
Renaissance Computing: An Initiative for Promoting

Student Participation in Computing

Leen-Kiat Soh, Ashok Samal,
Stephen Scott

Department of Computer Science and
Engineering, University of Nebraska

Lincoln, NE 68588
1-402-472-3200

{lksoh,samal,sscott}@cse.unl.edu

George Meyer

Department of Biological Systems
Engineering

University of Nebraska
Lincoln, NE 68588
1-402-472-3377

gmeyer1@unl.edu

Stephen Ramsay
Department of English
University of Nebraska

Lincoln, NE 68588
1-402-472-3301

sramsay2@unl.edu

Brian Moore
School of Music

University of Nebraska
Lincoln, NE 68588
1-402-472-2537

bmoore1@unl.edu

Duane F. Shell
Department of Education Psychology

University of Nebraska
Lincoln, NE 68588
1-402-472-6981

dshell2@unl.edu

Etsuko Moriyama
School of Biological Sciences

University of Nebraska
Lincoln, NE 68588
1-402-472-4979

emoriyama2@unl.edu

William G. Thomas
Department of History
University of Nebraska

Lincoln, NE 68588
1-402-472-8318

wthomas4@unl.edu

ABSTRACT

We report on a recently funded project called Renaissance Com-

puting, an initiative for promoting student participation in compu-

ting. We propose a radical re-thinking not only of our core curri-

culum in CS, but of the role of CS at the university level. In our

conception, ―computational thinking‖ is neither easily separated

from other endeavors nor easily balkanized into a single depart-

ment. We thus imagine a CS curriculum that is inextricably

linked to other domains. Our proposed initiative covers introduc-

tory, depth, and capstone courses, targeting both CS majors and

minors. It is also aimed to develop interdisciplinary CS courses in

sciences, engineering, arts, and humanities. Furthermore, the

framework embraces collaborative learning to help improve learn-

ing.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Information

Science Education - computer science education, curriculum.

General Terms Design, Human Factors, Measurement

Keywords Interdisciplinary, Initiative, Introductory, Capstone

1. INTRODUCTION
In the narrowest sense, ―computational thinking‖ [8] is the mind-

set that students need to acquire in order to work effectively with

computational systems. More broadly, however, it is a way of

understanding the world—one that transcends mere methodology

and which is likewise transportable across a wide variety of hu-

man endeavors. Exploring the implications of this notion, and its

practical and theoretical applications, has always been the core

subject matter of CS. While physical computational systems have

changed over the decades, the fundamental habit of mind has not.

If anything, it has become more and more apparent that CS is not

about the machine.

The synopsis for the National Science Foundation’s CISE Path-

ways to Revitalized Undergraduate Computing Education

(CPATH) program notes that ―despite the deep and pervasive

impact of computing and the creative efforts of individuals in a

small number of institutions, undergraduate computing education

today often looks much as it did several decades ago.‖ On the one

hand, we regard such stasis as unproblematic, to the extent that

computational thinking, as outlined above, has remained largely

invariant throughout its history. However, we take very much to

heart a later statement, which declares that computing has broa-

dened and now ―require[s] integration of multidisciplinary do-

mains.‖ In our view, CS curricula that do not address this broa-

dening—which seek change through minor adjustments to the

languages, systems, and engineering paradigms taught to under-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee, USA.

Copyright 2009 ACM 978-1-60558-183-5/09/03...$5.00..

graduate students—do not address the ways in which computa-

tional thinking pervades life in the modern world.

We therefore propose what we consider a radical re-thinking not

only of our core curriculum in CS, but of the role of CS at the

university level. In our conception, ―computational thinking‖

(like mathematical thinking) is neither easily separated from other

endeavors nor easily balkanized into a single department. We

therefore imagine a CS program that is always inextricably linked

to other domains. We further understand these domains to in-

clude not only the subjects ordinarily thought of as cognate with

computational thinking (like bioinformatics or computational

physics), but with such notions as ―humanities computing,‖ ―arts

computing,‖ and ―music computing.‖

Our term for this new approach, ―Renaissance Computing,‖ is

intended to evoke that period of history in which computational

thinking arguably first began—a period marked by the signal lack

of hard and fast lines between subjects that has now overtaken

university curricula. We envision an undergraduate program in

which students are prepared for the challenges of any one compu-

tational domain by virtue of their exposure to multiple domains in

which computational thinking plays prominent a role.

