
agent sensing performance, it appears that optimal performance was more difficult to learn
and better knowledge about the OE was more important than non-myopic reasoning.

Further, RPGs performance was a drastic improvement over the fully-observable vari-
ant REINFORCE from which the RPG algorithm was extended [52], which did worse than
nearly all baselines for non-low levels of OE (NF > 0.1). Specifically, the primary dif-
ference between REINFORCE and RPG was also myopic versus non-myopic reasoning:
REINFORCE trained only on single instances of sensing outcomes, whereas RPG trained on
sequences as stated previously. While this improvement to RPG was originally intended [52]
to allow RPG to estimate hidden environment state (i.e., resource state) through observations
(i.e., noisy energy readings), it turns out that it also allows the agent to implicitly consider the
sequential benefits of action sequences, and thus implicitly consider non-myopic rewards to
balance current versus future refinement. This is an advantage over the myopic REINFORCE.
Therefore, we have further evidence that non-myopic reasoning is important for solving the
OETP.

To better understand the differences in the other learning approaches, we next compare
the RL and PORL approaches considered in our experiments by evaluating the impact of
their learning on sensing performance while the agents learned how to behave in their
environments. Specifically, we consider the difference in sensing performance over time
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Fig. 7 Differences in sensing performance over time in fully observable MineralMiner a 0.1 NF,b 0.4 NF

(i.e., successive groups of tested mines) due to learning compared to the Random baseline,
shown with 95% confidence intervals in Figs. 7 and 8 using 0.1 NF and 0.4 NF as examples.
For our time series, we split observed mines into 50 successive groups of 12 mines each.

In Fig. 7b, we observe that continuous REINFORCE actually learned to sense worse
over time. This behavior is in contrast to discrete Q-Learning and RMax, which improved
over time in both Fig. 7a and b. Upon further investigation, this worsened performance for
REINFORCE appears to have been primarily due to a bias towards choosing the advanced
test, shown in the higher ABT ratio for REINFORCE at all levels of OE in Fig. 5a (notice
this is a logarithmic scale) than the other RL algorithms. We believe this bias was caused by
the manner in which REINFORCE learns its reward function. Specifically, this RL approach
learned a single function approximator using a neural network that covered all possible
state/action pairs. Since the advanced test did achieve higher accuracy (Fig. 2) and thus
higher knowledge refinement when the resource state was high, the learned reward function
appeared to become biased towards believing advanced would always do well. Q-Learning
and RMax, on the other hand, tabularized the reward function based on discrete regions in
the state space and thus learned each region independently. Therefore, discretizing the state
space appears to have avoided bias from good performance in a subset of sensing states.
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Fig. 8 Differences in sensing performance over time in partially observable MineralMiner a 0.1 NF, b 0.4
NF

On the other hand, in Fig. 7a we observe that REINFORCE was capable of improving its
performance over time. However, we believe this result was a fluke because the bias towards
the advanced test happens to be the correct action to choose. Overall, we believe this bias
problem with REINFORCE could be overcome by tweaking its learning parameters, such as
adding additional hidden nodes to better differentiate resource states to avoid bias or changing
its learning rate, which we also intend to explore as future work.

Further, model-free Q-Learning always outperformed model-based RMax, both overall
(Fig. 3) and over the time series (Fig. 7). The same held true for the model-free RPG over
model-based BAPOMDP (Figs. 4, 8). This success was due to the faster learning performed
by the model-free learning algorithms, shown in Figs. 7a–8b, since they did not require
time to collect additional information to learn a full model of the environment (i.e., transi-
tions probabilities between sensing states and observation probabilities). Further, we believe
that the much lower amount of waiting to recharge the microscope’s energy done by the
model-based approaches was due to the additional amount of time spent learning the model
parameters. Specifically, parameter learning required the agent to use the advanced and basic
actions more times to learn appropriate model parameters for those actions. Overall, after
comparing model-free and model-based RL/PORL, it appears that knowledge refinement
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Fig. 9 Task performance in fully observable MineralMiner

reward learning alone was sufficient for improving sensing performance in the OETP and
was advantageous due to faster learning.

However, in the fully observable experiments, we observe that the additional model learn-
ing performed by RMax could also be beneficial, as shown by its ultimately higher or equal
performance towards the end of the simulations in Fig. 7a and continued increasing trend
in Fig. 7b, compared to the performance of Q-Learning. Thus, if the application includes
enough learning episodes to overcome the slower learning rate of model-based RL, the addi-
tional information learned might result in even better sensing performance and an even better
solution to the OETP than model-free RL. In the partially observable experiments, on the
other hand, learning a model of the (more complex) environment proved to be too difficult
as BAPOMDP never outperformed RPG. Thus, the additional complexities of such learning
were not worth the trouble.

