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ABSTRACT
Within cognitive science and cognitive informatics, computational modeling based on cognitive architectures 
has been an important approach to addressing questions of human cognition and learning. This paper reports 
on a multi-agent computational model based on the principles of the Unified Learning Model (ULM). Derived 
from a synthesis of neuroscience, cognitive science, psychology, and education, the ULM merges a statisti-
cal learning mechanism with a general learning architecture. Description of the single agent model and the 
multi-agent environment which translate the principles of the ULM into an integrated computational model 
is provided. Validation results from simulations with respect to human learning are presented. Simulation 
suitability for cognitive learning investigations is discussed. Multi-agent system performance results are 
presented. Findings support the ULM theory by documenting a viable computational simulation of the core 
ULM components of long-term memory, motivation, and working memory and the processes taking place 
among them. Implications for research into human learning, cognitive informatics, intelligent agent, and 
cognitive computing are presented.
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1. INTRODUCTION

Human learning in the sense of knowledge 
storage, exchange, and retrieval is an increas-
ingly important topic in many areas of science. 
Fields such as neuroscience, cognitive science, 
psychology and education are engaged in the 
study of how humans acquire knowledge and 
develop skill and expertise. Modeling and un-

derstanding human learning is especially salient 
in the emerging fields of cognitive informatics 
(Wang, 2007; Wang et al., 2010; Wang, Widrow, 
et al., 2011) and cognitive computing (Wang, 
2009a; Wang, 2011; Wang et al., 2010). Cogni-
tive informatics is a transdisciplinary inquiry 
bringing together computer science, information 
sciences, cognitive science, and intelligence 
science to investigate and understand the in-
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ternal information processing mechanisms and 
processes of the brain and natural intelligence 
(Wang, 2007). Learning is clearly central to this 
effort as most human thought and behavior that 
could be described as intelligent emerges from 
knowledge and behavior that was learned either 
directly or through experience (Wang, Kinsner, 
& Zhang, 2009). This learning is realized in the 
brain through neural plasticity which produces 
the micro-architecture of neuron connectivity 
(Kandel, Schwartz, & Jessell, 2000); Shell et 
al., 2010). A goal of cognitive informatics is 
to inform cognitive computing; the emerging 
paradigm of intelligent computing methodolo-
gies and systems based on cognitive informat-
ics that attempts to implement computational 
intelligence by mimicking the mechanisms of 
the brain in cognitive computers (Wang, 2009a; 
Wang, 2011). Clearly, cognitive computers 
would benefit from being able to learn in ways 
similar to those which underlie neural plasticity.

Recently, an interdisciplinary team of 
researchers in psychology, education, and 
teaching published a comprehensive learning 
theory derived from a synthesis of research in 
cognitive neuroscience, cognitive science, and 
psychology: the Unified Learning Model or 
ULM (Shell et al., 2010). The ULM has begun 
to influence thinking and practice in fields 
such as scholarship of teaching and learning 
(Wilson-Doenges & Gurung, 2013), situated 
cognition (Durning & Artino, 2011), pedagogy 
(Nebesniak, 2012), and cognitive function 
(Wasserman, 2012).

Learning in ULM results from the interac-
tion of three cognitive components: long-term 
memory, working memory, and motivation. 
Long-term memory (or LTM) is the relatively 
permanent store of knowledge possessed by a 
person. In the ULM, knowledge refers to the 
totality of what a person knows. This includes 
factual and conceptual knowledge sometimes 
referred to as declarative knowledge, cognitive 
and behavioral skills sometimes referred to as 
procedural knowledge, episodic knowledge of 
personal experience, and sensory or perceptual 
knowledge. Long-term memory for declarative 
and procedural knowledge resides in the cortex 

with procedural knowledge involving primarily 
the sensory-motor cortical regions and cerebel-
lum. Sensory/perceptual, linguistic, and number 
knowledge generally resides in specialized 
modular processing areas (Kandel et al., 2000).

Working memory (or WM) is the term for 
the currently active part of cognition. Brain 
areas such as the forebrain and hippocampus 
have been implicated in working memory func-
tioning (Kandel, Schwartz, & Jessell, 2000), 
however, working memory is better thought 
of as a process than an anatomical location. 
Two aspects of working memory affect learn-
ing. The first is capacity limitation, which is 
thought to be somewhere around 4-7 elements 
(Saults & Cowan, 2007). Elements, however, 
can be chunks, that increase functional working 
memory capacity. The second aspect is atten-
tion (Knudsen, 2007). Central to the ULM is 
the proposition that attention is a necessary 
precondition to learning. Only attended knowl-
edge in working memory can add to or change 
knowledge in long-term memory.

The final ULM component is motivation. 
Motivation derives both from biological compo-
nents like drives (e.g., hunger) and emotions and 
from cognitive components such as goals and 
beliefs (Schunk & Zimmeman, 2008; Shell et 
al., 2010). The ULM holds that these motivators 
are intimately connected to working memory 
and direct attention such that knowledge in 
working memory is attended only when there 
is motivation to attend to it.

Within long-term memory, connections 
between neurons are strengthened and weak-
ened through neural plasticity that follows a 
Hebbian learning process (Kandel et al., 2000; 
Caporale & Dan, 2009). The basic ULM learning 
mechanism merges Hebbian neural plasticity 
with statistical learning. In the ULM, knowledge 
in long-term memory is built when distinct 
pieces of knowledge, either from sensory input 
or retrieved from long-term memory, that are 
held simultaneously in working memory are 
attended, connected, and stored as chunks in 
long-term memory. The connections in these 
chunks continue to strengthen or decay depend-
ing on repetition due to knowledge retrieval 
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via pattern matching and spreading activation 
throughout the chunk. As with findings in neural 
studies (Caporale & Dan, 2009), this repetition 
causes knowledge chunks in long-term memory 
to ultimately reflect statistical regularities pres-
ent in the knowledge being learned.

Within cognitive science, computational 
modeling has a long history as a method for 
testing theory about human cognition (Mc-
Clelland, 2009). Although modeling cannot 
prove a theory, it can provide evidence that the 
theory is at least plausible (McClelland, 2009). 
The authors of the ULM argued that the core 
learning mechanisms of the ULM were poten-
tially computational; but they did not derive a 
computational model in their work. The work 
reported here has been directed at creating a 
computational model of the ULM (called C-
ULM) to test of the viability of the learning 
mechanisms proposed in the ULM.

We have developed a multi-agent-based 
simulation in which each single agent learns 
in accordance with the ULM model. Each 
single agent has a cognitive architecture that 
consists of the three main ULM components: 
long-term memory containing knowledge, 
working memory, and motivation. Knowledge 
in long-term memory is represented as an un-
directed, weighted graph where nodes indicate 
knowledge concepts and weighted edges—with 
a certainty measure on each weight—indicate 
a quantified connection between two concepts. 
Motivation is computed for each concept and 
is a function of the certainty that an agent has 
towards the weights for connections involv-
ing the analyzed concept and the value of the 
concept for solving a task. Working memory is 
the buffer that is filled with units of knowledge. 
Two types of units are considered: singleton 
concepts and concept chunks (i.e., a groups of 
connected concepts).

Within the C-ULM, we have also articu-
lated several aspects of learning and teaching 
both conceptually and algorithmically. First, 
agent communication is grounded on the actions 
of teaching and learning and has at its core, 
algorithms that perform the processes of (1) 
allocating working memory for teaching and 

learning and (2) using the working memory 
content to update the knowledge of a learner 
or a teacher. Second, a feature of the learning 
process is represented by the spread activation 
factor, which guides how the certainty for the 
weights of all connections reachable from 
a starting connection is to be updated. The 
amount of change in certainty for a connec-
tion is inversely proportional to the distance 
between this connection and the starting con-
nection. Third, in C-ULM, knowledge decay 
(or, simply put, forgetting) is triggered when 
connections do not enter working memory for 
a given number of simulation time steps. The 
decay consists in increasing the uncertainty for 
the involved connection weights. Fourth, agent 
behavior is problem solving based and directed 
at completing tasks which require specific pat-
terns of knowledge connections. Agents must 
possess the requisite connected knowledge with 
adequate certainty to attain a task.

