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Abstract

Many intelligent tutoring systems (ITSs) have belevel-
oped, deployed, assessed, and proven to facilgateing.
However, most of these systems do not generallytaida
new circumstances, do not self-evaluate and selfiguare
their own strategies, and do not monitor the usastery of
the learning content being delivered or presertetthé stu-
dents. These shortcomings force ITS developersften
spend much development time in manual revision fared
tuning of the learning and instructional contentso ITS.
In this paper, we describe an intelligent agent tigdivers
learning material adaptively to different studeri#gtoring
in the usage history of the learning materials anhdlent
profiles as observed by the agent. Student-tuti@raction
includes the activities of going through learningterial,
such as a topical tutorial, a set of examples, arsgt of
problems. Our assumption is that our agent wilabke to
capture and utilize these student activities asptimaer to
select the appropriate examples or problems toradtar to
the student. Using amtegrated introspective case-based
reasoningapproach, our agent further learns from its ex-
perience and refines its reasoning process—inclutlieg
instructional strategies—to adapt to student neddsre-
over, our agent monitors the usage history of #aenling
materials to improve its performance. We have tbari
end-to-end ITS using an agent powered by this rated
introspective case-based reasoning engine. We Heve
ployed the ITS in a CS course. Results indicatettial TS
was able to learn to deliver more appropriate exesnand
problems to the students.

Introduction

Intelligent tutoring systems (ITSs) adapt instrofiexam-
ples, problems, and feedback to the needs or sthte
knowledge of individual students given the tutorsitya-
tion that the students are in. As summarized iraéGseet
al. 2001), ITSs are clearly one of the successfulaunés
of Artificial Intelligence (Al) research. Many ielligent
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tutoring systems have been developed, deployedssad,
and proven to facilitate learning (Graesstral. 2001).
However, most of these systems do not generallptatda
new circumstances, do not self-evaluate and selfignare
their own strategies, and do not monitor the udag®ry
of the learning content being delivered or presgmbethe
students. Further, these systems do not tagjuladéty of
the learning content based on how successfully duieo
has been used and how it has matched the expdujed o
tives. These shortcomings force ITS developersfteno
spend much development time in manual revisionfeued
tuning of the learning and instructional contenfldlere we
define learning content as tutorial material sushaa ex-
ample, a problem, or an explanation for a partictdpic.
We define instructional content as the instructicsieate-
gies—the tutoring heuristics or expertise—that deiteem
which examples or problems should be deliveredh® t
students, how to scaffold the explanations appabglsi,
and so on.) As a result, in the vast majority T lapplica-
tions, examples, problems, and instructional sgiatemust
be authored, evaluated, and modified manually. alitw-
mate the revision process, the selection, sequgneind
adaptation of examples and problems are thus ardey
search problem in ITSs. Since examples and qumsstian
vary according to many dimensions, e.g., difficuttggni-
tive level, types of verbiage, context and lengthd stu-
dents can vary in aptitude, motivation, and sefitaty, it
is challenging for an ITS to be able to learn t@iave its
own performance over time.

In this paper, we describe an intelligent tutorgygtem
called the Intelligent Learning Material Deliverygént
(ILMDA). This system integrates intelligent techoes
from the research areas of agents, case-basednimgso
and machine learning. It delivers learning materased
on the usage history of the learning material, shelent
relatively static background profile (such as Gi#gjors,
interests, and courses taken), and the studentrdgrec-
tivity profile (based on their interactions withetHTS).
The agent uses the profiles to decide, through-lbased
reasoning (CBR) (Kolodner 1993), which learning mled
(examples and problems) to present and how to prese
them to the students. Our CBR treats the usageriand
the profiles as the inpuituation of a case, and the output
solutionof a case is basically the specification of anrapp



priate example or problem. Our agent also usesishge
history of each learning material to adjust therappate-
ness of the examples and problems in a particitlat®n.
Each case is thus an instructional strategy.

We have also devised amrospectiveCBR engine that
incorporates elements of machine learning such tat
agent examines its similarity-based retrieval, #atégn,
and case learning processes: heuristics or we@ggsci-
ated with an instructional strategy (a case) aneforced
according to the outcome of applying that case. infe-
grate the impacts of the three learning mechanmmthe
agent’s casebase and reasoning, we have also ys@a a
cipled approach to minimize the “canceling out’eets on
the learned knowledge. This allows the ITS itselgtadu-
ally adjusts its instructional strategies and dtsdag the
quality of the learning material.
ILMDA in a CS1 (first CS core course). Resultswhbat
ILMDA is able to refine its instructional strategi¢o im-
prove outcomes and pedagogy.

