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Abstract 
In this paper, we describe a computer-supported cooperative 
learning system in education and the results of its deploy-
ment.  The system, called I-MINDS, consists of a set of 
teacher agents, group agents, and student agents.  While the 
agents possess individual intelligent capabilities, the novel 
invention of I-MINDS lies in multiagent intelligence and 
coalition formation.  I-MINDS supports student participa-
tion and collaboration and helps the instructor manage 
large, distance classrooms.  Specifically, it uses a Vickrey 
auction-based and learning-enabled algorithm called 
VALCAM to form student groups in a structured coopera-
tive learning setting.   We have deployed I-MINDS in an in-
troductory computer science course (CS1) and conducted 
experiments in the Spring and Fall semesters of 2005 to 
study how I-MINDS-supported collaboration fares against 
traditional, face-to-face collaboration.  Results showed that 
students using I-MINDS performed (and outperformed in 
some aspects) as well as students in traditional settings. 

Introduction 

Computer-supported cooperative learning (CSCL) systems 
are becoming more popular to support large or distance 
classrooms, to facilitate student-to-student and student-to-
instructor interactions synchronously or asynchronously.  
However, these CSCL systems (e.g., Caverly and Mac-
Donald 2002; Betbeder et al. 2003; Chan et al. 2003; 
Chang et al. 2003; Salcedo et al. 2003; Sridharan et al. 
2003) do not adapt to diverse student and instructor needs 
and behaviors. Instead, these systems are usually passive 
participants in the process and students and instructors of-
ten resort to other modes of external interactions (e-mail, 
phone, or face-to-face meetings) in order to address indi-
vidual problems.  An instructor would have to monitor stu-
dent activities and be required to process what he or she 
observes in order to generate the proper response without 
intelligent help from the CSCL system; while a student or a 
group of students would have to seek out their compatible 
peers to work together and to maintain their own peer 

groups.  These activities are difficult to achieve in large or 
distance classrooms where an instructor does not necessar-
ily have the luxury to observe student activities accurately 
and nor does a student.  Thus, there is a need for intelligent 
CSCL systems that could actively facilitate the above ac-
tivities. 
 Our research has designed and developed an infrastruc-
ture called the Intelligent Multiagent Infrastructure for Dis-
tributed Systems in Education (or I-MINDS).  I-MINDS 
consists of different intelligent agents.  These agents work 
together to actively support student-student and student-
instructor interactions in a typical classroom in the distance 
education setting.  Specifically, there are agents that rank 
and categorize questions, and profile students to help the 
instructor manage a classroom in real-time; and agents that 
form and maintain structured cooperative learning groups.  
Powering the I-MINDS is a multiagent coalition formation 
algorithm specially designed to help form student groups 
based on student performances over time.  This algorithm, 
called VALCAM, is based on a Vickrey auction setting and 
employs peer evaluation and profiling to improve the stu-
dent groups. 
 We have deployed I-MINDS in an introductory com-
puter science course (CS1) at the Department of Computer 
Science and Engineering of the University of Nebraska for 
the past year (2 semesters).  Specifically, we have used a 
control-treatment protocol to study the use of I-MINDS in 
place of face-to-face collaboration among students in 
weekly laboratory sessions.  Results have shown that I-
MINDS, though still needing better graphical user inter-
faces and further development, could support cooperative 
learning effectively.   
 In the following, we first present I-MINDS agents, 
briefly discussing the intelligent modules of these agents to 
support cooperative learning.  Then we describe the 
VALCAM-based coalition formation module.  Here we 
also present the structured cooperative learning Jigsaw 
model that has been incorporated into I-MINDS.  Subse-
quently, we offer some implementation and architectural 
details.  We then discuss the deployment results of our 
CSCL application.  Finally, we conclude with some future 
directions.   
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Agents and Topology 