Our contributions can be considered from 
two perspectives. From the cognitive infor-
matics and cognitive modeling perspectives, 
C-ULM advances the literature by providing 
the first computational simulation of learning 
that incorporates the ULM components of long-
term memory, working memory, motivation and 
the relationships among them into an operative 
modeling framework. The C-ULM incorporates 
the more sophisticated ULM learning processes 
that are more closely tied to human neural 
learning than current reinforcement learning 
(Kawato, & Samejima, 2007), back propaga-
tion (McClelland, 2009), and Bayesian methods 
(Goodman, Ullman, & Tenenbaum, 2011). From 
the multi-agent cognitive computing perspec-
tive, C-ULM could benefit cognitive computing 
research and development at two levels. First, 
the intelligence of individual agent reasoning 
can potentially be improved by the incorpora-
tion of the learning functions and relationships 
among long-term memory, motivation and 
working memory represented in the C-ULM. 
Second, C-ULM can allow incorporation of 
human teaching and learning processes into 
agent-to-agent knowledge transfer leading 
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to more efficient agent learning and human-
computer interactions.

Note that this paper is an extension of a 
previously published conference paper with the 
same title (Chiriacescu, Soh, & Shell, 2013).

2. RELATED WORK

One particularly relevant work in cognitive 
informatics is that by Tian, Wang, Gavrilova, 
and Ruhe (2011). They describe and propose 
a formal knowledge representation system 
(FKRS) based on the object-attribute-relation 
(OAR) model and its concept algebra (Wang, 
Tian & Hu, 2011). It uses as a linguistic base 
the well-known WordNet and is comprised of 
three main components: concept formation, 
conceptual knowledge representation and 
knowledge visualization. FKRS and OAR are 
examples of semantic level symbolic models 
(McClelland, 2009). They model knowledge 
in linguistic and language terms. The C-ULM 
operates at a level more similar to a connection-
ist model. The learning processes of the ULM 
that are modeled in C-ULM are not language 
or symbol based. They reflect statistical Heb-
bian neural learning process. These are more 
elemental than symbolic language. As discussed 
by McClelland (2009), these approaches differ 
but are complementary rather than antagonistic.

The FKRS can prove helpful in obtain-
ing a more structured representation of the 
knowledge that is being learned. The ULM 
argues that knowledge in the brain comes to 
reflect statistical regularities in the informa-
tion being learned. FKRS provides a rigorous 
description of the properties of concepts. This 
could provide guidance as to what statistical 
regularities exist in the knowledge by describ-
ing specific attributes and objects pertaining to 
a given concept. An important connection can 
be established between the OAR model and the 
C-ULM knowledge representation. In the OAR 
model, there are networks of objects, attributes 
and relation that connect objects and attributes 
forming networks of objects and attributes. Of 
note, those objects and attributes are seen as 
partially connected (and not fully connected) in 

a similar fashion as knowledge is represented 
in C-ULM. Thus, the C-ULM concepts could 
correspond to OAR’s objects and the relations 
between them represented by C-ULM’s con-
nections. Furthermore, C-ULM allows for a 
large variety of relations given the relative 
connection strength indicated by the connection 
weight value. As future work, attributes can be 
incorporated within C-ULM concepts or as an 
alternative, concepts can represent attributes 
that form specific chunks that in turn represent 
corresponding OAR objects.

Another important cognitive informatics 
connection can be made between the C-ULM 
architecture and the layered reference model of 
the brain (LRMB) (Wang & Chiew, 2010; Wang, 
Wang, Patel, & Patel, 2006). The LRMB is a 
formal, layered model of cognitive processes in 
the brain. In this model, the brain has 7 seven 
abstraction layers of processes with primitive 
processes operating at the sub-conscious level 
and higher cognitive functions such as learning, 
problem solving and decision making operat-
ing at the conscious level and relying on the 
mechanisms of previous levels. The distinc-
tions between sub-conscious and conscious 
levels mirror other recent formulations such 
as Kahneman’s (2011) System 1 and System 
2. The LRMB is a process oriented model. 
The ULM (Shell et al., 2010) is a knowledge 
oriented model. In the ULM, all process dis-
tinctions are seen as distinctions in knowledge 
with knowledge including all forms of data 
contained in the brain from sensory informa-
tion to higher-order skills. Although the ULM 
recognizes that different brain areas, such as 
sensory memory modules or the motor cortex, 
have different outputs similar to the abstraction 
layers of the LRMB, the ULM holds that within 
the range of what that particular area is capable 
of outputting, its outputs are the results of neural 
plasticity learned via the ULM principles. From 
the perspective of the ULM, the distinctions 
represented in the LRMB reflect differences in 
the types of knowledge that different parts of 
the brain/cognitive system are encoding. Sen-
sory memory modules are encoding statistical 
regularities in low level data associated with the 



Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Cognitive Informatics and Natural Intelligence, 7(4), 1-25, October-December 2013   5

sense. Language modules are encoding statisti-
cal regularities in the language. The functional 
model of the LRMB reflects a general informa-
tion processing approach to cognition. The ULM 
shares this approach. However, the ULM merges 
the LRMB functions of short-term memory 
and natural intelligence (NI-OS and NI-APP) 
into a single working memory consistent with 
much recent thinking (Saults & Cowan, 2007). 
The ULM also merges all sensory, motor, and 
general cognitive functions into a single long-
term memory. This makes the C-ULM a much 
simpler computational model than LRMB. It 
may be that the observable outputs of the natural 
intelligence of the brain are better modeled by 
something like the LRMB and the acquisition 
of the knowledge that produces that intelligence 
is better modeled by something like C-ULM. 
Whether this is a fruitful approach needs to be 
established in future research.

Because the C-ULM architecture reflects 
these ULM consolidations of knowledge and 
working memory, many LRMB levels and 
processes are represented within the C-ULM. 
For example, Layer 1, Sensation, is represented 
by concepts received by a learning agent in 
C-ULM. Those stimuli enter the second layer 
through the short-term memory (STM), which is 
akin to the working memory in C-ULM. Layer 
4, Perception, has two important modules: atten-
tion and emotions. The first module, attention 
is modeled within C-ULM by the use of the 
awareness threshold that filters what enters into 
short term-memory. The second module, emo-
tions, is modeled to a certain degree in C-ULM 
by the motivation concept and motivation scores 
for concepts. Furthermore, as meta-cognition 
processes, we model the search module of Layer 
5 (Meta-Cognition) when we do breadth-first 
search to find the appropriate concepts that will 
be retrieved for teaching or updated for learn-
ing. The memorize module of Layer 5 is further 
characteristically represented by the acquisition 
of new connections and also by the update of 
connection weights in C-ULM. Furthermore, 
the C-ULM’s chunking process—an important 
process in ULM—leads to an ever increasing 
efficientization of the way STM is being used 

in the learning process. A chunk represents a 
network of concepts that are more related to each 
other than to other concepts. From a knowledge 
representation point of view, the chunk is a 
higher, more abstract level of knowledge that 
is a synthesis of individual concepts. Thus the 
C-ULM’s concept of chunking can be related 
to the LRMB’s modules of Abstraction and 
Synthesis found at Layer 5 (Meta-cognition) and 
Layer 6 (Meta-inference). C-ULM also models 
the interaction happening at the top LRMB layer, 
between the learning and the problem solving 
processes. Thus, more learning steps enhance 
problem solving and in turn, solved problems 
lead to new learning experiences (coming from 
the knowledge obtained by solving the task).