2. Background and Rationale

2.1 How Renaissance Computing Benefits CS

Majors
CS majors will have the opportunity to apply computational

thinking skills to a plethora of disciplines that are traditionally

close to CS such as sciences and engineering as well as those that

have already become prevalent, such as arts and humanities. CS

majors will be motivated to understand the challenges in these

disciplines, and in turn, be ―forced‖ to truly drill down on domain

problems using their computational thinking skills in order to find

good solutions. Interdisciplinary problem solving and teamwork

also allow CS to bring in students of diverse backgrounds and

interests, helping our CS majors to better prepare for the real

world.

Further, we argue that exposing CS majors to topics in digital arts

and humanities also trains them on another front. Creativity and

imagination are highly valued in arts and humanities. Unlike

science or engineering-oriented applications that usually adhere to

strict specifications, problems in digital arts and humanities are

much more open-ended and at times with moving targets. There-

fore, having interdisciplinary courses such as those proposed in

Section 3 will further train our CS majors with their creative

thinking skills.

Finally, as the world becomes increasingly digital, CS graduates

will likely encounter interdisciplinary projects in sciences, engi-

neering, arts, and humanities in their careers. With our emphasis

in interdisciplinary problem solving and collaborative learning,

Renaissance Computing will better prepare our CS graduates with

the skills they need to succeed in industry. Take for example the

areas such as bioinformatics and computational biology, which

are now providing a huge playing ground for computer scientists,

where they can apply their skills to manage and exploit data. It

also provides challenges to computer scientists where new algo-

rithms need to be developed. However, collaboration between

computer scientists and biologists are often hampered due to the

lack of common language and background knowledge. This bar-

rier is becoming common in other disciplines as well. Interdiscip-

linary training of CS students in early stages of their education

would facilitate the removal of such barriers and broaden their

career paths.

2.2 How Renaissance Computing Benefits

Other Disciplines

Understanding how the proposed Renaissance Computing pro-

gram can benefit other disciplines is also critical. First, this un-

derstanding will allow us to build meaningful and engaging real-

world applications that provide interesting and yet challenging

assignments and discussions for CS majors. Second, this under-

standing will allow us to identify the specific computational think-

ing and computing skills that non-CS majors need, which in turn

help us motivate them to take more CS courses and to minor in

CS. To illustrate, let us look at today’s work in humanities.

Today’s literary scholars, historians, linguists, philosophers, and

their students have access to vast text and image resources reflect-

ing the primary objects of study in their respective fields. It is

obvious that these kinds of digital resources—distinguished not

merely by their comprehensiveness, but by their tractability—

allow one to ask questions that have literally never been asked

before, and so digital scholars in the humanities are increasingly

turning toward analysis of this material, which involves subjects

that are quite solidly in the realm of computer science and engi-

neering—including data mining, ontology-based storage, agent-

based simulation, statistical computing, and natural language

processing. Yet, few students have the skills necessary for under-

taking comprehensive analysis of these corpora as corpora, by

using them to form new kinds of questions and create new kinds

of tools. And to make matters worse, their inability to do so means

that the potential of these resources—the new tools, interfaces,

and modes of critical thinking they suggest—will undoubtedly be

left in the hands of engineers who, understandably, may have little

or no domain knowledge of the material in question. Our pro-

posed framework endeavors to create specialist engineers that can

be a part of the digital revolution by giving engineers a sense of

the problems unique to the humanities, and by giving humanists a

deeper sense of the computational. The goal is to educate a new

generation of students who are adept not merely at using tools, but

at creating them and understanding the nature and implication of

that creation.

2.3 Why Collaborative Learning
―Collaborative learning‖ is learning stemming from collaboration

that involves the construction of a solution that otherwise could

not be produced [9]. In Renaissance Computing, we emphasize

collaborative learning to yield even more significant impact in

student learning of their respective discipline-specific topics and

of their interdisciplinary problem solving and teamwork skills.