I-MINDS consists of three types of agents: teacher agents, 
group agents, and student agents.  Figure 1 shows an exam-
ple of the topological infrastructure of I-MINDS (Liu et al. 
2003b).  The manager, simply an administrative module, 
manages the ongoing classroom sessions and system-level 
information such as the list of ongoing classes, list of 
courses and teachers, the login names and passwords for 
the students for each of the classrooms, etc.  In an I-
MINDS classroom session, the teacher, students and stu-
dent groups are assigned a teacher agent, student agents 
and group agents, respectively.  Each of these agents sup-
ports the user or group to which it has been assigned. 
 Briefly, a teacher agent, interacting with a teacher, is 
responsible for disseminating information streams to stu-
dent agents, maintaining profiles for all students, assessing 
the progress and participation of different students, ranking 
and filtering of the questions asked by the students, and 
managing the progress of a classroom session.  A student 
agent, on the other hand, mainly works as a personal helper 
to a specific student.  The student agent also presents the 
learning material to the student and forms coalitions with 
other students for collaborative learning.  A group agent 
forms and conducts structured cooperative learning such as 
the Jigsaw model (Clarke 1994), monitors and facilitates 
group activities.  In the following, we highlight some of the 
intelligent modules within each agent.  For details, readers 
are referred to (Soh et al. 2006). 
 

 
Figure 1: I-MINDS Agents and Topology 

Teacher Agent 
In I-MINDS, the teacher agent interacts mainly with the 
instructor.  The teacher agent helps the instructor deliver 
instructional content to the students and coordinates the 
coalition formation process in the classroom. The teacher 
agent also helps the instructor answer student questions 
with the question ranking and question grouping modules. 
 Question ranking allows the teacher agent to manage 
Q&A in a large classroom.  When questions are asked, the 
teacher agent scores each question based on a set of key-
words and heuristics.  Keywords are subject-topic specific 

and weighted.  Heuristics are course-specific.  After scor-
ing, the questions are ranked and displayed to the instruc-
tor.  The instructor may choose to answer or discard a 
question.  Then depending on the instructor’s choice the 
question ranks are readjusted.  Thus, by answering and 
discarding ranked questions, the instructor implicitly 
teaches the teacher agent how to better score and rank the 
questions.   
 The question grouping module (Khandaker 2004) allows 
the teacher agent to address multiple similar questions to-
gether and profile students who ask similar questions.  Two 
questions are considered similar and grouped together 
based on the keywords they share and their classification.  
To classify questions, we use the ApplePie parser (Sekine 
and Grishman 1995) and the utterance classifier program 
of AutoTutor (Olney et al. 2003, Graesser 1999).  When 
the teacher answers (or discards) a question, the teacher 
agent automatically answers (or discards) all the similar 
questions grouped together with that particular question.  
This functionality helps the instructor address potentially 
large numbers of similar questions in a large classroom. 

Student Agent 
In an I-MINDS supported classroom, a student agent serves 
a unique student.  The student agent acts as a interface be-
tween a student and the virtual classroom.  All the informa-
tion exchanged between the student and the classroom par-
ticipants (e.g., questions asked by a student, messages ex-
changed between peers, etc.) are monitored by the student 
agent.  The student agent also offers surveys to the student 
to record his/her preferences. and the student agent also 
exchanges information with the teacher agent and the group 
agents.  With all these collected information, the student 
agent maintains a dynamic profile of the student to whom it 
is assigned and a dynamic profile of the peers that the stu-
dent has interacted with through I-MINDS.   
 A student is profiled by I-MINDS’ agents in several 
ways.  First, student-instructor interactions are profiled 
mainly based on the quality and classification of questions 
that a student asks.  Based on the grouping of these ques-
tions, students can also be profiled relative to others in 
terms of compatibility.  Second, student-student interac-
tions are profiled through the monitoring of the messages 
exchanged among them.  This profiling process is carried 
out by a student agent from the viewpoint of the student it 
serves.  These include the number of messages sent, type of 
messages, frequency of messages sent, time spent on “idea 
sketching” and so on.  Whenever a student asks a question 
or performs some kind of collaborative activities (e.g., ini-
tiates a forum discussion or participates in sketching out 
ideas on a digital whiteboard, with both features built into 
the I-MINDS GUI), his or her profile is updated.   