There are additional parallels between C-
ULM and the LRMB based problem solving 
model proposed by Wang and Chiew (2010). 
Within C-ULM, problem solving happens 
through the process of attempting and solving a 
task. Just as in Wang and Chiew (2010), solving 
a problem requires a set of representation and 
search operations. Within C-ULM, the repre-
sentation operations are those operations that 
alter the long-term memory (LTM) structure of 
an agent (acquiring new connections and in the 
latest version, also pruning extremely unused 
connections). On the other hand, the search 
operations are those operations that, taking into 
account agent knowledge but also task feedback 
update both the LTM structure and connection 
weight values. These series of structure and 
weight updates are essentially searching through 
the problem space in order to find the suitable 
configuration of connections and weights that 
leads to solving the task.

In relation to the cognitive informatics 
model of memorization proposed by Wang 
(2009b), the C-ULM shares a focus on repeti-
tion and connection or relation as the primary 
learning processes. As noted previously, the 
OAR model that Wang uses operates at a sym-
bolic level and the C-ULM is a statistical based 
model. Also, the C-ULM in merging short-term 
memory into a more general working memory 
and merging various Sensory Buffer Memory 
(SBM), Conscious-Status Memory (CSM), 
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Long-Term Memory (LTM), and Action-Buffer 
Memory (ABM) from Wang into a single Long-
Term Memory. Wang’s memorization model 
is intended to apply to one specific type of 
cognitive process from the LRMB model. The 
C-ULM is meant to apply to all learning of all 
of the knowledge included in the LRMB model, 
making C-ULM a more general statement of 
how knowledge is acquired across all brain and 
cognitive components.

Recent work in cognitive informatics has 
focused on motivational regulators that perform 
roles similar to C-ULM motivators. Rosales, 
Jaime, and Ramos (2013) introduced an emo-
tional regulation model having two main com-
ponents, i.e., emotional response and emotional 
regulation. When the virtual agents respond to a 
risk situation, their emotions could influence the 
decision-making process adversely. The emo-
tional regulation process helps them to ignore, 
regulate or use their emotions. The regulation 
component consists of two modules—namely, a 
reappraisal module and a suppression module. 
When a virtual agent’s average of perceived 
behavior and required behavior is the same as 
the expressed behavior indicating “emotional 
response”, the suppression algorithm basically 
switches a virtual agent’s attention and ignores 
the highly affective objects—where each ob-
ject has an emotional memory, elicited in the 
agent that stored the object in the first place, 
for example—in the scene.

Cervantes et al. (2013) introduced a moral 
decision making (MDM) model for agents based 
on ethical, moral, and religious principles as well 
as on individuals’ beliefs of right and wrong, 
feelings, and emotions. The computational 
process of this model consists of 3 phases: 
(1) assessment of options including filtering 
using a set of moral and ethical rules based on 
experiences, prejudices, emotions, cost-benefit 
analysis and moral evaluation, (2) execution 
of the selected option by which it is sent to 
the working memory and new execution plans 
are generated in a planning process, and (3) 
outcome evaluation where the executed actions 
are further evaluated. This MDM model pro-
vides a potential set of additional motivational 
considerations that could be incorporated into 

C-ULM. Clearly, human teaching and learning 
have moral and ethical dimensions. Learning 
and teaching of C-ULM could consider moral 
and ethical rules in decisions about what to 
teach and what not to teach, or what to learn 
and what not to learn. The above 3-step com-
putational process could potentially inform 
C-ULM in deciding what learning and teaching 
tasks to perform, evaluating the outcomes, and 
reinforcing the decision. C-ULM only consid-
ers the knowledge being shared in a teaching 
interaction and the knowledge required for task 
completion.

In the ULM, Shell et al. (2010) propose that 
all motivators impact learning via motivation 
and attention direction in working memory. 
Other processes like morals, ethics, and emo-
tions clearly impact human behavior including 
learning. Currently, C-ULM only models two of 
these motivators: self-efficacy and expectancy/
task reward. These were chosen because they 
have consistently been found to be among the 
strongest motivators in prior studies (Schunk 
& Zimmerman, 2008; Shell et al., 2010). Also, 
as discussed in Shell et al. (2010), self-efficacy 
and expectancy/task reward have the most 
clear neurological foundations of the available 
motivational constructs. But, future work needs 
to expand the scope of motivational influences 
to include the types of moral and emotional 
factors noted by Cervantes et al. (2013) and 
Rosales et al. (2013).

Within the cognitive modeling domain, a 
number of computational models have been 
published in the last few years that integrate 
one or two of the three main ULM components. 
One of those works (Jones, Gobet, & Pine, 
2008) focuses on children’s developmental 
change that occurs by increases in long-term 
knowledge and working memory capacity. 
The Elementary Perceiver and Memorizer-
Vocabulary (EPAM-VOC) is a phoneme se-
quence learner that takes speech in phonemic 
form as input and builds a hierarchical network 
of phoneme sequences (or “chunks”) that rep-
resents long-term knowledge of the linguistic 
input. Learning in this model is performed by 
constructing directed graphs where each arrow 
indicates additional information that is added to 



Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Cognitive Informatics and Natural Intelligence, 7(4), 1-25, October-December 2013   7

the content of the source node in order to derive 
the content of the destination node. The model 
is useful in assessing the individual influence 
of long-term knowledge and working memory 
increases in child development. As compared 
to this model, the C-ULM also incorporates 
the motivation component thus obtaining a 
more integrative model of human knowledge 
evolution and exchange. Furthermore, C-ULM 
uses a knowledge graph that is weighted, thus 
enabling the representation of concepts with a 
varying degree of relatedness.

Another recent computational model fo-
cuses on achievement motivation for artificial 
agents (Merrick, 2011). It relies on Atkinson’s 
Risk-Taking Model (RTM) and is shown to ex-
hibit similar goal selection features to humans. 
In this model, the motivation to approach a task 
grows stronger as the probability for succeeding 
at the task increases. As compared to this model, 
the C-ULM motivation component is based on 
two factors: (1) an intrinsic factor that relates 
motivation directly to the notion of knowledge 
by the use of a certainty measure on each con-
nection weight and (2) an extrinsic factor that 
ties motivation to the reward-based feedback 
obtained from solving tasks.

In C-ULM, the agent learning results in 
long-term memory updates that consist of 
changes in the connection weights and the 
certainty measures associated to those weights. 
Similar to our certainty measure update formula 
is the delta-rule used in Ramscar and Yarlett 
(2007) for updating the association strength 
between the semantics and phonology of a noun 
item. Of note, the mentioned work includes in 
the update amount for association strength a 
spread activation parameter s that resembles 
the spread activation factor that C-ULM uses in 
updating long-term memory certainty measures. 
In contrast to this work, C-ULM also includes a 
motivation related factor in the update formula 
for association strength between two concepts.

From a cognitive-theoretic viewpoint we 
are supporting the idea emphasized in Chater 
and Brown (2008) that a combination of rather 
simple but general cognition principles could 
explain apparently complex mental phenomena 

(such as the mental process of learning to solve 
complex tasks). In the case of C-ULM, these 
principles involve a relatively simple cognitive 
architecture of three primary components and 
application of statistical learning mechanisms.

