
Using Game Days to Teach a Multiagent System Class

Leen-Kiat Soh
Department of Computer Science and Engineering

University of Nebraska
115 Ferguson Hall, Lincoln, NE 68588-0115 USA

E-mail: lksoh@cse.unl.edu

ABSTRACT
Multiagent systems is an attractive problem solving approach that
is becoming ever more feasible and popular in today’s world. It
combines artificial intelligence (AI) and distributed problem
solving to allow designers (programmers and engineers alike) to
solve problems otherwise deemed awkward in traditional
approaches that are less flexible and centralized. In the Fall
semester of 2002, I introduced a new game-based technique to my
Multiagent Systems class. The class was aimed for seniors (with
special permission) and graduate students in Computer Science,
covering some breadth and depth of issues in multiagent systems.
One of the requirements was participation in four Game Days. On
each Game Day, student teams competed against each other in
games related to issues such as auction, task allocation, coalition
formation, and negotiation. This article documents my designs of
and lessons learned from these Game Days. The Game Days were
very successful. Through role-playing, the students were
motivated and learned about multiagent systems.

Categories and Subject Descriptors
Course Related, Courseware

General Terms
Design, Experimentation

Keywords
Active Learning, Game-based Learning, Multiagent Systems,
Game Days

1 INTRODUCTION
Instruction in multiagent systems (MAS) has become increasingly
important in engineering and scientific disciplines because this
artificial intelligence technique represents a problem-solving
paradigm that is closer to real-world human behavior because of
its distributed and autonomous approach. Students in engineering
may use multiagent systems to analyze network congestions;
those in physics may use MAS to simulate molecule activity; and
those in biology may use MAS to perform data fusion, for
example.

An agent is an autonomous software program that lives in an
environment, monitors the environment, reasons about the events
it observes, acts in response to those events, and subsequently
changes the environment [19]. Such a program may exist on a
computing device, be embedded in a robot, or act on behalf of a
user. It also has various degrees of the following attributes:
reasoning, communication, learning, and mobility. A multiagent
system (MAS) is a collection of such agents that may collaborate
to solve a problem or set of problems, or may be in an adversarial
relationship in areas of limited resources. A course in MAS
usually covers the following topics: (1) foundations of Distributed
AI, (2) the concept of agency, (3) MAS organization, (4) MAS
communication, (5) MAS reasoning and emergent behavior, and
(6) MAS learning.

Note that traditional paradigms have focused on predictable,
rather static, and centralized approaches. However, problem
solving using a multiagent system (MAS) encourages the students
to anticipate failures (due to unpredictability), to plan for
changing environments (due to lack of stability), and to distribute
decision-making processes (due to decentralization and
autonomous agents). MAS is a natural extension of traditional
paradigms: the students not only design a single problem, but also
must design programs to communicate and coordinate to
accomplish tasks and an environment that supports those
programs.

The idea of using games in MAS is not new—many MAS classes
have involved programming projects based on games such as
Robocup soccer. However, the idea of using in-class games to
teach students about MAS is innovative and particularly
appropriate. In this situation, the students themselves act as
agents, instead of getting bogged down with the details of
building a multiagent system in some programming language.
They are autonomous decision-makers. They are able to
communicate with other students, observe what other students are
doing, and coordinate their activities. The classroom thus
automatically becomes a multiagent system. The instructor
becomes a monitor of the system, keeping track of the activities
and upholding the rules in the multiagent system. In this way, the
students can focus on the protocols, paradigms, and issues of
MAS topics.

In the following, we first discuss some pedagogical principles
underlying the Game Days. In Section 3, we introduce the
designs and specifications of the Game Days, including post-game
analyses and a game league. Next, we describe the qualitative
evaluation of the Game Days on student pedagogy. Finally, we
summarize the lessons learned from our experience before
concluding.

2 BACKGROUND

2.1 Teaching and Learning Paradigms
The pedagogical principles that provide the foundation for our
Game Days are active learning [2, 3], problem-based learning [5,
6, 7], peer (or collaborative) learning [8, 9, 10], and game-based
learning [11, 12, 13, 14].