Group Agent 
In I-MINDS, a group agent is activated when there are 
structured cooperative learning activities.  Structured coop-
erative learning involves specified activities that explicitly 



require students to cooperate.  Currently, I-MINDS imple-
ments the Jigsaw model (Aronson et al. 1978) which will 
be discussed later.  The group agent monitors the group 
activities during structured cooperative learning.  That in-
cludes the number of messages sent among group members, 
types of messages, self-reported teamwork capabilities, 
peer-based evaluations as a team member, and evaluation 
of each team.   

Multiagent Coalition Formation 

One primary goal of I-MINDS is to support cooperative 
learning in an environment where students are not able to 
collaborate face-to-face.  Further, our current phase of re-
search and development for our educational application 
focuses on structured cooperative learning, during which 
students are guided with specific activities that require col-
laboration.  In particular, the structured cooperative learn-
ing that we have incorporated into I-MINDS is the Jigsaw 
model.  Here we first briefly describe what the Jigsaw 
model is before presenting the multiagent coalition forma-
tion algorithm, VALCAM. 
 Note that our I-MINDS and the VALCAM algorithm are 
generally designed such that different cooperative learning 
models can be incorporated.  One of our long-term plans is 
to equip I-MINDS with different cooperative learning 
models for a teacher to choose from for his or her class-
rooms. 

Jigsaw Learning Model 
The learning process in Jigsaw cooperative learning model 
is as follows.  First, assign the students into groups.  Sec-
ond, the instructor divides a problem into different parts (or 
sections).  Third, the instructor assigns a part/section for 
every student such that members of the same main group 
will have different sections to solve.  The students who are 
responsible for the same section then work together in a 
focus group to come up with solutions to the section to 
which they have been assigned and develop a strategy for 
teaching the solutions to their respective group members.  
Clarke (Clarke 1994) further refined the Jigsaw structure 
into stages.  These stages are  (1) Introduction of the topic 
to the class as a whole, (2) Focused Exploration: The focus 
groups explore issues pertinent to the section that they have 
been assigned, (3) Reporting and Reshaping: The students 
return to their original groups and instruct their teammates 
based on their findings from the focus groups, and (4) Inte-
gration and Evaluation: The team connects the various 
pieces generated by the individual members, addresses new 
problems posed by the instructor, or evaluates the group 
product.  The goal of Jigsaw is to allow students to learn 
better by collaborating with each other.  The stronger stu-
dent learns about the solution of the problem by teach-
ing/discussing it with the weaker students.  On the other 
hand, the weaker students learn about the problem solution 
by method by discussing it with the stronger students.  
However, not all human students can be expected to work 

well with each other.  A typical set of learners will have 
personal preferences for choosing their group members.  
So, for such a learner group to succeed, the following fac-
tors are important: 1) the competence of the group mem-
bers 2) personal preferences of the group members (about 
who they would like to form group with).  Bearing these 
factors in mind we have designed the VALCAM algorithm. 

VALCAM 
To form coalitions (or basic groups for the Jigsaw coopera-
tive learning process), we proposed and designed the Vick-
rey Auction-Based Learning-Enabled Coalition and Adap-
tation for Multiagent Systems (VALCAM) algorithm 
(Khandaker 2005).  In VALCAM, we have adapted the 
auction mechanism to coalition formation for its computa-
tionally inexpensive implementation and reduced commu-
nication overhead during coalition formation.  The multi-
agent framework—within which our VALCAM algorithm 
operates—consists of a system agent, a number of user 
agents and a number of group agents.   
 The VALCAM process roughly works as follows.  The 
system agent acts as a coordinator and hosts the auction 
while the user agents, with virtual currency earned, make 
bids to form coalitions.  When a coalition is formed, a 
group agent is assigned to that coalition.  Each group agent 
monitors the performance and activities of the members of 
its assigned group. After a coalition has completed its 
tasks, the group agent evaluates the performance of each 
user agent as a group member and assigns a group payoff 
accordingly.  
 The algorithm also makes use of a virtual currency V in 
the following manner. The system agent works as the pro-
vider and accountant of the virtual currency.  Every time 
the user agents form a coalition and perform the required 
task, the user agents’ performance is evaluated at the indi-
vidual level and the group level by the system agent and the 
group agent respectively.  After the evaluation, the system 
agent rewards each user agent’s individual performance 
while each group agent rewards each user agent’s perform-
ance as a group member.   
 Here we describe the algorithm.  Suppose that A is the 
set of user agents, m is the number of non-overlapping coa-
litions that will be formed, n is the number of users, and j is 
the task assigned.  The coalition formation algorithm has 
two parts: VALCAM-S for the system agent and 
VALCAM-U for each user agent.  
 