Related Work

There have been successful ITSs such as as PACAd{Ko
inger et al. 1997), ANDES (Gertner and VanLehn 2000
AutoTutor (Graesser et al. 2001), and SAM (Cassedl.
2000). Some have the capabilities to classifyrieaen-
gagement (Beal et al. 2006), detect student mativatnd
proficiency (Johns and Woolf 2006), and recognipalg
(Mott et al. 2006) by tracking and modeling reateiinter-
active data through “machine learning’-like stepldow-
ever, these systems do not have “introspectiveéalogifies

to modify, for example, possiblweightson the multiple
data sources during integration in (Beal et al.&300r the
different mixture models in (Johns and Woolf 2008hat
is, these systems do not self-evaluate and seffeqron
their own strategies to improve their own perforoeover
time. ILMDA is different; it learns how to delivexppro-
priate learning content to different types of studeand to
monitor and evaluate how the learning materials rare
ceived by the students.

The notion of instrospective CBR has also been pro-

posed with the emphasis on feature weighting fonilai-
ity-based case retrieval. For example, Wettschessa
Aha (1995) proposed weighting features automayidait
case retrieval using a hill-climbing algorithm; Gigr
(1999) used cognitive biases to modify featuressgction
(changing, deleting, and weighting features appatgly);
Bonzano et al. (1997) used a decay policy togetlir a
push-pull perspective to adjust the term weightggani et
al. (1998) used reinforcement learning to rewardrest
neighbors that can be used correctly to solve impab-
lems to adapt the local weights to the input spaaemnulak
et al. (2000) used genetic algorithms to deterrttieerele-
vance or importance of case features and to firtémap
retrieval parameters; Zhang and Yang (2001) usedhtiu
tative introspective learning resembling back-pgaiesn
neural networks to learn feature weights of caBask and

We have deployed

Han (2002) used an analogical reasoning structuréeh-
ture weighting using a new framework called thelyita
hierarchy process; and Patterson et al. (2002)qzexp a
hybrid approach based on the k-nearest neighboritim
and regression analysis. While case learning lsasbeen
a staple of CBR (e.g., Watson and Marir 1994), ey
about case adaptation has not received as mucitiate
Leake et al. (1995) formulated the task of acqgiriase
adaptation knowledge as learning the transformasiod
memory search knowledge, by learning successfyptada
tion cases for future use. In Stahl (2005)’s fdrmiew of a
generalized CBR model, the author considered legrni
similarity measures while assuming that the adaptand
output function remain static during the lifetimé the
CBR system. However, none of the above approgutoes
posed an integrated, introspective machine learframge-
work for CBR that learns cases, revises similasigights,
and revises adaptation heuristics at the same time.

An important and relevant work in introspectivertéag
is the Meta-AQUA system (Cox and Ram 1999) thatiea
to improve its story-understanding performance ugto
analysis of its own reasoning. The system usessdastie
explanation-patterns. The learning is separatéul tiree
phases: (1) failure explanation, (2) learning deaigwhat
to learn), and (3) strategy construction (how tart¢. In
our work, there is no failure explanation as thendm
knowledge is not rich or complete enough to be dble
pinpoint the causes for failure in, say, a tutorgggsion,
especially when there are external factors thasl®fto-
day still cannot track or observe and consider.

I ntegrated | ntrospective CBR Framework

The integrated introspective CBR framework learesvn
cases, learns about how to determine case simildea-
ture weights), and about how to adapt previoustigois to
new situations. This machine learning is drivenfégd-
back provided by the environment about how wellgblel-
tion of a case has worked.

In this framework for our intelligent tutoring sgsh
ILMDA, a case consists of situationand asolution The
situation describes the learning material thatualestt has
just viewed, the student’s relatively static backgrd pro-
file, and the student’s dynamic profile. The separame-
ters used to describe the learning material indute av-
erage amount of time spent on the learning majethial
average number of examples viewed for this pasdicul
topic, and the number of going back-and-forth betwan
example and the tutorial, and between a questichamn
example, and between a question and a tutorial.

The student static and dynamic profiles form thsida
for the ILMDA's learner model. A learner model tells us
the metacognitive level of a student by lookinghat stu-
dent’s behavior as he or she interacts with thelosonal
content set. The background of a student stapdively
static and consists of the student's major, GPAlgaaf-
filiations, aptitudes, and competencies. It aleoludes



self-reported self-efficacy and motivation, basedaosur-
vey taken before a student processes a content Heg.
dynamic student profile captures the student’s-ties
behavior and patterns. It consists of the studemtline
interactions with ILMDA including the number of athpts
on the same item, number of different modules taefar,
average number of mouse clicks during the tutogeakr-
age number of mouse clicks viewing the examplestage
length of time spent during the tutorial, numberqoiits
after tutorial, number of successes, and so on.