Within the modeling (Kawato & Samejima, 
2007) and multi-agent systems (Watkins, & 
Dayan, 1992) fields, one of the widely used 
paradigms is the reinforcement learning (RL) 
approach. One of the most important aspects of 
RL algorithms is the trade-off between explora-
tion of unknown territory and exploitation of 
current knowledge. In the C-ULM, this trade-
off is mainly exhibited by tuning the certainty 
measure associated to each knowledge weight 
through the complementary processes of learn-
ing and knowledge decay. The RL-inspired 
balance between exploration and exploitation 
is also used in the C-ULM through the process 
of task feedback—if an agent solves a task, the 
certainty measures associated to the involved 
knowledge connections are updated similar to 
the learning process (the agent learned how to 
solve the task); if an agent fails to solve a task, 
associated certainty measures are updated simi-
lar to the forgetting process (the agent starts to 
forget ways of attempting the task that proved 
unsuccessful).

Finally, although the C-ULM is based 
on neurological principles as described in the 
ULM, it is not proposed as a direct computa-
tional model or simulation of the brain or neural 
functions such as the Spaun project (Eliasmith 
et al., 2012). The C-ULM, however, is meant 
to be more faithful to the principles reflected 
in neural plasticity than a project such as Wat-
son (Ferrucci et al., 2010). Although Watson 
incorporates some ULM ideas such as long-
term memory, working memory, confidence, 
probabilistic retrieval, and motivation, Watson 
is not meant to model how these components 
work in humans. Importantly, while Watson 
does make new knowledge connections, those 
connections are created within its long-term 
memory; Watson does not learn or acquire its 
initial long-term memory knowledge; it only 
reconnects already present knowledge.



Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

8   International Journal of Cognitive Informatics and Natural Intelligence, 7(4), 1-25, October-December 2013

3. AGENT MODEL AND 
MULTIAGENT FRAMEWORK

In this section we present the single agent model 
and the multi-agent environment used in the C-
ULM simulation, showing how we “translate” 
the ULM into an integrated computational 
model. In section 3.1 we present the three 
components, learning principles, and learning 
processes as they are outlined by the Unified 
Learning Model. The single-agent model and 
the relationships between long-term memory 
knowledge, motivation and working memory 
are described in section 3.2. In section 3.3 we 
focus on the interactions that take place among 
agents, i.e., the actions of teaching and learn-
ing. Finally, section 3.4 presents agent tasks 
and the interaction taking place between an 
agent and a task.

3.1. Unified Learning Model (ULM)

Central to the Unified Learning Model (ULM) 
is the idea that all learning takes place in three 
primary components: (1) long-term memory 
which contains long-term knowledge, (2) 
working memory (WM) which receives 
knowledge retrieved from long-term memory 
and processes incoming sensory input, and (3) 
motivation which directs the agent’s attention 
within working memory. These components 
encompass the basic cognitive architecture of 
the C-ULM computational model. The inter-
actions between these components reflect the 
ULM’s three principles of learning: (1) Learning 
is a product of working memory allocation; (2) 
Working memory’s capacity for allocation is 
affected by prior knowledge (chunking); and 
(3) Working memory allocation is directed by 
motivation. Operations within the architecture 
follow three ULM learning processes: (1) 
New learning requires attention; (2) Learning 
requires repetition; and (3) Learning is about 
connections.

Taken together, these three learning pro-
cesses operating within the architecture of the 
ULM are sufficient for creating a complete 
computational model of learning that generates 

a detailed information flow in each individual 
agent and in the multi-agent system as a whole. 
The following subsection describes in detail the 
computational adaptation for each of the three 
primary architectural components.

3.2. Single-Agent Model

3.2.1. Long-Term Memory

Long-term memory is modeled as an undirected, 
weighted graph where nodes represent knowl-
edge concepts and weighted edges represent a 
quantified connection between two concepts. 
Initially, agents do not have the necessary 
knowledge to solve a task but in some cases 
they might have a ‘vague idea’ of how to solve 
the problem. Key to modeling of the knowledge 
component is measuring the vagueness for each 
particular edge weight. This is realized by as-
signing a certainty measure called confusion 
interval to each edge weight. This interval is 
bounded and its length indicates how certain is 
the agent regarding the associated weight. For 
example, if the length is very small, the agent is 
quite certain about the weight of the edge and it 
has a solid knowledge about it. When an agent 
has to solve a task or teach another agent about 
a given connection weight, the agent will use a 
weight randomly generated from the associated 
confusion interval. The center of this confusion 
interval is also the edge weight.

Figure 1 presents an example of an agent’s 
LTM. Next to each LTM connection is the 
confusion interval corresponding to that con-
nection. The second value (bolded in Figure 1) 
in the confusion interval represents the interval 
center (or midpoint) and the edge weight. The 
other two values represent the minimum and 
the maximum values of the confusion interval. 
The lower bound on the minimum value is 0 
and the upper bound on the maximum value is 
1. As discussed later in this section, both the 
edge weight and the length of this interval are 
updated during the learning process (Equa-
tions (2), (4) and (7)). Specifically, the edge 
weight can move in both directions, towards 
0 or 1. The length of the confusion interval is 
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shortened by the learning process (Equation (2)) 
and it is increased by the process of knowledge 
decay (Equation (7)). The confusion interval 
instantiates the statistical learning inherent in 
the ULM learning process of repetition. As in 
Hebbian learning for neural synapses, LTM con-
nections in C-ULM strengthen with repetition 
and weaken (decay) with disuse.

3.2.2. Motivation

We use the notion of motivational scores to 
model the motivational component of the archi-
tecture. Each concept found in agent LTM has a 
motivational score associated with it. A higher 
score reflects a higher motivation for teaching 
or learning about the associated concept while 
a lower score indicates a lower motivation 
related to that concept. This score is a function 
of: 1) the underlying confusion intervals for the 
connections that contain the concept, and 2) 
the expected rewards for the tasks that use the 
concept, as shown in Equation (1):

m
l

R
X

A t

SC XY

A t
k T

k

X X

( )

∈
( )

∈
∑ ∑



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




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. 	 (1)

where X is a concept in agent A’s LTM; m
X

A t( )  
is the agent A’s motivational score for concept 

X at time step t; SC
X

 is the set of concepts 
connected to concept X; XY is the edge con-
necting concepts X and Y;  l

XY

A t( )  is the length of 
agent A’s confusion interval for edge XY at time 
step t; T

X
is the subset of tasks that require 

concept X; and R
k

 is the reward for task k . 
The rationale behind this formula is to allow 
two types of motivators that exist at the archi-
tectural level of ULM (Shell et al., 2010): an 
intrinsic one that captures the notion of self-
efficacy, i.e., length of confusion intervals, and 
an extrinsic one similar to reinforcement learn-
ing (Watkins & Dayan, 1992) that assesses the 
expectancy of possible rewards available when 
using the concept for solving tasks.

3.2.3. Working Memory (WM)

Similar to the LTM component, WM is also 
represented using a weighted graph. The differ-
ence is that it has a capacity which indicates the 
maximum number of concepts (or knowledge 
chunks) allowed in the WM graph. WM alloca-
tion is part of the learning and teaching actions 
and thus is a part of the agent communication 
protocol. In order to realize WM allocation, we 
introduce the concept of awareness threshold 
(AT). This threshold indicates how aware the 
agent is of external and internal stimuli. If a 
stimulus has an intensity that is higher than 

Figure 1. LTM with concepts A, B, C, D. On each edge is outlined the associated confusion interval.
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this threshold, the agent becomes aware of 
that stimulus and consequently it allocates a 
WM slot for that stimulus. In our modeling, 
the concepts are the stimuli, and the motiva-
tional scores represent the stimulus intensity 
for the associated concept. Thus, the awareness 
threshold dictates what is attended, within the 
general architectural principle that motivation 
directs WM allocation.