VALCAM-S ( A, m, n, j) 
1)  If  this is the first coalition formation among all the us-

ers, then (i) Allocate default amount of virtual currency 
to every user, and (ii) Choose m users randomly from 
the n users. 

2)  Else (i) Allocate default amount of virtual currency to 
the new users and (ii) Find the topmost m users ranked 
according to the amount of virtual currency they have 
and solve any ties randomly. 

3)  Announce the task to the user agents  



4)  Randomly assign the selected m users to the m different 
coalitions 

5) Announce the opening of the auction to the user agents 
who were not chosen in Steps 1 and 2 

6)  While there are unassigned user agents, perform the 
following loop:  

  For i ← 1 to m do 
   (i)  Accept bids from the user agents, and  
  (ii) Until  an agent is assigned to the ith coalition  

do (a) Choose the highest bidder agent, and (b) 
If  the chosen agent has enough virtual currency, 
then subtract the second highest bid from its vir-
tual currency account and assign it to the ith 
coalition 

7) When the assigned task j is completed do (i) Direct 
each group agent to provide the group payoff ( )tjsVg ,,  

to its student agent members based on their perform-
ances in the group, and (ii) Reward each user agent 
with virtual currency ( )tjsV s ,,  based on the individual 

performance of the user agent.  Then the total payoff for 
a user agent s for task j at time t is defined as: 

),,(*),,(*),,( tjsVwtjsVwtjsV svsgvgt += (1) 

where, 
vgw  is the weight associated with group payoff, 

),,( tjsVs is the total payoff for user agent s for task j 

at time t for individual performance, 
vsw  and 

vgw are 

the weights associated with the individual payoff and 
group payoff respectively, and ( )tjsVg ,,  is the total 

group payoff for user agent s at time t for task j: 
   ),,(*),,(*),,( tjsVwtjsVwtjsV acvacpcvpcg += (2) 

where ( )tjsVpc ,,  and ( )tjsVac ,,  are the payoffs dis-

tributed by the group agent to the user agent based on 
the potential and actual contribution of the user agent as 
a member of the group, respectively; 

vpcw  and 
vacw  are 

the weights associated with contributions.  Furthermore, 

 
where ( )tjxPC ,,  is the potential contribution of user 

agent x at time t for task j and G is the set of all user 
agents in the group of user s.  Moreover,  

 
where ( )tjxAC ,,  is the potential contribution of user 
agent x at time t for task j and G is the set of all user 
agents in the group of student s. If a user agent performs 
well as a group member (e.g., responsive and helpful 
towards other agents and contributes to team goals.) 
then this value will be high. This global condition is set 
to motivate the agents to be a team player.   
 We also measure the experience between agents 1s  
and 2s , from the viewpoint of 1s , as: 

    ),,(*),,(*),,( 122121 tssEwtssEwtssE mummmur +=  (5) 

where ( )tssEm ,, 21
 denotes a numeric value computed 

by 
1s  representing its experience in working with 

2s  at 

time t, ( )tssEm ,, 12
 denotes the evaluation score that 

1s  
receives from 

2s , and 
muw  and 

umw  are weights. We 

further compute the average experience measure be-
tween two agents 

1s  and 
2s  over time as: 

 
In Eq. 6, t denotes a time period, T is number of time 
periods between t = 0 and t = q, 

tw  is the weight associ-
ated with the time period t.  