When learning is active, according to Silberman [3], students do
most of the work studying ideas, solving problems, applying what
they learn, and figuring things out by themselves. In addition,
active learning is fast-paced, fun, supportive, and personally
engaging. This underlies the assumption that to learn something
well, it helps to hear it, see it, ask questions about it and discuss it
with others.

Problem-based learning, according to the Center of Problem-
Based Learning (CPBL) established by the Illinois Mathematics
and Science Academy (IMSA) [4], is a curriculum development
and instructional approach. It simultaneously develops problem-
solving strategies, disciplinary knowledge bases and skills, by
placing students in the active role of problem-solvers confronted
with an ill-structured problem that mirrors real-world problems.
Most of the problems in the Game Days mirror real-world
problems, e.g., forming a group to build a house, negotiating to
rescue hostages, bidding to obtain items of high utility, and
allocating resources effectively among consumers.

Peer learning is an approach where students support each other in
learning. For each Game Day, there are two levels of peer
learning. First, each team has multiple team members. The team
members work closely to study the open-ended problems for each
Game Day, formulate a flexible strategy, and cooperate during the
Game Days. Secondly, each team interacts with other teams on
each Game Day and learns from others when discussing the
results of the Fox and Hound games.

In game-based learning, students engage in the subject and the
learning becomes fun. Students are generally motivated in
playing games and learn through their effort in trying to win the
games. Researchers have also noted other benefits from game-
based learning. For example, Haas [12] suggests that game-based
learning teaches students to follow directions and use social skills,
review information and use cognitive skills, make decisions and
live with the consequences, and become aware of new
information. Black [10] also suggests that peer learning involved
in game instruction allows discussion, reflection, and problem
solving, as well as tolerance for self and others. Feezel [11]
asserts that game-based instructions also encourage teachers to be
creative and more effective. Yaman [15] concurs that games are
highly effective in reinforcing learning because students are
entertained, less stressed, and work together in teams. In addition,
the instructors are able to identify difficult or poorly understood
material through observable, immediate feedback from the
students.

2.2 Teaching Multiagent Systems
Many instructors of MAS use game-based programming projects
in their teaching. A google.com search (conducted July 22, 2003)
on “Teaching Multiagent Systems” yield results in which almost
all MAS classes that involve at least a programming project but
none employing the idea of Game Days. These classes in

multiagent systems have incorporated team-based programming
projects using gaming testbeds such as Robocup [16, 17], Agent
Rescue Emergency Simulator (ARES) [18], and Trading Agent
Competition (TAC) [19] to deal with timing, resource sharing,
cooperation, communication, and dynamic environments.
However, the RoboCup and TAC environments are no longer
effective in the classroom as students can cheat using information
available on the World Wide Web [18]. Although ARES offers a
flexible testbed for teaching MAS, the design is based on a static
environment and does not deal with complex real-time issues.
Moreover, the above testbed environments are usually semester-
long and thus can only be offered once per semester. The setup
usually does not encourage the teams to interact with each other
pre-, during, and post-game. Hence, as MAS becomes more
mainstream, there is a need for easy-to-implement teaching
mechanism that involves active and peer learning among students.
Our design of Game Days satisfies that need.

3 DESIGNS
There were four Game Days: (1) Auction Day, (2) Allocation
Day, (3) Coalition Day, and (4) Negotiation Day. Each Game
Day was allotted 75 minutes. Each student group had two
students and had a team name.

Each team received a Game Day Package. The exact format of
the Game Day Package was given to the students on-line before
each Game Day. However, the actual values (utility values,
amount of money, etc.) were given out as part of the Game Day
Package only on each Game Day. So, the students could work on
pre-game strategies using the on-line version beforehand.

I designed a Monitor Package for myself for each Game Day. In
this Monitor Package, I had the actual values of every team. Also,
I had tables with parameters (that I wanted to track) listed as
columns. This Monitor Package allowed me to observe and
record the activities conveniently during the games.