Finally, we note that RPG appeared to actually peak early and then decreased in per-
formance over time. Thus, RPG appears to have overfitted from its experience. Therefore,
although RPG was one of the top performers when the OE was present, this approach could
actually be improved to further boost sensing performance. This overfitting problem could be
solved by either (1) reducing the learning rate used (Table 5, c.f., Sect. 5.2), or (2) simply stop
learning after a fixed number of episodes. Overall, this further implies (as seen in Sect. 6.1.1)
that although off-the-shelf settings did reasonably well, the OETP is sufficiently complex
enough to require parameter tweaking to adapt our solution to the specific environment in
order to achieve optimal sensing performance.

6.2 Task performance objective

Now that we have a good understanding of the sensing performances of the various approaches
considered when the OETP is present, we next analyze the task performance results of the
agents in both fully and partially observable MineralMiner. Our goal here is to shed light
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Fig. 10 Task performance in partially observable MineralMiner

on how sensing performance influences task performance. Recall that task performance is
measured as the number of tasks completed by the agents. We present these task performance
results for our fully and partially observable experiments in Figs. 9 and 10, again with 95%
confidence intervals. From these results, we again observe several important trends.

6.2.1 Impact of the OE on task performance

Similar to what we observed with sensing performance in Figs. 3 and 4, Figs. 9 and 10
show that in almost all cases, as the OE (i.e., NF) increased, task performance decreased or
remained similar. Thus, the OE also affected agent task accomplishment through its impact
on agent sensing, making it a valid concern for agent developers beyond its impact on agent
sensing. However, as with sensing performance, the task performance of the OE MDP and
POMDP approaches improved from 0.2 to 0.5 NF, again due to improved sensing action
selection in response to increasing OE.

6.2.2 Relationship between sensing and task performance

We further observe that task performance generally followed the same trends observed for
sensing performance in Figs. 3 and 4 (c.f., Sects. 6.1.1 and 6.1.2). In almost all cases, agents
can be ranked with respect to task performance as they were for sensing performance. Fur-
thermore, the relative differences between their task performances appear to be proportional
to their differences in sensing performance. Thus, for any fixed amount of OE, we know:
(1) sensing and task performance both changed together in the same direction with similar
magnitude, (2) the only variable changed was the sensing action selection approach used,
(3) changing the approach is known to change sensing performance, and (4) the approaches
only consider sensing and do not consider task performance. Therefore, the only cause for
improved task performance was improved sensing performance, validating the Performance
Hypothesis. Further, this result demonstrates that our solution methodology was valuable for
improving not only the agent’s sensing performance, but also its ability to accomplish tasks.
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Table 8 Correlation between sensing and task performance in fully observable MineralMiner

Approach 0 NF 0.1 NF 0.2 NF 0.3 NF 0.4 NF 0.5 NF

Advanced −0.1215 0.3255 0.6903 0.8906 0.8846 0.9380

Basic 0.8620 0.6452 0.6998 0.6154 0.5004 0.4872

Random 0.4762 0.7066 0.7115 0.7258 0.9753 0.7981

OE MDP −0.1215 0.3255 0.5914 0.9489 0.6164 0.6307

Q-Learning 0.3343 −0.5042 −0.2865 −0.0838 0.1260 0.9705

REINFORCE 0.6373 0.5405 0.5975 0.6931 0.8011 0.6220

RMax 0.5981 0.8449 0.8524 0.9658 0.9042 0.9422

Total 0.8457 0.7971 0.7015 0.9148 0.9522 0.9639

Table 9 Correlation between sensing and task performance in partially observable MineralMiner

Approach 0 NF 0.1 NF 0.2 NF 0.3 NF 0.4 NF 0.5 NF

Advanced −0.1215 0.3255 0.6903 0.8906 0.8846 0.9380

Basic 0.8620 0.6452 0.6998 0.6154 0.5004 0.4872

Random 0.4762 0.7066 0.7115 0.7258 0.9753 0.7981

OEPOMDP 0.0445 0.4883 0.8044 0.6157 0.5759 0.6243

BAPOMDP 0.6985 0.8225 0.8853 0.5460 0.6198 0.1759

RPG 0.7479 0.6642 0.6790 0.8218 0.8886 0.6667

Total 0.8744 0.8235 0.8235 0.9186 0.9563 0.9308

To further investigate the relationship between sensing and task performance, we look at
the correlation between these two values computed over each individual simulation run (i.e.,
each random seed). These results are presented in Tables 8 and 9 for the fully and partially
observable experiments.