This is especially true as students of diverse backgrounds, inter-

ests, and disciplines will encounter conflicts during the joint con-

struction of the understanding process. These conflicts could lead

to improved learning [11].

Increasingly popular is the use of computer-supported collabora-

tive learning (CSCL) systems [15] to increase the likelihood of

improved learning in participants through more guided or struc-

tured collaborative learning, fueled by the advent of Web 2.0 and

the renewed opportunities for innovations in teaching and learn-

ing [2] and that today’s students learn in groups and in a social

setting more often, and they solve problems from gathering infor-

mation online more often than students of yesterday who more

likely solved problems individually from information they memo-

rized [10]. Research has shown that CSCL can provide re-

organized social contexts that promote active and on-task learn-

ing, especially when increasingly more instruction and learning

are performed online [16, 19].

However, there are reported pitfalls, such as taking social interac-

tion for granted and restricting social interaction to cognitive

processes with these CSCL systems [14] and the risk of over-

scripting CSCL systems such that they disturb the natural colla-

borative interactions and problem solving processes and increase

cognitive load on the use of the CSCL itself [5]. Thus, for our

Renaissance Computing paradigm, the primary use of CSCL is to

support and not to replace actual collaborative activities, to im-

prove student learning of their discipline-specific topics, and of

teamwork and interdisciplinary problem solving skills, and to

systematically track and support classroom management across

different courses.

3. The Basic Framework
Our basic framework of the proposed Renaissance Computing

curriculum is one that revolutionizes undergraduate computing

education for CS majors and minors, emphasizing interdiscipli-

nary course contents for introductory, middle, and capstone CS

courses, and collaborative learning activities. Figure 1 shows the

framework for CS majors, CS minors, and non-CS majors. It

includes a set of CS1 courses and a unifying CS2 course, sets of

technical electives (so-called CS depth courses), and a culminat-

ing, integrative capstone course. This design also provides us

with longitudinal stewardship over the evolution of these courses,

including tracking and assessment of student performances and

instructional content. The framework is flexible: it accommodates

regular CS majors, as well as CS minors from other departments,

and fulfills other majors’ technical elective requirements. The

capstone course also allows students of other disciplines to colla-

borate with our CS majors and minors in interdisciplinary group

projects, further exposing the students to exciting aspects of solv-

ing interdisciplinary problems. Finally, the proposed framework

is customizable by individual students, providing different path-

ways to suit student needs and interests, either as a CS major or a

CS minor. The framework will also incorporate collaborative

learning activities with interdisciplinary projects or assignments

for groups of students from different courses, allowing students of

different CS1 courses to interact, and students of different levels

(from freshmen to seniors) to interact.

3.1 The Renaissance Computing CS Courses
The CS1 “Funnel”. The proposed framework has a set of CS1

courses, each tied to a different non-CS area. Each course may use

a different programming language and have a unique emphasis.

For example, CS1-Engineering may use C or C++ as the pro-

gramming language and with assignments and examples in engi-

neering applications, while CS1-Arts may use Python, Java, or

Objective-C as the programming language, and with assignments

and examples in multimedia applications pertaining to, say, mu-

sic, dance, and digital arts. CS1-Sciences will be relevant to life

sciences (e.g., physics, chemistry, and biology) and natural re-

source sciences (e.g., geosciences and hydrology); CS1-

Humanities will be relevant to history, English, and so forth.

Each of these CS1 courses will contain the same basic core of CS

topics (a subset of those in IEEE/ACM Computing Curricula

2001), including the problem-solving paradigm of object-oriented

programming, at least covering the concepts of abstraction, encap-

sulation, and the ―object‖ view when constructing a solution.

Each CS1 course will also introduce students to the concepts of a

database and its design. CS1 will be required of all CS majors

and minors. In addition, they will be required of majors of partic-

ipating departments.

CS2. The framework has one CS2 course, to cover data structures

(e.g., stacks, queues, linked lists), other traditional CS2 searching

and sorting algorithms, and some of the more advanced concepts

of object-oriented programming: polymorphism and inheritance.

Further, OO concepts such as event-driven programming and

exception handling will be covered. CS2 will be required of all

CS majors and minors.