I graded each team based on two items: (1) Game Day
Worksheets (50%) and (2) End-Of-Day Ranking. I gave
customized worksheets to each team as part of the Game Day
Package. On the worksheets were itemized rounds, tables, and
blanks for the student to record their during-game actions. The
students were also encouraged to submit their pre-game
discussions and strategies at the end of the Game Day together
with their worksheets. At the end of each Game Day, I evaluated
each team on their Game-Day Performances and ranked them.
Usually, the team that won would have all 50%, the second team
would have 45%, and so on.

In the following, I briefly described the four Game Days. Readers
are referred to my class website [1] for the detailed Game Day
assignments. I used [19] as my textbook for the class.

3.1 Game Day 1: Auction Day
The objectives of Auction Day were to learn and familiarize with
various auction protocols, to learn how to manage resources to
obtain services/goods of high utility, and to learn how to observe
the environment (e.g., the behavior of other agents) to support
own decision making process. Each student team’s goal was to
obtain goods through bidding. Each team’s key to winning the
game was to obtain goods that were important to itself with the
limited amount of resources that each team had.

3.2 Game Day 2: Allocation Day
The objectives of Allocation Day were to learn and familiarize
with the various allocation mechanisms, to learn how to consider
or decide which task to perform, and to learn how to re-allocate
tasks/resources better from observing the environment. At the
implementation level, this Allocation Day also exposed students
to how multi-threaded programming was needed for efficient and
effective processing for an agent in this environment. Each
team’s key to wining the game was to solve as many problems as
possible with as low costs (costs of tasks and re-allocations) as
possible, while helping with as many other teams as possible in
solving their problems.

3.3 Game Day 3: Coalition Day
The objectives of Coalition Day were to learn and familiarize with
the various coalition formation mechanisms (coordination and
communication), to learn how to manage resources to obtain
services/goods of high utility, and to learn how to observe the
environment (e.g., the behavior of other agents) to support own
decision making process. At the implementation level, this
Coalition Day also exposed the students to how multi-threaded
programming was needed for efficient and effective processing
for an agent in this environment. This Game Day focused
particularly on three coalition formation mechanisms: blackboard,
voting, and matchmaking (or facilitating). Each team’s key to
winning the games was to solve as many problems as possible
while keeping as much money as possible.

3.4 Game Day 4: Negotiation Day
The objectives of Negotiation Day were to learn and familiarize
with the various negotiation protocols, and to learn how to
observe the environment (e.g., the behavior of other agents) to
support own decision-making process. On Negotiation Day,
students were required to participate in two types of negotiations.
The first was an open, free market where each team was a
monopoly on a unique product. Each team also needed to obtain
goods from all other teams to solve their problems. The second
type was a hostage rescue simulation where the kidnappers and
police negotiated using some argument types. I scored the teams
playing in the hostage rescue scenarios based on the number of
argument types that they used.

3.5 Game Day Packages
The design of the Game Day Packages had the following common
features: (a) a very brief, informal introduction, (b) a procedure or
setup description, (c) a team-specific description of utilities, (d) a
description of how the game was scored, (e) customized and
tabulated worksheets to make things as convenient as possible for
the students, and (f) an accounting of the items in the game
package such as Monopoly paper money, paper tokens, placards,
name tags, etc.

3.6 Monitor Packages
For each Game Day, I designed a Monitor Package. The
objective of these packages was for me to track key parameters
(bid values, transactions, etc.) easily during the games. They also
provided me with team-specific utility values so I could resolve
any questions or arguments quickly using them as references.

3.7 Post-Game Analysis
For the Post-Game Analysis of each Game Day, I carried out two
tasks.

The first task was the evaluation of the Worksheets (Game Day
Packages) that each team turned in. I double-checked all the
transactions and the Monopoly paper money amounts of the teams
to make sure that all monies and paper tokens were accounted for
correctly. I also reviewed the videotape to resolve any conflicts I
found in the worksheets. I also examined each team’s pre-game
strategies, in-game observations, and post-game analyses. I
strongly encouraged the teams to come up with a set of pre-game
strategies beforehand. I also encouraged each team to pay
attention to what other teams were doing during games, as agents
are required to observe their environments. At the end of each
Game Day, I also required each team to speak for about 1 minute
about their views of the Game Day and wrote their views down on
the Worksheets. All these I took into account when grading the
Worksheets.