 
Algorithm VALCAM-U 
1) If  selected as one of the first m users by the system 

agent, then Exit 
2) Post the competence measure Cm to the common bulle-

tin board after a new task announcement, for other pro-

spective group members to read.  mC  is basically the 

self-efficacy of the user agent’s ability to perform the 
announced task.  The competence measure of user agent 
x for task j at time t is defined as:    

ckce

kckece
m ww

tjxUwtjxUw
tjxC

+
+= ),,(*),,(*

),,( (7) 

 where, ),,( tjxU e  is the mean of previous evaluations 

received by the user agent x on tasks similar to j at time 

t, ),,( tjxU k  is the user agent’s knowledge/expertise 

on the assigned task j at time t, and cew  and ckw are 

weights indicating the relative importance of the two 
factors. 

3) When acceptance of bid for the ith group is announced 
by the system agent, repeatedly bid an amount of virtual 
currency ( )tjsVb ,,  until a bid is won. 

 Here, 

 
In Eq. 8, ( )tjsVb ,,  is the virtual currency bid submit-

ted by the student agent s at time t, for task j,  
( )tjkCm ,,  is the competency measure of the kth mem-

ber of the ith coalition for the task j.  Here the user 
agent s is bidding to join the ith coalition at time t, and 
the factor Y represents the total number of members in 
the ith coalition, and 

rE  is from Eq. 5. 

 Since our agents are self-interested, payoff distribution 
and virtual currency are important.  A user agent’s payoff 
depends on its performance as an individual and its per-
formance as a member of the coalition.  Its virtual currency 



allows a user agent to bid to join a coalition and to moti-
vate its intentions.  A user agent is motivated to bid to join 
the group that is the most useful to itself—a group that it 
has worked with before and has received good payoffs as a 
result of working in the group.  If a user agent succeeds in 
joining the most useful group, then it is likely to be re-
warded more than joining a less useful group.  This in turn 
gives the user agent more virtual currency for the next task.  
To increase the likelihood of joining the most useful group, 
a user agent’s strategy is to join the group as soon as possi-
ble to influence the makeup of the group—discouraging 
other non-compatible user agents from joining and encour-
aging other compatible user agents to join. 
 According to the present learning mechanism (Eq. 8), a 
user agent would prefer to team up with an agent that it 
knows is competent from its experience. Specifically, when 
an agent tries to form a coalition, it considers its past work-
ing experience of the coalition member agents, the posted 
competence of those members and those members’ evalua-
tion of him as a peer. 
 Thus, using the VALCAM algorithm, an agent learns 
from its experience in hope of joining a compatible coali-
tion.  Note that VALCAM is a soon-enough, good-enough 
approach and does not guarantee optimality.  However, 
learning from their experiences and payoffs, the agents as a 
whole improve their coalitions over time.  
 In the I-MINDS implementation of VALCAM, the 
teacher agent assigned to each instructor assumes the role 
of the system agent and the student agent assigned to each 
student corresponds to the user agent during coalition for-
mation.  
 Our adaptation of VALCAM into I-MINDS was based 
on the fact that the user agent’s motivation could be related 
to the student’s motivation.  A student wants to learn better 
and work in a group which consists of students that he/she 
likes.  But joining such a group requires that the user agent 
assigned to that student has enough virtual currency in its 
account.  So, the student’s motivation to join the best group 
and learn better is related to the user agent’s motivation to 
earn as much virtual currency as possible.  So, if the stu-
dent performs well individually and as a group member, the 
user agent assigned to him/her will earn more virtual cur-
rency.  This virtual currency balance will mean that the 
student will be able to join his/her preferred group in the 
next round. 

Implementation 

We have implemented I-MINDS in Java (SDK 1.4.2).  In 
particular, we have used Java’s socket functionalities to 
establish communication among agents, Java’s swing class 
to create interfaces and Java’s JDBC technologies to con-
nect to our MySQL database.  Figure 2 shows the instruc-
tor’s interface and Figure 3 shows the student’s interface in 
I-MINDS. 
 