3.2.4. LTM Update and 
Spread Activation

After WM is allocated, the WM content in-
dicates how to update the long-term memory 
of a learning or teaching agent, based on the 
statistical learning principles embodied in the 
ULM learning process of repetition. In the case 
of a learning agent, this step updates both the 
confusion interval centers of LTM connec-
tions corresponding to WM connections and 
the confusion interval length of the same con-
nections. In the case of a teaching agent, only 
the confusion interval length is updated since 
a teaching agent only reinforces its existing 
knowledge without receiving new information 
about the task weights. The formula for updating 
a learning agent’s confusion interval center 
is given by Equation (2):

w

cic f X WM m f Y WM m w
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where  w
XY

L t( ) and w
XY

L t−( )1  are the learning agent 
confusion interval centers for edge XY  during 
simulation time steps t  and t −1 , respec-
tively;  m

X

L t( )  and m
Y

L t( )  are the learning agent’s 
motivational scores for concepts X  and Y  at 
time step t;  w

XY

T t( )  is the instantiated weight 
value for edge XY  communicated by the 
teacher via a weighted sub-graph at time step 
t; cic is a learning coefficient that influences 
how much the confusion interval’s center moves 
towards the weight communicated by the 
teacher (w

XY

T t( ) ) and   f is a function that returns 

0 or 1 based on whether the given concept is 
currently present in the given WM. Function f 
is described by Equation (3) below:
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The mechanism for updating a learning 
or teaching agent’s confusion interval length 
for a given connection x is given by Equations 
(4), (5) and (6):

l l sf mf cil
x
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where l
x

A t( )  and l
x

A t−( )1  are the confusion interval 
lengths for agent’s A connection x (connected 
by a graph path to connection c) at time steps 
t and t-1 respectively; sf  is the spread factor 
(defined by Equation (5)); mf  is the motivation 
factor (defined by Equation (6));  cil  is a learn-
ing coefficient that influences the change in the 
confusion interval length during a simulation 
time step; � ,��d c x( )  is the graph distance from 
connection c existent in both agent WM and 
LTM to a connection x existent only in the agent 
LTM; D  is a normalization factor considered 
to be the upper-bound on the distance between 
a pair of connections in the LTM graph—that 
is, any distance greater than this value is set to 
D; m

X
 and m

Y
 are the motivational scores for 

concepts X  and Y , respectively; f  is the WM 
presence function defined by Equation (3); and 
AT  is the awareness threshold for the learner.

These equations implement a statistical 
learning algorithm where both the connection 
center and confusion interval are repeatedly 
updated. As noted in the ULM (Shell et al., 
2010), by virtue of the law of large numbers, 
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this repetitive update process should lead to 
convergence on the actual weights of the task 
connections available in the environment of 
the simulation.

Additionally, we instantiate spreading 
activation which is an architectural component 
that results from the associative nature of hu-
man knowledge (Anderson, 1983). Spreading 
activation says that if a concept is activated, 
then this activation spreads to any connected 
concept. Furthermore, the activation of all con-
nected concepts is smaller and it decreases with 
the distance from the initial concept. In C-ULM 
(Equations (4) and (5)), the update made to the 
confusion interval length of connection x reach-
able from connection c decreases as the updated 
connection x is farther from connection c.

3.2.5. Knowledge Decay

The ULM learning process of repetition says 
that repeated connections are strengthened 
but that non-repeated connections weaken. To 
accomplish this, we use a statistical learning 
algorithm that weakens long-term knowledge 
through decay. If a concept does not enter WM 
for a specified number of time steps, the concept 
is considered unused and the associated confu-
sion intervals of all connections involving that 
concept are increased. The knowledge decay 
mechanism for updating an agent’s confusion 
interval length for a connection involving an 
unused concept is given by Equation (7):

l
l e u u DF u

l u
XY

A t XY

A t r

X X

t

X

XY

A t

X

t

dec
( )

−( ) ( )

−( ) ( )=
⋅ < ≤ ⋅1

1

,

, ≤≤ > ⋅








( )u or u DF u
X X

t

X
� �

	

(7)

where X is the unused concept, Y is a concept 
(used or unused) connected to concept X, l

XY

A t( )  

and l
XY

A t−( )1  are the confusion interval lengths 
for agent’s A connection XY at time steps t  and 
t −1 , respectively; e is the natural number; 
r
dec

 is the knowledge decay rate (i.e. the rate 
at which the confusion interval grows) and is 
an experimental parameter set to a constant 

value (between 0 and 1); u
X

 indicates how 
many time steps concept X can remain unused 
without triggering knowledge decay for con-
nections involving X; u

X

t( )  is the number of time 
steps that concept X has been unused for at time 
t; DF u

X
⋅  is an upper-bound on the number 

of time steps for which knowledge decay is 
applied to connections involving concept X; 
and DF is a decay multiplication factor.

3.3. Multiagent Framework

In this section we present the agent communica-
tion and interaction protocol consisting of the 
actions of teaching and learning as illustrated 
in Figure 2. In this protocol, first, the teacher 
agent selects the concepts to be taught and al-
locates its WM for them. The concept selection 
process is done by the algorithm TeachAllocate. 
Then, the teacher agent produces the knowledge 
TK to be taught using TeachProcess. This has 
two effects. First, the teacher agent itself learns 
from the teaching as well. Thus, this leads to 
a shortening of confusion intervals for the 
connections in teacher’s LTM that correspond 
to the connections found in TK. Second, cor-
respondingly, the learner agent performs the 
algorithm LearnAllocate in order to filter the 
taught knowledge TK. The “filtered” TK (or 
FTK) resides in the WM of the learner agent. 
The learner agent then proceeds to perform 
LearnProcess, which updates the confusion in-
terval lengths and centers according to the LTM 
update process described earlier in Section 3.2.

3.3.1. Teaching

TeachAllocate has two versions: TeachAllocate-
Basic and TeachAllocateChunking. TeachAllo-
cateBasic makes sure that the concepts with the 
highest motivation scores for the teacher will 
be the ones that are being taught. First, it sorts 
in descending order all the concepts in teacher 
agent’s LTM by their motivation scores. Then it 
loops through the sorted concepts and adds all 
connected concepts to a concept list. The loop 
stops when the size of the list reaches the teacher 
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agent’s WM capacity. Of note is that it does not 
add isolated concepts—concepts without even 
a single connection—to the concept list. The 
reason for this exclusion is that those concepts 
do not contribute with any connections to the 
teaching process. The concept list serves as an 
input to the TeachProcess algorithm.

In the TeachAllocateChunking version, the 
algorithm does not allocate just one concept to 
each WM slot but instead allocates an entire 
chunk. That is, given each top concept in the 
sorted list during the loop, it uses a breadth-first 
search (BFS) to identify the knowledge chunk 
for that concept in the teacher’s LTM and then 
allocates it to the WM. Similarly, if the number 
of chunks is greater than the number of WM 
slots, we break out of the loop and the algorithm 
terminates.

The algorithm TeachProcess updates the 
confusion intervals of LTM connections that 
are used in teaching and creates the knowledge 
sub-graph that is the product of teaching. This 
sub-graph is “sent” to the learner and a part of 
it will fill the learner’s WM. It loops through 
every connection formed with concepts found 
in the TeachAllocate concept list. If the two 
concepts are connected in teacher agent’s LTM, 
the algorithm creates the corresponding edge 
in the taught sub-graph TK. Furthermore, it 
updates the confusion interval in the teacher 
agent’s LTM. In order to compute the weight 

of connections that make up the taught graph 
TK, it picks up a uniformly generated random 
value from the teacher agent’s confusion interval 
associated with the corresponding LTM connec-
tion. Of note here is that, in contrast to agent 
LTM graphs, the resulting taught graph TK is 
a weighted graph with no confusion intervals 
associated.