The second task was my Post-Game Analysis, which comprised
the following items: (a) table of results based on the parameters
that I tracked during the games, (b) declaration of winners and
ranking, (c) discussion of operations where I discussed the
operational issues, (d) general observations, such as “Nobody
posted too many messages on the blackboard.” “Some teams were
too aggressive—grabbing whatever they saw posted on the board.
As a result, they were stuck with too many resources/services,” (e)
team-specific observations where I targeted specifically my
comments for each team, such as “Team 1: This team came in
without a pre-game strategy. They did learn during the second
round that if they could not solve their own problems, then at least
they could help other groups solve their problems. They were
able to lower their cost very well in Round 1, Situation B,” and (f)
lessons learned where I drew conclusions and related the
observations made earlier in the post-game analysis back to the
design and research issues that I had covered in the class (about 4-
5 lessons learned for each Game Day).

I handed my Post-Game Analysis of each Game Day back to the
students immediately (the next day) and discussed some of the
key points with them in class. I stressed to them that participating
and winning a game was one thing; learning about multiagent
systems from the game was another. I emphasized that the latter
was the ultimate objective of the Game Days.

3.8 Game Day League
At the end of the semester, I tallied up the Game-Day
Performances of the teams for all Game Days and announced the
ranking for the Game Days League.

Together with the announcement, I also stressed to the students
that the above ranking was simply how they performed on the
Game Days, excluding their worksheet scores. This notion of a
League was a good one as some teams felt very competitive and
tried to do well to win the League.

4 EVALUATION
Before the semester ended, we did a survey about the Game Days.
Students were asked to fill out the survey anonymously. The
second question of our survey was based on a pedagogical
ordering of five items, from the mastery, to the familiarity, and to

the exposure of subjects or topics in MAS. Specifically, the
questions were grouped into two sets. First, the students were
asked to score the helpfulness of each Game Day. Second, the
students were asked to score how the Game Days helped them in:
in (a) helping me understand the concepts of MAS, (b) helping me
understand the design issues of MAS, (c) helping me remember
the issues/terms of MAS, (d) helping me appreciate what MAS is
about, (e) helping me communicate better (English), and (f)
nothing. In the least, the goal of the class was to expose the
usefulness of MAS to the students (d).

Table 1 shows the average scores for Questions 1 and 2. The
students thought that Auction Day and Negotiation Day helped
them the most, and Allocation Day and Coalition Day not as
much. Auction Day and Negotiation Day were easier to play.
The rules were simpler; computations were simpler;
communication among group members of the same team was not
needed as much; the environment was much less dynamic. With a
less dynamic environment, the students were able to plan pre-
game strategies well.

Q1 average
a. Auction day 4.50
b. Allocation Day 4.00
c. Coalition Day 4.17
d. Negotiation Day 4.33
Q2 average
a. Understand concepts 4.58
b. Understand design issues 4.00
c. Remember issues/terms 4.17
d. Appreciate MAS 4.08
e. Communicate better in English 3.75
f. Nothing 1.58

Table 1. Average scores for Questions 1 and 2 of Survey.

Most students thought that the Game Days helped them (a)
understand the concepts of MAS (4.58/5.0), (b) understand the
design issues of MAS (4.00/5.0), (c) remember the issues or terms
of MAS (4.17/5.0), and (d) appreciate what MAS is about
(4.08/5.0). Based on this survey, we conclude that the Game
Days were very successful. Table 2 shows the ranking of the
helpfulness of the Game Days and other assignments in the class
to the students’ learning and understanding of the topics in the
class.

Items Score
Game Days 6.33
Final Project 5.92
Topic Summaries 5.92
Lectures 5.58
Homework 4.33
Seminar 4.03
Exam 3.83

Table 2. Ranking of requirements in the class in terms of
helpfulness.