 
Figure 2: I-MINDS Instructor's Interface 

 
Figure 3: I-MINDS Student Interface 

Results 

To evaluate I-MINDS, we conducted a pilot study in 
Spring 2003 to study its feasibility and then deployed I-
MINDS in Spring 2005 and Fall 2005 semesters in real 
classrooms.   
 The pilot study showed that I-MINDS, as an active (but 
only primitively intelligent) computer-supported coopera-
tive learning system could be effective in place of face-to-
face, traditional instruction.  There was evidence that stu-
dents using I-MINDS were able to achieve a higher learn-
ing gain that could be attributed to better questions and 
discussions supported by I-MINDS.   
 The course involved was CSCE 155, the first core course 
of computer science and computer engineering majors (i.e., 
CS1).  The course has three 1-hour weekly lectures and one 
2-hour weekly laboratory sessions.  In each lab session, 
students were given specific lab activities to experiment 
with Java and practice hands-on to solve programming 
problems.  These were introductory problems about De-
bugging, Inheritance, UML and Recursion.  For example, 
in the UML session, the students were required to design a 
resource management system from the given requirements.  
This main task was then divided into two sub tasks: design-
ing class diagrams and designing use cases.  For each se-
mester, there were 2-3 lab sections where each section had 
about 15-25 students.   



 Our study utilized a control-treatment protocol.  In the 
control section, students worked in Jigsaw cooperative 
learning groups without using I-MINDS.  Students were 
allowed to move around in the room to join their Jigsaw 
groups to carry out face-to-face discussions.  In the treat-
ment section, students worked in Jigsaw cooperative learn-
ing groups using I-MINDS.  Students were told to stay at 
their computers and were only allowed to communicate via 
I-MINDS.  With this setup, we essentially simulated a dis-
tance classroom environment. 
 For each lab, the students were given a lab handout with 
a list of activities—thus, a lab is a task and its activities are 
the subtasks (tasks divided into subtasks by the instructor).  
We conducted the study for several lab sessions, covering 
topics in debugging and testing, inheritance and polymor-
phism, Unified Modeling Language (UML), and recursion.   
 The students of both the control and treatment sections 
were required to complete the tasks and subtasks in the four 
Jigsaw phases as discussed earlier.  Table 1 shows the four 
Jigsaw phases with the allocated amount of time. 
 

Table 1: Time allocations of Jigsaw phases 

Jigsaw Phase Time (min) 
Introduction 15 

Focused Exploration 30 
Reporting and Reshaping 20 
Integration and Evaluation 20 

 
 In each section, the instructor announced the main 
groups.  In the control section, this was done manually.  In 
the treatment section, I-MINDS automatically performed 
group formation (coalition formation) using the VALCAM 
algorithm.  Once the main groups were formed, the teacher 
agent formed the focus groups by randomly selecting stu-
dents from the main group.  After the focus groups were 
formed, every focus group was assigned one subtask ran-
domly. After the subtask assignment, the focused explora-
tion phase was started.  Then the three Jigsaw Phases were 
carried out in order.  During these three phases, the student 
agents and the group agents monitored and guided the ac-
tivities of the students and the student groups, respectively.  
After the three Jigsaw Phases were executed, all the stu-
dents filled out the Peer Rating Questionnaire and Team-
Based Efficacy Questionnaire and took a 10-minute post-
test.  This 10-minute post-test score was graded by the in-
structor and was used as the measure of student perform-
ance in terms of understanding the topic of the lab.  Details 
of this process can be found in (Soh et al. 2005). 
 Table 2 shows the post-test scores of the control (i.e., 
Jigsaw without I-MINDS) and treatment (i.e., Jigsaw with 
I-MINDS) sections for both semesters.     
 The results indicate that students using I-MINDS for the 
Jigsaw activities were able to obtain comparable post-test 
scores.  We had initially hypothesized that the students in 
the control section would perform better than the students 
in the treatment section simply because the students in the 
former would have a chance to discuss face-to-face and 
were able to use paper and pencil to draw and share the 

same computer screen during the focused exploration and 
reporting phases of the Jigsaw process.   On the other hand, 
I-MINDS, still lacking user-friendly GUI, had been ex-
pected to hinder such free, natural interactions among stu-
dents, leading to ineffective collaboration.  Furthermore, on 
average, students in the treatment section also achieved 
better standard deviation—meaning that these students’ 
post-test scores were more tightly clustered than those of 
the control section.  Upon closer analysis, we speculate that 
the act of typing and communicating through the forum and 
digital whiteboard of I-MINDS forced the students to ar-
ticulate explicitly their thoughts and focused their attention 
to the tasks at hand.  This in turn improved student under-
standing of the subject matter.  On the other hand, we also 
observe that students in the treatment sections seemed to 
improve over time, and their performance seemed to even-
tually overtake that of the control sections’ over time—
indicating that VALCAM, due to its learning mechanism, 
might have been effective in forming better and better coa-
litions over time.  These promising results will require 
more data collection in the near future to attain higher sig-
nificance. 
 