Depth Courses. In addition to the set of depth courses already

being offered (e.g., Bioinformatics, Data Mining, Artificial Intel-

ligence, Database Systems, and Human-Computer Interaction),

new topics such as simulation, computer visualization, embedded

systems, and autonomic computing will be considered. These

depth courses will serve as technical electives for CS majors and

minors.

Capstone Course. The proposed framework requires all CS ma-

jors and minors to take a capstone, project-based course. All

projects will be interdisciplinary in terms of the problem to be

solved and also the team members. This capstone course will also

meet an elective requirement of all majors of participating de-

partments.

3.2 Discipline Non-CS Majors
We envision the CS1 ―Funnel‖ courses as establishing a founda-

tion for broader implementation of computational thinking within

all academic disciplines. Within the Renaissance Computing

Framework in Figure 1, we anticipate that these courses will ulti-

mately be required of all students in their respective major fields.

The capstone course will become, if not required, at least a broad-

ly-taken senior elective. As a result, Renaissance Computing will

become an integral component of the University’s general core

academic requirements. While all students will take CS1 and

Figure 1. Framework of the proposed Renais-

sance Computing curriculum

most capstone, we anticipate that many of these students will take

additional CS2 and depth courses to gain additional computation-

al knowledge and skills to apply in their field, with perhaps many

pursuing a CS minor.

3.3 Technology-Based Learning Platforms
We see two specific technology-based learning platforms as criti-

cal to the implementation of Renaissance Computing courses and

the incorporation of collaborative learning activities. These tech-

nology platforms could facilitate course delivery at the university

and provide potentially cost-effective ways to disseminate and

replicate the Renaissance Computing approach at other institu-

tions.

Learning Objects. Learning objects (LOs) are small, stand-alone,

mediated, content ―chunks‖ that can be reused in multiple instruc-

tional contexts and serve as building blocks for lessons. The val-

ue of the learning object approach has been recommended by the

Department of Defense [1], business and industry [3], public

schools [7,18], and higher education [6,13]. Major strengths cited

were reusability, ease of updates and content management, custo-

mization, interoperability, and overall flexibility. Research on

LOs has also verified their instructional value [4, 17].

Because the CS1 ―Funnel‖ courses share common CS core com-

ponents, LOs would be a cost-effective and efficient way to share

this common core curriculum across the courses. As part of this

framework, we will create LOs for selected common CS core

components that will be used across the courses to test the feasi-

bility of this approach. We will also create LOs for selected dis-

cipline-specific content to determine student reactions to the LO

approach for curriculum within their discipline. The flexibility of

LOs makes them a potentially viable approach to supplement the

delivery of Renaissance Computing courses and the ultimate dis-

semination of CS1 courses to other institutions.

CSCL: I-MINDS. Collaborative learning is a foundational prin-

ciple of Renaissance Computing. To support collaborative learn-

ing, across the courses as well as the disciplines, we will utilize a

CSCL tool called I-MINDS [21]. I-MINDS employs a system of

intelligent software agents, representing individual students and

the instructor (or teaching resource in the case of an asynchronous

course or lesson). In I-MINDS, each student agent serves a stu-

dent, profiling the student’s behavior in his or her structured and

non-structured collaborative activities [12]. The student agents

exchange information to form peer groups that are compatible to

help students collaborate [22]. The instructor is supported by a

teacher agent that displays statistics of students and groups, iden-

tifies problems in group activities (for example, a student being

too dominating or too shy), and manages the Q&A sessions by

ranking questions posed by the students. Our educational studies

show that agent-mediation can help improve student performance

[20] and form more effective and efficient groups [12,22].

For this framework, we examine how to incorporate collaborative

learning into our CS1 ―Funnel‖ courses so that students of various

disciplines could interact without having to be in the same class

and students of different levels (from freshmen to seniors, and CS

majors to minors) can interact. To promote teamwork and colla-

borative learning, I-MINDS also provides a unique function: it is

one of only a handful computer-supported collaborative learning

(CSCL) systems that tracks and records all student activities

among themselves and with the teacher through its graphical user

interface. Since student participation is highly accountable

through I-MINDS, instructors would be able to better motivate

students to collaborate, which is important for our Renaissance

Computing framework.