In the Score column, the students scored the Game Days’
usefulness at 6.33, way above the closest item (Topic Summaries
and Final Project at 5.92). Overall, the students thought the
Lectures, Game Days, Topic Summaries and the Final Project to
be very useful, above 5.0 in a scale of 7.0.

5 LESSONS LEARNED
In this section I discuss the lessons learned from the Game Days.

(a) First of all, the Game Days that I have designed and
conducted are natural role-playing games for students in
multiagent systems. Each team is an agent and naturally, the class
becomes a multiagent system. So the application of multiagent
system-related problems to games is straightforward.

(b) Second of all, these role-playing games where students get to
move around in class, form their own cliques, and discuss and
argue loudly and energetically are very motivating. Students feel
a sense of accomplishment. I believe that the face-to-face
contacts during the games are a key factor to their enjoyment of
the games.

(c) The size of the class has to be small enough. Judging from
my experience, I do not recommend more than 8 teams in a class.
Each team may have 2 to 4 students, however.

(d) Keep the games simple and easy to play. Make them as
convenient as possible. Make everything as readily available as
possible (tables, worksheets, paper tokens, etc.).

(e) Punish rule-breakers and reward rule-abiders fairly. Some
teams are bound to break the rules of the games. Hopefully, they
are caught during the games so the impact can be minimized. If
not, penalize them post-game.

(f) It is important to make sure that the games are fair to
everybody. Students are very particular about this. They want to
compete and they want the games to be fair. And it is our
responsibility as instructors to ensure that. So, when you assign
individual utility values and costs, make sure that they are
symmetrical. For games that are not symmetrical (such as
consumer groups and provider groups for my Coalition Day),
score them differently.

(g) Give the students their Game Day assignments early. For my
Game Days, I gave the students the assignment at least one week
before the Game Day. Make sure that a general version of the
Game Day Package is available to the students. The students are
generally motivated to do well on Game Days, and thus they do
study the assignments a few days ahead of the Game Day, unlike
what they do with other, more conventional assignments.

(h) Give more weight to the Game Days. In my class, the Game
Days only accounted for 10% of the final grade. I realized in the
end that the students learned much more from the Game Days and
spent much time on the preparation for the Game Days that they
deserved more than 10%. My recommendation for a semester of
four Game Days is 15-20%.

(i) Encourage the students to come up with pre-game strategies,
to perform in-game observations, to conduct post-game analyses,
and to speak out at the end of the Game Day about the games.
Give them enough time to share their views with the class. In my
class, some teams enjoyed these requirements; some teams did
not. Teams that did were better teams.

(j) Be flexible on the Game Days. Since you have to fit the
Game Day into a class period, that is a really hard time constraint.
Eliminate or shorten rounds that are going on too long. Some
students immediately notice the problems with the design as they
play the games. Acknowledge them by fixing the problems (if

fixable) immediately. Use these fixes in your Post-Game
Analysis.

(k) Be persistent and dedicated to your Post-Game Analyses.
Games are just games if the students do not learn from them. So,
when you analyze the outcomes of the games, give feedback
specifically to each team and draw general observations. Most of
all, discuss the lessons learned from the viewpoint of a multiagent
system designer. Relate the lessons back to the topics or subjects
taught in the class. Make the connections between the games and
the lectures for the students explicit through your Post-Game
Analyses.

(l) Invite other faculty to visit your Game Days. Introduce the
visitors to your class at the beginning of your Game Days. The
students have a sense of pride and tend to do better to show the
visitors that they are good and they have fun.

(m) Every student must be present on Game Days, especially for
2-member teams. I had two occasions where a student failed to
show up and another showed up late. In both occasions, the team
with only one student had to work doubly hard to cope with the
“processing” of information and events in the games. I penalized
harshly on those students who failed to show up or show up on
time, and gave those students working on their own extra points.