Table 2: Student post-test scores for the control (Jigsaw with-
out I-MINDS) and treatment (Jigsaw with I-MINDS) sections 

Spring 2005 
Control Section Treatment Section 

Session 
Mean Stdev. Mean Stdev. 

1 7.06 1.83 6.10 1.79 
2 5.00 2.41 7.63 1.72 
3 8.83 2.85 9.00 1.50 

Mean 6.96 2.36 7.57 1.67 
Fall 2005 

Session Control Section Treatment Section 
 Mean Stdev. Mean Stdev. 
1 7.33 1.28 7.71 1.68 
2 8.12 1.50 7.81 0.95 
3 8.14 0.86 8.53 0.87 
4 8.81 1.37 9.14 0.94 

Mean 8.10 1.25 8.29 1.11 
 
 Next we look at the results of the Self-Efficacy Ques-
tionnaire (SEQ) survey.  The SEQ survey was conducted 
among the students after the introduction phase. Students 
enter their competency of completing a particular task.  
This contributes to Eq. 7 in the VALCAM-U algorithm.   
Table 3 shows the results. 
 We observe that for both semesters, students in the 
treatment sections were on average less confident than the 
students in the control section about their ability to solve 
the assigned task before the Jigsaw cooperation started.  
This is interesting.  Table 2, as discussed earlier, shows that 
the students in the treatment sections performed compara-
bly and eventually overtook those students in the control 
sections in terms of their post-test scores, even though Ta-
ble 3 shows that these were the same students who had 



lower self-efficacy.  This further lends credence to I-
MINDS as an intelligent CSCL system. 
 

Table 3: Self-Efficacy Questionnaire Results 

Spring 2005 
Control Section Treatment Section 

Session 
Mean Stdev. Mean Stdev. 

1 33.33 3.97 32.36 4.00 
2 35.00 3.30 33.63 5.14 
3 34.83 2.28 33.50 3.96 

Mean 34.39 3.18 33.16 4.37 
Fall 2005 

Session Control Section Treatment Section 
 Mean Stdev. Mean Stdev. 
1 31.72 4.26 23.64 5.55 
2 32.50 6.48 32.00 3.63 
3 34.35 6.54 35.89 3.89 
4 35.56 6.55 32.40 3.60 

Mean 33.53 5.95 30.98 4.16 
 
  Next, we look at the surveys in terms of peer rating.  
The Peer Rating Questionnaire (PRQ) surveys were con-
ducted in both control and treatment sections after each lab 
session was completed.  The PRQ is designed to quantify 
the compatibility of the group members after they have 
gone through the cooperative learning process.  We then 
averaged the average peer rating scores that each student 
gave to his or her group members.  This average for each 
section can be used as a measurement of how well the team 
members in each section were able to work with each other.  
Table 4 shows the results of the PRQ surveys.     
 

Table 4: Peer Rating Questionnaire Results 

Fall 2005 
Session Control Section Treatment Section 

 Mean Stdev. Mean Stdev. 
1 42.10 2.73 32.45 5.78 
2 36.62 7.05 37.72 4.60 
3 39.91 4.80 34.63 8.08 

Mean 39.54 4.86 34.93 6.15 
Spring 2005 

Session Control Section Treatment Section 
 Mean Stdev. Mean Stdev. 
1 35.39 2.30 33.71 4.69 
2 34.87 5.32 35.80 12.21 
3 36.03 3.19 36.37 5.18 
4 37.53 3.37 37.25 3.62 