4. PLANNED ACTIVITIES

4.1 Year 1: Planning and Development Phase
We will initiate planning activities with a one-day ―Renaissance

Computing: Curriculum Planning‖ (RC-CP) Workshop. The

objective of this workshop will be to develop a planning frame-

work for identifying course content. In addition to the project PIs,

other faculty from CS and the participating disciplines will be

invited. At the workshop, work groups will be formed for each of

the disciplines: sciences, engineering, arts, and humanities). At

the workshop, initial planning discussions in the work groups will

focus on three specific threads: (1) aspects of computational

thinking that expand the problem solving skills of students in non-

CS majors, (b) aspects of interdisciplinary problem solving that

better engage potential CS majors and prepare CS majors for a

career in computing, and (c) aspects of collaborative learning that

affect student motivation, aptitudes, and attitudes towards work-

ing with students in other disciplines.

Following the RC-CP workshop, each work group will regularly

meet to develop the specific content of its respective CS1 course.

This includes identification of computational topics, core compu-

tational knowledge and tools, interdisciplinary problems and col-

laborative problem-based learning (PBL) activities, and additional

content.

We will fully develop several CS1 courses (e.g., CS1 Humanities

and CS1 Sciences) for implementation in the pilot study. For

these courses, we will complete full implementation of content

topics, PBL activities, and collaborative activities. We will also

develop common SCORM-compliant LOs for the courses where

possible and setup I-MINDS to support collaborative learning.

4.2 Year 2: Pilot Study Phase
The pilot courses will be offered during the first semester of Year

2, with students recruited primarily from our freshmen CS majors

and minors and students from the School of Biological Sciences,

the Departments of History and English, and secondarily from

other participating academic units. Students participating in these

courses and the instructor will be asked to consent to participation

in research and evaluation activities in accordance with Institu-

tional Review Board (IRB) guidelines. We will collect data on

student outcomes and technical aspects of course implementation.

For student outcomes we will use pre- and post-tests to assess

students’ knowledge and skills in computational thinking and tool

use, attitudes and motivation about computational thinking and

CS, attitudes and motivation about interdisciplinary collaboration,

impact of the course on students’ self-regulation, and students’

perception of the classroom environment. In addition, we will

embed specific assessments within the LOs. These will capture

both student learning and immediate student attitudinal and moti-

vational reactions to the LO. At the end of the course, we will

conduct short on-line surveys with students to gather their self-

assessment of their learning, motivation, and experience in the

course.

Feedback on technical aspects of course implementation will be

obtained from students and the instructors using an end-of-the-

course on-line interview. Students and the instructor will be

asked to provide feedback on satisfaction, course effectiveness,

and suggestions for course improvements. They will also be

asked to rate the utility and interestingness of specific course

components. We will also capture data from interaction with the

LOs and I-MINDS to identify how students were interacting with

these learning technologies. Instructors also will be provided with

an on-line diary to record immediate reactions and comments

concerning the course.

5. SUMMARY
We have described a major initiative called Renaissance Compu-

ting that is taking place at our university to increase student par-

ticipation in CS. Our framework focuses on both majors and

minors, with designs of courses in various disciplines. It also uses

LOs and a CSCL system to facilitate PBL and teamwork. Our

planned activities include holding workshops, designing and im-

plementing several CS1 courses, and conducting a pilot study to

evaluate the impact of the courses.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the National

Science Foundation under Grants No. 0632642 and 0829647.

7. REFERENCES
[1] ADL, Advanced Distributed Learning. (2003). DoD affirms

SCORM’s role in training transformation. Retrieved July 18,

2005, from www.adlnet.org

[2] Alexander, B. (2006). Web 2.0: A New Wave of Innovation

for Teaching and Learning?, EDUCAUSE Review, 41(2), 32-

44.

[3] ASTD. (2000). A Primer on Learning Objects. Learning

circuits: ASTD’s online magazine about E-learning.

http://learning circuits.org/mar2000/primer.html

[4] Boster, F. J., Meyer, G. S., Roberto, A. J., & Inge, C. C.

(2002). A report on the effect of the UnitedStreaming Appli-

cation on educational performance. Cometrika/United

Learning.

[5] Dillenbourg, P. (2002). Over-Scripting CSCL: The Risks of

Blending Collaborative Learning with Instructional Design.