3.3.2. Learning

Similar to TeachAllocate, the algorithm Lear-
nAllocate has two versions: LearnAllocate-
Basic and LearnAllocateChunking. Mirroring 
TeachAllocateBasic, LearnAllocateBasic is 
used to ensure that taught concepts with a moti-
vation score higher than the awareness threshold 
AT enter the WM of the learning agent. Again, 
it sorts all connections in the taught knowledge 
graph TK and then loops through the sorted 
connection list. At each iteration of the loop it 
also checks whether the number of concepts 
added to WM is greater than the number of WM 
slots. If it is, it breaks out of the loop and the 
algorithm terminates. Otherwise, it proceeds 
to check whether at least one concept of the 
currently analyzed connection has a motiva-
tion score greater than AT. If this condition is 
met, it adds the current connection to the WM 
graph. The resulting graph represents the filtered 
knowledge (FTK) mentioned in Figure 2.

Figure 2. Communication protocol between a teacher and a learner agent
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Like TeachAllocateChunking, the algo-
rithm LearnAllocateChunking allocates an 
entire chunk to a WM slot instead of just a 
concept. If the number of knowledge chunks is 
greater than the number of WM slots it breaks 
out of the loop and terminates.

LearnProcess performs the learning 
mechanism given the concepts found in the 
WM graph. It updates the confusion interval 
centers of all LTM connections corresponding 
to WM connections according to Equation 2 
and then updates the confusion interval lengths 
of those connections according to Equation 
4. Furthermore, it also updates the confusion 
interval lengths for LTM connections that have 
no corresponding WM connection but are con-
nected to such LTM connections.

3.3.3. Chunking

Chunking is a basic mechanism of human 
memory reflecting the interconnected nature 
of neural structure (Shell et al., 2010). As such, 
in the ULM, it is an essential component of the 
learning process. Thus, the algorithms TeachAl-
locateChunking and LearnAllocateChunking in 
C-ULM implement the chunking mechanism. 
This allows us to model and test the impact of 
this aspect of human brain processing within 
the constraints of WM capacity limits.

3.4. Agent Tasks

Similar to agent LTM, a task is represented 
by a weighted graph consisting of nodes that 
represent knowledge concepts and edges 
that represent the connections between those 
concepts. In contrast to agent LTM, these con-
nections do not have an associated “confusion 
interval”. Each connection weight of a given 
task has to be matched within a certain margin 
of error by agent weights so that the agent suc-
cessfully solves the task.

3.4.1. Task Attempt

Attempting a task in the C-ULM is a 3-step pro-
cess. First, the algorithm checks for a structural 
match between agent LTM and the attempted 

task, i.e., all task connections have to exist in 
the agent’s LTM. If they do, it then checks if 
there is enough WM for processing the task. 
This is done by counting the number of task 
chunks with the BFS algorithm and comparing 
this number with the WM capacity. If there is 
enough WM, it proceeds to the final step and 
checks for a weight match between the agent 
LTM and the task. In order to check for this type 
of match, the process uses uniformly generated 
random values from the confusion intervals of 
agent LTM connections corresponding to the 
task required connections. If all the differences 
between those random values and the associated 
task required weights are below an error margin 
threshold, then the task is considered solved. 
Otherwise, or if there is insufficient WM, the 
agent failed to solve the task.

3.4.2. Task Feedback

A reinforcement learning feature that we have in-
corporated into the overall task solving process 
is the task feedback. If an agent solved a task, the 
weight centers for the agent’s LTM connections 
corresponding to the task connections are set 
to the weight values randomly picked from the 
associated confusion intervals and all confusion 
interval lengths are set to smaller values. This 
signifies that the agent has reached a higher level 
of confidence in its long-term knowledge about 
the connections involved in the solved task. 
In a similar fashion, humans also learn from 
accomplishing specific tasks, not only from 
what they are being taught by others (Shell et 
al., 2010; Wang et al., 2009). Correspondingly, 
if an agent failed to solve a task, the confusion 
interval lengths of the involved connections are 
increased. Similarly, after failing to accomplish 
a specific task, a person might explore other 
options of solving it (Shell et al., 2010; Wang 
& Chiew, 2010). In C-ULM, this exploration 
for solutions is increased by the increase of 
confusion interval lengths. Thus, in a way, 
the “rewards” for solving or failing tasks are 
integrated into an agent’s reasoning process as 
“self-efficacy”—confidence in what the agent 
knows, as in the shortening or lengthening of 
confusion intervals.
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4. IMPLEMENTATION

Our C-ULM simulation is built using Repast 
(North, Collier, & Vos, 2006). We use a time-
stepped simulation execution model and each 
simulation run is defined by a set of parameters 
that consists of the number of agents, tasks 
and concepts existent in the environment, the 
agent WM capacity, the normalization factor 
D, the number of simulation time steps, and 
the Repast random seed value. For parallel 
execution of simulations, we use a cluster-based 
supercomputer called Tusker. Tusker is a 40 TF 
cluster consisting of 106 Dell R815 nodes us-
ing AMD 6272 2.1GHz processors, connected 
via Mellanox Quad Data Rate Infiniband and 
backed by approximately 350 TB of Terascala 
Lustre-based parallel filesystem. In order to run 
multiple simulations in parallel, we divided the 
parameter file into multiple files each of which 
containing a subset of the initial set of parameter 
configurations. Then we ran the simulation 
with a different parameter file for each Tusker 
node being used. Table 1 shows the simulation 
parameters used.

5. DISCUSSION OF RESULTS

In this section we present some of our results, 
discuss the validity and utility of the C-ULM 
simulation and present the implications for ULM 
as a theory for understanding human learning 
and also the implications for intelligent agent 
research. All figures in this section (Figures 
3 – 7) present a simulation with the following 
characteristics: 20 agents in the multi-agent 
system, working memory capacity is from 3 
to 7, existing tasks have at most 30 concepts, 
spread activation factor D is 5 and the chunking 
mechanism is used.

5.1. Validity of the 
C-ULM Simulation

Our central research question was whether 
an operative computational simulation model 
could be created based on the ULM principles. 
Our answer to this question is yes. The C-ULM 
simulation parameters described previously 
have high fidelity to the principles and mecha-
nisms described in the ULM. The next question 
is whether the C-ULM accurately reflects what 
is known about human learning.

To address this, we highlight two valida-
tions of the C-ULM simulation in Figures 3 
and 4. A basic threshold for acceptance of the 

Table 1. Simulation parameters 

Simulation parameters Range of values

Working memory (WM) capacity 3 – 9

Motivation factor (mf) Strictly positive

Spread normalization factor (D) 1, 2, 3, 4, 5

Learning coefficient for the confusion interval length (cil)           0 – 0.01

Learning coefficient for the confusion interval center (cic) 0.8 – 1.2

Awareness threshold (AT) 0 – 1

Number of concepts 10, 30, 50, 100

Number of agents 10, 20

Number of tasks 3, 10, 30, 50

Confusion interval update amount for failed task attempt feedback (FF) 0.15 (constant)

Confusion interval for successful task attempt feedback (SF) 0.005 (constant)
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C-ULM as representative of human learning 
is that agent learning in the C-ULM follows 
the asymptotic learning curve typical of learn-
ing curves observed for human declarative 
(Roediger III & Smith, 2012) and procedural 
motor learning (Wifall, McMurray, & Hazeltine, 
2012). Figure 3 shows the changes in the average 
number of connections learned in our C-ULM 
simulation of human learning over the simula-
tion time for different WM capacities (ranging 
from 3 to 7). The observed agent learning fol-
lows a basic learning curve corresponding to 
those found in human studies. Also, the shape 
of the learning curve is sensitive to changes in 
WM capacity. The slower learning associated 
with lower WM capacity observed is consistent 
with human studies (Saults, & Cowan, 2007).