Considering these results, we observe that many of the correlation values are high and
positive, confirming a strong relationship between sensing and task performance in this appli-
cation. Since these strong relationships were positive, we conclude that this relationship can
be exploited to improve agent task performance by simply focusing on improving agent sens-
ing. Further, this relationship was generally strongest for high levels of OE (0.4, 0.5 NF),
demonstrating that when the OE was most prevalent, not only did solving the OETP become
necessary to achieve good sensing, but also to accomplish the agent’s tasks. Therefore, the
OE is an important challenge to consider not only from the perspective of agent sensing, but
also overall agent task behavior.

Further, we observe a stronger positive correlation between sensing and task performance
in the partially observable experiments. We believe that this stronger relationship was caused
by an increased need for sensing in the partially observable environment: because resource
state was hidden, an agent had to rely on sensing actions to not only refine its knowledge, but
also gather information about its resource to determine how to properly choose its next sens-
ing action. Without such information, the agent could not properly choose sensing activities,
which would have led to worse knowledge refinement and fewer tasks accomplished. Thus,
proper sensing action selection was even more important when resource state is hidden from
the agent, and our OE POMDP with or without PORL satisfied this need.
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However, we also observe that Q-Learning did not experience the same general trends as
the other agents. Instead, for low amounts of OE (0, 0.1 NF) it achieved similar or worse
task performance than Random, in spite of sensing better, and the relative gap between the
task performance (Fig. 9) of Q-Learning against REINFORCE and RMax was greater than
the relative gap in sensing performance (Fig. 3). Further, Q-Learning commonly achieved
negative correlations between sensing and task performance. We explain the cause of these
problems below.

6.2.3 Effects of learning about sensing performance on task performance

Now that we have explored the general relationship between sensing and task performance,
we take a look at how the individual learning algorithms used by our agents impacted task
performance. Here, we compare the cumulative task performance of the various RL/PORL
agents over time with 95% confidence intervals to show the impact of their learning about
sensing on their ability to accomplish tasks. Similar to our earlier sensing performance anal-
ysis (c.f., Sect. 6.1.3), we split tasks into successive 50 groups of 12 tasks each for our time
series. Again, we use the difference between each RL/PORL agent and the Random agent
for this comparison to show the explicit impact of learning. We present the results of the 0.1
and 0.4 NF environments as examples in Figs. 11 and 12.

First, we observe that the Random and RL/PORL approaches (except Q-Learning and
RPG, see below) all performed very similarly at the beginning of the experiments. Specif-
ically, the agents performed every task in a task group at the beginning. The differences in
their performance at the end of the simulations, on the other hand, were caused by how long
the agent could continue collecting minerals from mines. These behaviors were due to the
sensing performed by the agents. Since there was not a one-to-one correspondence between
tasks and mines, agents searched the entire grid for mines until they found the minerals
necessary for tasks. At the beginning of the simulations, there were a sufficient number of
mines to find enough minerals to collect in order to accomplish early tasks. However, as the
agent continued to sense and perform tasks, it encountered two problems. One, the agent
depleted the contents of mines, or destroyed their contents due to incorrect drilling actions
caused by bad sensing. Two, the agent could not converge to a confident opinion on some
mines, and then moved on to other mines or gave up sensing altogether. Thus, at the end of
simulations, there were no longer any mines to sense or drill to collect minerals for tasks.
Therefore, the key to accomplishing tasks in MineralMiner was to be able to drill the longest
without destroying mines, an ability supported by converging to the greatest number of cor-
rect, confident opinions about mine contents. From another perspective, such convergence
was necessary for providing the agent with confidence that it could complete its tasks (as
there could be sufficient untapped minerals to complete its tasks but it lacked confidence in its
knowledge about their location). Since the number of mines was constant in our experiments,
agents with the best sensing over time should have reached such convergence the most often
and thus accomplished the most tasks. Therefore, our time series results demonstrate that
learning that produces better sensing can also lead to longer task accomplishment, which
also leads us to confirm the Performance Hypothesis.