In P. A. Kirschner (Ed.), Three worlds of CSCL: Can we

support CSCL (pp. 61–91). Heerlen: Open Universiteit Ne-

derland.

[6] Francia, G. (2003). A Tale of Two Learning Objects. J. of

Educational Technology Systems, 3, 177-190.

[7] Grunwald Associates. (2002). Video and television use

among K-12 teachers. Survey results in Power Point format

prepared for the Corporation for Public Broadcasting (CPB).

[8] Guzdial, M. (2008). Paving the Way for Computational

Thinking, CACM, 51(8), 25-27.

[9] Hansen, T., L. Dirckinck-Holmfeld, R. Lewis, & J. Rogelj

(1999). Using Telematics for Collaborative Knowledge

Construction, Chapter 9, in P. Dillenbourg (ed.) Collabora-

tive Learning: Cognitive and Computational Approaches,

Oxford: Elsevier, pp. 169-195.

[10] Hartman, J. L., C. Dziuban, & J. Brophy-Ellison (2007).

Faculty 2.0, EDUCAUSE Review, 42(5), 62-77.

[11] Howe, C., A. Tolmie, A. Anderson, & M. Mackenzie (1992).

Conceptual Knowledge in Physics: The Role of Group Inte-

raction in Computer-Supported Teaching, Learning and In-

struction, 2(3), 161-183.

[12] Khandaker, N., L.-K. Soh, & H. Jiang (2006). Student

Learning and Team Formation in a Structured CSCL Envi-

ronment, Proc. ICCE’2006 (pp. 185-192), Beijing, China.

[13] Koppi, T., & Lavitt, N. (2003). Institutional use of learning

objects three years on: Lessons learned and future direction.

Retrieved October 10, 2004, from

http://www.cs.kuleuven.ac.be/~erikd/PRES/2003/LO2003/

[14] Kreijns, K., P. A. Kirschner, & W. Jochyems (2003). Identi-

fying the Pitfalls for Social Interaction in Computer-

Supported Collaborative Learning Environments: A Review

of the Research, Computers in Human Behavior, 19(3), 335-

353.

[15] Lehtinen, E., K. Harkkarainen, L. Lipponen, M. Rahikainen,

& H. Muukkonen (2001). Computer Supported Collabora-

tive Learning: A Review. Retrieved March 5, 2008, from

http://www.comlab.hut.fi/opetus/205/etatehtava1.pdf

[16] MacDonald, J. (2003). Assessing Online Collaborative

Learning: Process and Product, Computers and Education,

40(4), 377-391.

[17] Nugent, G., L.-K. Soh, & A. Samal (2006a). Design, Devel-

opment and Validation of Learning Objects, J. Educational

Technology Systems, 34(3), 271-281.

[18] Pasnik, S., & Keisch, D. (2003). Teachers’ Domain Evalua-

tion Report, NY: Center for Children and Technology. Re-

trieved October 10, 2004, from

http://www2.edc.org/CCT/publications_report_summary.asp

?numPubId=148

[19] Shell, D. F.,J. Husman, J. E. T urner, D. M. Cliffel, U. Nath,

& N. Sweany (2005). The Impact of Computer Supported

Collaborative Learning Communities on High School Stu-

dents’ Knowledge Building, Strategic Learning, and Percep-

tions of the Classroom, J. Educational Computing Research,

33(3), 327-349.

[20] Soh, L.-K., H. Jiang, & C. Ansorge (2004). Agent-Based

Cooperative Learning: A Proof-of-Concept Experiment.

Proc. SIGCSE’2004 (pp. 368-372), Norfolk, VA.

[21] Soh, L.-K., N. Khandaker, & H. Jiang (2008). I-MINDS: A

Multiagent System for Intelligent Computer-Supported Co-

operative Learning and Classroom Management, Int. J. AI in

Education, 18(2), 119-151.

[22] Soh, L.-K., N. Khandaker, and H. Jiang (2006). Multiagent

Coalition Formation for Computer-Supported Cooperative

Learning Proc. IAAI’2006 (pp.1844-1851), Boston, MA.

http://www.cs.kuleuven.ac.be/~erikd/PRES/2003/LO2003/