Mean 35.95 3.54 35.78 6.42 
 
 As evidenced in the scores, students in the control sec-
tion rated their peers better (higher means) and more con-
sistently (lower standard deviation values) than the students 
in the treatment section.  This is possibly due to the face-to-
face interaction.  After all, students interacting through I-
MINDS could not enjoy the advantages of face-to-face 
interactions such as facial expressions, the spontaneous 

free-flowing of ideas, and more immediate feedback in 
their discussions.  This observation indicates that I-MINDS 
still lacks sufficient GUI features and multimedia capabili-
ties to fully capture real-time characteristics of interactions.  
 On the other hand, we see indications that students in the 
treatment section for the Spring 2005 section seemed to 
rate their peers better over time (from 33.71 to 35.80 to 
36.37 and 37.25) and seemed to rate their peers more con-
sistently as well. This might be due to the ability of the 
coalition formation algorithm in forming better groups over 
time. Given sufficient amount of time the VALCAM algo-
rithm for coalition formation would allow the users to form 
groups with their favorite peers.  So, over time the users 
were able to interact with others and evaluate each others 
as team members. This evaluation in the form of PRQ then 
helped them choose better team members in the future ses-
sions.  
 Next we discuss the Team-Based Efficacy Questionnaire 
(TEQ) surveys, which were collected after each lab based 
on a set of questions designed to measure how a student 
viewed how well its group had performed.  Table 5 shows 
the results of the TEQ conducted after every session. 

 

Table 5: Team-Based Efficacy Questionnaire Results 

Spring 2005 
Control Section Treatment Section 

Session 
Mean Stdev. Mean Stdev. 

1 31.80 2.58 27.72 5.08 
2 30.87 3.38 29.18 2.63 
3 30.08 3.02 28.25 4.02 

Mean 30.92 2.99 28.38 3.91 
Fall 2005 

Session Control Section Treatment Section 
 Mean Stdev. Mean Stdev. 
1 27.22 4.37 23.64 5.55 
2 26.75 6.66 25.87 8.33 
3 29.14 5.47 25.76 5.43 
4 29.12 4.52 26.78 8.15 

Mean 28.05 5.25 25.51 6.86 
 
 We observe that students in the control section approved 
of their team-based activities more than the students in the 
treatment section.  There are two possible explanations.  
First, the ease of face-to-face interactions gave the impres-
sion that the group was doing better, which is consistent 
with our earlier observation with the peer rating results.  
Second, how the student agents form their coalitions did 
not necessarily meet the students’ preference.  Note that a 
student did not have access to other survey results, includ-
ing how his or her group members thought of his or her as a 
peer.  However, the student agent did and perused this in-
formation in its bidding for the most useful/compatible 
group.  Further studies will be necessary to investigate how 
a student’s perception of a group correlate with or influ-
ence the actual quality of a group. 



Conclusions 

We have described I-MINDS, a system that uses multiagent 
intelligence and coalition formation to provide computer-
supported cooperative learning in education.  We have de-
scribed the intelligent and multiagent modules that allow 
the teacher, group, and student agents to collaborate to ac-
tively support student-student and student-instructor inter-
actions.  We have also described the VALCAM algorithm 
for forming coalitions.  To demonstrate the effectiveness of 
I-MINDS, we have presented the results of incorporating 
Jigsaw Framework in I-MINDS in real-time classroom 
situations. 
 The deployment results in our CS1 lab for two semesters 
show that, although face-to-face activities were perceived 
to be better by the students, I-MINDS-supported activities 
were able to produce better or comparable performance (in 
terms of post-test scores) and were able to yield generally 
more tightly clustered performance among the students.   
We also have indications that the VALCAM algorithm was 
able to learn to form better groups over time in terms of 
peer rating and team-based efficacy.   
 Future work includes continued deployment of I-MINDS 
in the classroom, improvement of the GUI front-end for the 
teacher and student agents to better support collaborative, 
real-time programming, and extension of I-MINDS to work 
more seamlessly with existing Interactive Design Environ-
ments (IDEs).  Additional research includes the refinement 
of the VALCAM algorithm to more fairly synthesize sub-
jective peer-based evaluation and agent-tracked empirical 
data in determining the amount of virtual currency re-
warded to each student. 
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