(n) Be prepared to spend time pre-game and post-game when
you first incorporate the Game Days into your class. Based on my
experience, I spent probably 20 hours, for each Game Day, on
defining the assignment, preparing the Game Day Packages and
the Monitor Packages, designing the utility values and costs, and
double-checking all numbers were correct. I spent another 5
hours or so on the Post-Game Analysis for each Game Day.
Luckily, each Game Day, once designed, is re-usable. That
means, in the future, I only have to spend, say, a few hours on pre-
game design and packaging.

(o) Make your Post-Game Analyses available to the next class
for their Game Days. Thee provide valuable insights for those
future students.

6 CONCLUSIONS
In this paper, we have described a new approach to teaching a
class in MAS: Game Days. We have designed and conducted four
Game Days: Auction, Allocation, Coalition, and Negotiation. We
have discussed each game day in terms of its design and
specifications, and illustrated the design of the Game Day
Packages and Monitor Packages. In addition, we have outlined
the key topics in the Post-Game Analyses. Moreover, we have
presented a qualitative evaluation based on a semester-end survey.
The survey indicates that the students enjoyed the Game Days and
agreed that the Game Days were helpful in their learning and
understanding of the materials taught in the class. Finally, we
have listed a set of agendas as lessons learned from my experience
for all instructors who are interested in adopting Game Days for
their MAS classes.

 Our future work includes continued refinement of Game
Days for the MAS class, and additional summative and formative
evaluation of the students’ learning of MAS topics.

REFERENCES
[1] URL:
http://www.cse.unl.edu/~lksoh/Classes/CSCE475_896_Fall03/ga
medays.html

 [2] Bonwell, C. C. and J. A. Eison (1991). Active Learning:
Creating Excitement in the Classroom, ERIC Clearinghouse on
Higher Education, Document No. ED 340 272.

[3] Silberman, M. (1996). Active Learning: 101 Strategies to
Teach Any Subject, Allyn & Bacon.

[4] URL: http://www.imsa.edu/team/cpbl/cpbl.html

 [5] URL: http://www.samford.edu/pbl/search/whosearch.shtml.

[6] URL: http://www.mcli.dist.maricopa.edu/pbl/info.html.

[7] Boud, D., R. Cohen, and J. Sampson (2001). Peer Learning
in Higher Education: Learning from and with Each Other, Kogan
Page.

[8] Wills, C. E., and D. Finkel (1994). Experience with Peer
Learning in An Introductory Computer Science Course, Computer
Science Education, 5(2):165-187.

[19] Tinto, V., A. Goodsell, and P. Russo (1993). Collaborative
Learning And New College Students, Cooperative Learning and
College Teaching, 3(3):9-10.

[10] Black, R. L. (1992). Pharmacology Instruction: A Game
Approach for Students, Nurse Educator, 17(2):7-8.

[11] Feezel, J. D. (1993). Preparing Teachers through Creativity
Games, Proceedings of the Joint Meeting of the Southern States
Communication Association and the Central States
Communication Association, April, Lexington, KY.

[12] Haas, M. E. (1988). Using Small Group Games in Social
Studies, Proceedings of the Annual Meeting of the National
Council for Social Studies, November, Orlando, Florida.

[13] Prensky, M. (2001). Digital Game-Based Learning,
McGraw-Hill.

[14] Daniel, G. and K. Cox (2002). Computer Games in
Education, Web Tools Newsletter, 25 June 2002.

[15] URL: http://learningware.com/whatsnew/gameswork.html

[16] Robocup initiative, URL: http://www.robocup.org/

[17] Buhler, P. and J. M. Vidal (2001). Biter: A Platform for the
Teaching and Research of Multiagent Systems’ Design using
Robocup, Proceedings of the International Robocup Symposium.

[18] Bergen, M., J. Densinger, and J. Kidney (2003). Teaching
Multi-Agent Systems with the Help of ARES: Motivation and
Manual, Proceedings of the Western Canadian Conference on
Computing Education, Courtenay, 2003.

[19] Weiss, G. (1999). Multiagent Systems: A Modern Approach
to Distributed Artificial Intelligence, MIT Press.