Figure 4 shows the corresponding changes 
in the confusion interval lengths over time for 
different WM capacities. In particular, it shows 
the emergent behavior of confusion interval 

length dropping steeply in the beginning as 
agents learn when solving tasks—decreasing 
the uncertainty in their knowledge. However, as 
time progresses, their confusion starts to creep 
back into their knowledge base as fewer tasks 
are available to be solved and remaining tasks 
are more difficult to solve, thereby being rather 
unlikely to be solved. As a result, the existing 
knowledge decay in agents starts to factor more 
prominently in changing their knowledge, lead-
ing to the lengthening of confusion intervals. 
This pattern for the confusion interval can be 
viewed as indicating initial overconfidence in 
knowledge. This corresponds to studies showing 
that people exhibit overconfidence in judgments 
that diminishes with more experience (Hans-
son, Juslin, & Winman, 2008). Also, greater 
overconfidence has been found to be associated 
with shorter WM span (Hansson et al., 2008), 
mirroring the apparently larger initial over-
confidence of agents with shorter WM spans.

Figure 3. Number of agent connections for different working memory capacities acquired over time
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5.2. Utility of the C-ULM

The C-ULM simulation is versatile because of 
its configurability. Presently, the system can 
be configured along a rich set of parameters 
(see Table 1), including key parameters such 
as (1) the number of agents in the system, (2) 
the number of available concepts required to 
solve tasks, (3) the number of tasks in the en-
vironment, (4) the WM capacity of each agent, 
(5) the spread normalization factor D when 
knowledge update is activated from a node 
propagating to other connected nodes, and (6) 
the knowledge decay rate. Here we illustrate 
a small set of possible research investigations 
that can be conducted with C-ULM in order to 
better understand cognitive learning.

•	 What is the impact of knowledge chunk-
ing? Our results show that agents without 
the ability to chunk knowledge lead to a 
slower increase—as well as a reduction—in 
the number of agent connections (Figure 5) 
and also to a lower number of solved tasks 
(Figure 6). This reflects both the ULM prin-
ciple that WM capacity is affected by prior 

knowledge as larger knowledge chunks 
lead to more knowledge being attended or 
retrieved through WM and corresponds to 
well-known findings that the greater skill 
and capability of experts is in large part 
due to knowledge chunking (Ericsson, 
Charness, Feltovich, & Hoffman, 2006).

•	 What is the impact of task complexity on 
learning? Our results show (Figure 7) that 
ULM-based agents acquire more concept 
connections when faced with more complex 
tasks. Humans also learn as they solve 
tasks and especially knowledge driven 
individuals are motivated by solving more 
complex tasks that can eventually lead to 
the acquisition of greater knowledge (Shell 
et al., 2010).

5.3. Implications for ULM 
and Cognitive Informatics

5.3.1. ULM

We believe that the findings to-date support 
that the C-ULM provides a working compu-
tational implementation of the core principles 

Figure 4. Average confusion interval length for different working memory capacities over time
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and mechanisms of ULM. Consistent with 
computational modeling as a scientific research 
method (McClelland, 2009), the demonstration 
of a viable computational model strengthens 
confidence in the theory of learning proposed 
in the ULM. The correspondence of initial 
results from the C-ULM with typical patterns 
of learning seen in human studies supports the 
plausibility of ULM learning mechanisms for 
explaining how human learning occurs. Of 
course no computational model can prove that 
a theory is correct, but as McClelland (2009) 
notes the purpose of a cognitive model is not to 
provide an exact description of the underlying 
cognitive or neurological processes; rather, the 
purpose of a model is to allow testing of the 
implications of theories about these processes.

A good model allows asking questions and 
exploring of the implications of a theory at a 
specific and detailed level. In the C-ULM, most 
agent learning parameters are adjustable. These 
include working memory capacity, spread of 
activation distance, spread of activation incre-
ment, and chunking. Also, any of the learning 
coefficients, decay rates, and other constants can 
be varied to test the implications of different 
values. At the global level, the number of agents, 
number of concepts, number of tasks, number 
of time steps, error margin on task solution, 
and task reward can be varied. The extensive 
variability available within the C-ULM allows 
for exploring a wide range of questions about 

human learning including the impacts of both 
individual differences such as working memory 
span and environmental influences such as task 
complexity and reward. Also, although we refer 
the nodes in a knowledge graph as concepts, they 
are not concepts in the everyday use of the term. 
The nodes can represent any level of abstraction 
from a neuron to an actual conceptual knowledge 
representation, allowing modeling at any level 
of the cognitive system. Similarly, while we use 
the language of a teacher and learner to describe 
the agent exchange of knowledge, the teacher 
need not represent another actual human teacher. 
The body of knowledge known to the teacher 
could represent the knowledge available in an 
environment, such as affordances.

Also, a good model of human cognition 
allows examination of questions that may be 
impractical or impossible to address in actual 
human studies. Because the C-ULM allows 
for unlimited time steps, examining the course 
of learning over a large number of trials is 
possible. This allows simulation of life-span 
learning and development which would be 
impractical to conduct with real subjects. The 
graph in Figure 4 suggests one possible life-
span application. Although it may be true that 
one never forgets how to ride a bicycle, it is 
certainly true that one’s level of proficiency 
decreases after a long period of disuse. One 
is shaky when taking up riding after a many 
year hiatus. The interplay of knowledge with 

Figure 5. Number of agent connections acquired over time for different working memory capaci-
ties (a) without chunking, (b) with chunking (same as Figure 3)
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confidence about that knowledge that can be 
examined with C-ULM provides an avenue for 
examining how proficiency is maintained over 
long periods, especially when use is irregular. 
The C-ULM also allows for examination of 
the learning of complex knowledge over time. 
It is difficult to obtain real time data, either 
behavioral or neurological, from people on the 
progress of their learning trial by trial. Most 
studies attempting real-time analysis examine 
the learning of simple knowledge, such as lists 
or word associates. Studying the development 
of meaningful expertise in a domain, which 
takes from 10-15 years (Ericsson et al., 2006), 
as a real-time phenomenon is unfeasible. The 
C-ULM, however, provides a means for exami-
nation of how complex knowledge is learned 
over a lengthy time frame, potentially shedding 
light on expertise development.

Although C-ULM outputs conform gener-
ally to the asymptotic learning curves associated 
with human learning, it is clear from C-ULM 
simulation runs that learning is not a smooth 
curve. This is somewhat apparent in Figures 3 
and 4 and is more evident when individual agent 
curves are examined. This is particularly true 
for curves depicting solved tasks as in Figure 
6. We often see individual agents stuck at a 
particular level of learned connections or solved 
tasks for a number of time steps followed by a 

jump in connections or tasks. Agents also learn 
connections at a much faster rate than they are 
able to apply them to task solution. For example, 
compare the time steps needed to learn the 
task connections in Figure 8 to the time steps 
needed to solve tasks in Figure 6. Many more 
time steps are required to implement the task 
connections than to acquire them. As shown in 
Figure 9, the learning of connection weights is 
not smooth as there are almost chaotic shifts 
within the overall trends indicated by the curves. 
These findings suggest nuances to learning. 
Knowledge connections (Figure 3) reflect what 
might typically be thought of as declarative 
or factual/conceptual knowledge (Shell et al., 
2010) or concept establishment in LRMB (Wang 
et al., 2006). Task solution (Figure 6) reflects 
something more like procedural knowledge 
or skill (Shell et al., 2010) or higher cognitive 
processes like problem solving, reasoning, or 
decision making in LRMB (Wang et al., 2006). 
The C-ULM results suggest that the shift from 
knowing (declarative knowledge) to doing (pro-
cedural knowledge) is time consuming and may 
be a considerably less straight forward process 
than often assumed. These irregularities at the 
individual agent and group levels provide guid-
ance for future investigations that can help shed 
light on the more micro processes of learning.