Further, this impact from the OE on the agent’s task performance actually indirectly affects
the agent’s learning as well. Specifically, recall that the agent must drill to discover the ground
truth of a mine which can only occur once it has converged on an opinion about a particular
mineral type at that mine with high Exp. Thus, when reduced sensing performance from the
OE prevented convergence and drilling, the agent could not learn from its experiences in
order to improve its sensing to overcome the OE. Therefore, such a negative impact on learn-
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Fig. 11 Differences in task performance over time in fully observable MineralMiner a 0.1 NF, b 0.4 NF

ing from the OE could hold for any environment where the agent’s learning about sensing
requires feedback based on the ground truth of sensing, which is not available until a task is
accomplished.

Finally we note that the Q-Learning and RPG agents did not appear to complete as many
tasks at the beginning of the simulations (Figs. 11a, 12a), in spite of the fact that there were
a sufficient number of mines from which to collect. Upon further investigation, this behavior
for Q-Learning was caused by the agent actually learning to stop sensing in several experi-
ment runs due its fast learning rate and state discretization. Specifically, a rare event described
below caused the agent to believe that it could not achieve any knowledge revision. Although
infrequent, this phenomenon was certainly problematic and sheds light on an interesting
challenge to solving the OETP through learning.

Specifically, this unexpected Q-Learning behavior was due to the agent quickly learning
the best action for sensing a mine a second time with full energy was the wait action. This
learning was in response to previous inaccurate sensing outcomes for both the ABTs in this
sensing state. As described in Sect. 5.1, an agent moved on to another mine if it selected the
wait action when it believed that the microscope was fully charged to avoid waiting at a mine
forever. Since Q-Learning discretized the state space, it considered a range of energy levels
to represent a fully charged microscope. Thus, it was more likely to experience knowledge
corruption (i.e., negative refinement) through inaccurate sensing during its wider range of
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Fig. 12 Differences in task performance over time in partially observable MineralMiner a 0.1 NF, b 0.4 NF

what it believed to be a fully charged microscope. Further, its fast convergence due to the
chosen discounted learning rate led it to over generalize its early experiences and assume
future bad knowledge refinement from both the ABTs without additional experience in this
sensing state. Thus, Q-Learning in our experiments was too quick to accept that a good
sensing state (high energy) led to bad sensing. The other learning algorithms on the other
hand, avoided this problem through (1) continuous sensing states, or (2) slower learning.
Therefore, we believe that these problems with Q-Learning could be overcome by either
(1) increasing the state space to result in smaller discretization, reducing the likelihood of
bad sensing outcomes with what is believed to be full energy, or (2) reducing the learning
rate to allow for additional exploration.

Like Q-Learning, the RPG agent also tended to achieve lower task performance early on
than the Random and BAPOMDP agents. Since RPG also learned very rapidly (Fig. 8), this
result provides further evidence that over generalizing early experiences (c.f., Sect. 6.1.3)
deteriorated not only sensing performance, but also the task performance of the agent. Thus,
between Q-Learning and RPG, we have further evidence that parameter tuning in the complex
OETP is needed not only for improved sensing performance, but also task performance.
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6.3 Discussion

Finally, we summarize our results and highlight important conclusions by comparing and
contrasting the results of the fully and partially observable MineralMiner experiments across
various topics of analysis. First, we evaluate the impact of the OE on agent sensing per-
formance based on our results. In both the fully and partially observable experiments, we
observed that our OE POMDP methodology using RL and PORL led to improved sensing
performance by agents over time. Furthermore, as the OE increased, our Q-Learning RL
and RPG PORL agents outperformed other approaches that do not consider resource state
or OE during sensing. Further, the OE MDP and POMDP baseline approaches with a priori
models also performed the best of all approaches (except related RPG) in all levels of OE
by adapting action selection properly to the amount of OE in the environment. Therefore,
overall our results provide strong evidence both (1) demonstrating that considering resource
state is beneficial in accounting for the OE to solve the OETP, and (2) validating that our
methodology is one successful approach to solving the OETP.

Second, we evaluate the impact of the OE on task performance based on our results. In
both the fully and partially observable experiments, we observed that higher sensing per-
formance almost always led directly to improved task performance. We also observed high,
positive levels of correlation between sensing and task performance, indicating a strong rela-
tionship worth exploiting. Thus, we confirmed the Performance Hypothesis for both envi-
ronments, indicating that research on improving sensing performance is valuable to overall
agent research.

Third, we found many impacts of the OE on the agent and its behavior in both simulation
environments. First, we observed that the OE impacted not only agent sensing performance,
but also agent knowledge through lack of confidence in its beliefs. Furthermore, the OE
impacted task performance not only through reduced task accomplishment, but also through
reduced opportunities to accomplish tasks due to the lack of knowledge confidence. Finally,
the OE also impacted the learning of the agent through a reduced number of learning opportu-
nities by preventing the agent from discovering the ground truth of its prior sensing. Overall,
these results demonstrate the importance of considering the OE beyond just its impact on
sensing, especially in real-world environments where tasks are already difficult to achieve
and learning is difficult to perform.