Figure 6. Number of solved tasks over time for different working memory capacities (a) without 
chunking (b) with chunking
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5.3.2. Cognitive Informatics

Results from C-ULM suggest three potential 
extensions of current models in cognitive 
informatics (Tian et al., 2011; Wang & Chiew, 
2010; Wang, Tian & Hu, 2011; Wang et al., 
2006). First, C-ULM allows for a more compre-
hensive modeling of learning. Because C-ULM 
does not require specifying what the nodes in 
a knowledge graph represents, C-ULM can 
model the learning and development of any 
level of cognitive knowledge as represented in 
a model such as the layered reference model of 
the brain (LRMB) (Wang & Chiew, 2010; Wang 
et al., 2006). This potentially allows for a single 
unified learning mechanism to be incorporated 
into cognitive informatics models of brain and 
cognitive processes at any hierarchical level.

Second, the C-ULM learning processes do 
not require a-priori specification of the knowl-
edge or problem-solutions being learned. As 
with neural connections, C-ULM processes ex-
pand or contract node connections and strength 

of connection (confusion intervals) as a function 
of repetition. This provides a bootstrapping 
capability as the C-ULM connections do not 
need to have any pre-programming. The ability 
to bootstrap has potential for developing more 
precise models of how humans learn from their 
interactions with the environment and other hu-
mans in the absence of pre-existing knowledge.

Finally, the C-ULM chunking mechanisms 
provide a mechanism for modeling the devel-
opment of larger interconnected knowledge 
structures and the impacts of these larger 
knowledge structures on subsequent process-
ing and storage in working memory. Although 
current cognitive informatics models such as 
OAR (Wang, 2009b; Wang et al., 2011) and 
projects such as Watson (Ferrucci et al., 2010) 
use relational and structural connections to 
make and expand knowledge units, they do 
not model chunk formation specifically. They 
especially don’t model the prior knowledge 
effect that chunking has on working memory 
capacity and processing efficiency (Shell et 

Figure 7. Number of agent connections acquired over time for different upper bounds on task 
complexities
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Figure 8. Average number of yet-to-be-learned connections as a performance metric, for different 
working memory capacities over time

Figure 9. Average weight differences between task connections and acquired agent connections 
as a performance metric, for different working memory capacities over time
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al., 2010). Incorporation of C-ULM chunking 
processes could potentially improve how larger 
knowledge structures are built in other cognitive 
informatics models.

5.4. Implications for Cognitive 
Computing and Agent Research

From the viewpoint of cognitive computing and 
computational intelligence, the contribution of 
the C-ULM to intelligent agent research is at two 
levels. One level is the modeling of individual 
agent reasoning inspired by the functions and re-
lationships between the three ULM components 
of long-term memory knowledge, motivation 
and WM; and another level is the modeling of 
multi-agent interactions and knowledge trans-
fer based on the principles of human teaching 
and learning processes. At the agent reasoning 
level, most multi-agent system efforts regarding 
modeling of human learning have been aimed 
at improving the performance of the agents and 
the multi-agent system—i.e., whether agents 
utilizing a particular human-based learning 
model improve their performance. As noted 
in discussions of cognitive computing (Wang, 
2009a; Wang, 2011), the attractiveness of using 
a human-based learning model hinges upon the 
ability to incorporate human natural intelligence 
into the agent model and the intuitive abstrac-
tion of human-to-human knowledge transfer 
behaviors in complex situations.

From a multi-agent perspective we are 
more interested in the system performance at 
solving tasks than the similarity of the learning 
curves with those derived from human studies. 
For example, the total number of solved tasks 
of the entire system is a performance metric 
(Figure 6). Another example is the average 
number of task connections yet to be learned 
by the agents in the system (Figure 8). Since a 
solved task results in its concept connections 
being learned by the solving agents, this metric 
indicates the overall task solution performance. 
Another metric (Figure 9) is the average weight 
difference between the agent weight and the task 
weight corresponding to a connection between 
the same two concepts—that is, the difference 
between what the agents collectively know and 

what the tasks require to be solved. It measures 
task effectiveness but also knowledge retention 
and refinement. These performance metrics can 
be used to analyze both local, individual agent 
reasoning and global, emergent behaviors of 
the entire system. The learning and the teaching 
processes can be varied in order to improve both 
agent efficiency and effectiveness measured by 
these metrics. The findings from these simula-
tion runs suggest that the C-ULM can facilitate 
the study of agent knowledge sharing in general 
and the development of utility functions involv-
ing agents that solve tasks in particular.

Incorporating the C-ULM into agent 
reasoning could allow researchers to investi-
gate multiagent systems that involve human 
learning, either with human agents interacting 
with each other or artificial agents working 
in tandem with their human counterparts in a 
hybrid cognitive computing environment. Also, 
although we use the term ‘concept’ for nodes, 
the ULM learning mechanisms apply to any 
type of learning (Shell et al., 2010). Therefore, 
similar to connectionist-based models, the node 
can represent any level of abstraction from a 
neuron to a semantic concept.

Furthermore, C-ULM integrates both 
intrinsic and extrinsic motivation making it a 
more flexible solution framework for solving 
complex problems. C-ULM agents are extrin-
sically motivated by the rewards that can be 
obtained by solving tasks similar to common 
reinforcement learning methods. However, C-
ULM also incorporates an intrinsic motivation 
component as dictated by the ULM framework, 
where learning is grounded a process to reduce 
confusion intervals of edge weights—akin 
to learning motivated by one’s self-efficacy, 
i.e., one’s confidence in one’s knowledge and 
expertise. Agents are motivated for acquiring 
knowledge, as well as for reinforcement.

For the multiagent learning and teaching 
field, C-ULM offers a solution on WM-level 
knowledge transfer between a teacher and a 
learner, allowing researchers to better design 
how agents decide on which knowledge to 
transfer, how to transfer, and the effectiveness 
of transfer. These decisions are neither arbitrary 
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nor domain-driven; rather they are guided by the 
specific principles of the ULM. We believe that 
this has the potential of offering an alternative for 
modeling knowledge transfer between agents.

6. CONCLUSION

In relation to our first objective, the C-ULM pro-
vides support for the learning theory proposed 
in the Unified Learning Model. The C-ULM 
implements a viable computational simulation 
of the core ULM components of long-term 
memory, working memory, and motivation and 
the processes taking place among them. Our 
results showed that the simulation produces 
learning curves consistent with observed human 
learning and generates patterns of confusion/
confidence similar to those in human studies. 
As future work, we are interested in expand-
ing and refining the C-ULM by experimenting 
with a larger parameter space, allowing for a 
variable WM and awareness threshold (Bar, 
2000), experimenting with other functions such 
as the power law for the knowledge decay pro-
cess Kahana and Adler (2002), testing against 
human behavioral and neurological data, and 
generally improving the model according to 
the ULM and other recent studies on human 
learning. We are also interested in exploring 
connections between C-ULM and emerging 
work in cognitive informatics.

From the intelligent agent perspective, the 
C-ULM simulation could prove useful in the 
research of multi-agent systems that involve 
human learning. Further, the C-ULM offers 
a general framework for knowledge transfer 
between agents. In the future, we are interested 
in exploring other types of agent interactions 
such as a one-to-many teaching and learning 
processes where a teaching agent teaches more 
learning agents in the same time step. These 
efforts will inform future developments in 
cognitive computers.
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