Fourth, we also discovered the robustness of our methodology. Specifically, we observed
in both the fully and partially observable results that our methodology performed (nearly)
as well as the best other approaches when the OE was not present, in spite of the fact that
our methodology assumed its presence. Thus, our solution provides a generally good way of
improving sensing.

Finally, we also uncovered many advantages and disadvantages to the various types of
learning employed by our methodology. In the fully observable experiments, we observed
that discrete algorithms were not biased by some successful sensing outcomes, unlike the
continuous algorithm whose performance was hampered through a bias towards sensing
actions that provided good knowledge refinement in only some sensing states. In the both the
fully and partially observable experiments, we also observed that model-free learning gener-
ally outperformed model-based learning overall due to the additional time costs of learning
additional state transition (and observation in PORL) parameters. We also observed evidence
that over generalizing and overfitting can occur if learning parameters are not tuned properly
due to the complexity of the OETP. Therefore, we now have a better idea of what types of
learning algorithms are best for solving the OETP through the OE POMDP.
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7 Conclusions and future work

In conclusion, we have introduced the OETP in this paper, a subproblem of limited resource
use during sensing. This problem is the result of using stateful resources during agent sensing
which can produce an OE. This OE represents a distortion in sensing outcomes caused by
changes in resource behavior from resource usage during sensing. Specifically, the OETP
requires an agent to balance satisfying the need for (1) knowledge refinement to support
agent reasoning, and (2) avoiding knowledge corruption through OE distorted sensing. The
stateful resource categorization, OE, and OETP are all novel in multiagent systems research.

To solve the OETP, we proposed a novel decision theoretic solution called the OE POMDP
which models the active perception sequential decision process of selecting sensing actions
that change resource state and produce knowledge refinement as a POMDP. This approach
follows from our mathematical formulation of the OETP. Since a priori knowledge about the
relationship between resource and knowledge state, sensing activities, and knowledge revi-
sion is generally not available to agent developers to embed within their agents, our method-
ology uses RL to solve the OE POMDP in both fully and partially observable environments.

To investigate the OE and validate our methodology, we conducted experiments in
MineralMiner, a Tileworld [38] variant where an intelligent agent searches for mines con-
taining rare minerals in an unexplored space. In our experimental results considering both
fully and partially observable resource state, we discovered that our methodology (1) learned
to improve the knowledge refinement provided by sensing, (2) balanced current versus future
refinement to improve long-term behavior, and (3) exploited the relationship between sensing
and task performance to boost task performance by improving sensing. Further, our solution
still achieved good knowledge refinement even when the OE was not present, demonstrating
that it can improve sensing performance in a wide variety of environments. Additionally, we
also compared various RL/PORL algorithms to explore their advantages and disadvantages
for solving the OE POMDP, finding that discrete algorithms performed better overall than
continuous in the fully observable experiments, whereas model-free generally outperformed
model-based regardless of observability. Thus, now that we have explored the OETP, we have
(1) better insights into this challenging and important problem, (2) an effective solution with
ideas for further improvement, and (3) a test bed environment for further research. Overall,
this is key contribution to better understanding agent sensing in real-world environments with
complex challenges where the OE is most likely to be present.

Based on this research, we have identified several avenues for future work. First, we
plan to conduct further experiments proposed in the results analysis (Sect. 6) to improve
our methodology and better understand the OE and its influence on knowledge refinement.
Specifically, we are most interested in studying how the planning horizon and myopic ver-
sus non-myopic reasoning affect the ability of the agent to solve the OETP through our
POMDP-based methodology since we have observed evidence that this solution character-
istic appears to play an important role in the ability of the agent to manage resource state.
Second, we also want to incorporate other areas of recent research into our methodology,
including factoring in natural changes in resource state not influenced by agent actions, sim-
ilar to work by [13], which modeled changes in resource quantity (but not behavior) using
MDPs and competitive game theory in the context of resource harvesting in environmental
sustainability. Next, we also want to extend our work to more multiagent cooperative sensing
control, including investigating the potential use of decentralized MDP/POMDP models [6]
for our methodology. Finally, we wish to move our research out of simulation and into real-
world applications, including avoiding and mitigating user frustration during human-agent
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interactions in an intelligent user interface supporting collaborating researchers in the Bio-
finity Project (http://biofinity.unl.edu).
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