Given the situation, a solution specifies the cbizmés-
tics of the most appropriate examples or problembe
delivered next to the student. The characteridtickide
the level of difficulty, the cognitive level in s of
Bloom’s taxonomy (Bloom et al. 1964) (i.e., recagm-
prehension, application, analysis, evaluation, ayathe-
sis), the level of scaffolding (whether to provitighlights,
hints, references or additional explanations), tlen¢n
terms of text length and average amount of timenaky
students to view a content set), and the amouimntefac-
tions (i.e., the average number of clicks by sttslevhen
viewing a content set).

Thus, in ILMDA, a case is an instructional strategsp-
ping a tutoring situation that takes into accotwetlearning
material and the student profile to a decision dratwthe
characteristics of the next appropriate examplproblem
should be.

Case Learning Module

The case learning module is typical. It allows skistem to
learn new, different cases in order to build a maieust
casebase. It compares the situation descriptien the
input space of a case) with the currently storessa If the
new case' situation is distinct enough from theepttases’,
the new case is stored in the casebase, divergifyie

casebase in order to cover more situations. Tkesy
learns new cases in order to allow the system te reasily
handle a wider range of situations that it will vitably

encounter when faced with different types of stuslen

Similarity Weights L earning Module

This learning module uses the outcome to analyedrtre
similarity of two given problems in order to re-ght the
case features (i.e., situation parameters in osigdg It is
built on several base assumptions: (1) similar sasil

have similar solutions; and (2) if a solution hagt gener-
ally successful, and the system believes thaniéw situa-
tion is similar to the situation to which this stidun has
been applied successfully, then the solution shdade
been successful for this problem. If the situatiare
deemed to be truly similar, then the system wiaed the
feature (parameter) weights that most stronglyuericed
the similarity. If they are not deemed similarerththose
strongly influencing weights will be penalized. ersystem
analyzes several iterations worth of adaptationsnae, in
order to have an accurate depiction of how each bas
performed and an accurate assessment of the mikarsi

ity. Adjusting these weights allows the systenvatue the
similarity of certain situation parameters moreigahan
other parameters. For instance, if the system ddehat a
situation parametea was the most influential in determin-
ing that casex and case were very similar, but the cases
had very different performances, then the learmimoglule
will adjust the similarity weights to maleless influential,
thereby making casesandy less similar. However, if our
similarity measurement did not determine that thses
were similar, then we do not adjust the weightthascases
may or may not perform similarly.

Adaptation Heuristics L earning Module

This module revises how the system adapts oldisakito
new situations. The system analyzes past adapsatio-
cluding (1) the new situation specification it wgigen, (2)
the case from the casebase that was used, (3d#pted
solution that was reached, and (4) the outcomerdisaited
from this solution. It determines which adaptati@uristic
was the cause of a good or bad adaptation andtadhes
heuristics accordingly. The adaptation heuristitsour

system modify the retrieved solution to accountdifer-

ences in the parameters described in the situsfiace.
Similar to the previous module, if an adaptatioeemed
successful—i.e., the adapted solution leads to eesgtul
outcome, then the heuristics that were influentiahaking
that adaptation will be reinforced, and vice versa.

Integrated L earning

This framework presents several advantages andvdisa
tages over a static CBR system. One key advaigahat

no one module is entirely responsible for improvihg
performance of the system. However, this also sep@
potential weakness of our approach. The systemneegr
converge on a steady state of knowledge as one lenodu
improving may undo the improvements made by another
module. For example, adjusting the similarity wesghf-
fects how the system decides which new cases to &al
which best case to retrieve and adapt. Learningaases
reduces the need for the adaptation module to mzakeal,

far reaching heuristics, and allows for more cheiaden
the similarity module attempts to find a case te.u#\d-
justing the adaptation heuristics will reduce teedhfor the
casebase to covewverysituation. To minimize the “can-
celing each other out” effects, we have devisedtao$
principles to guide the design of the integrategraach:

Principle 1. When the framework learns a new case, its
objective is to expand the situation space buttimetsolu-
tion space of the casebase. With this arrangeménile it
is still possible for the solution coverage of tasebase to
expand, it is the adaptation heuristics that havehbulder
the task of expanding the solution space.

Principle 2. The framework may also learn new cases
with failed solutions as the CBR system also penfofail-
ure-driven adaptations. This means if the sametiin
arises in the future, it is possible for the systenmetrieve a
newly-learned case with a failed solution, and adayay



from the failed solution, to incrementally and ewedly
obtain a successful solution without strainingadaptation
heuristics.

her profile information. After a student is loggexl he or
she selects a topic and then views the tutorighahtopic.
Following the tutorial, the agent composeseav situation

Principle 3. Each case is tagged with a utility or compe- from (1) the student’s static profile, (2) the dgmeally

tence vector that records how successful the casédéen
used, how often the case has been retrieved, amariamy
new cases has been spawned as a result of thevabtof
this case (Soh and Luo 2004). Cases that haverhesen
successful will carry more weight, for exampleciranging
the similarity weights. Cases that have spawnerkmew
cases will carry more weight in determining the @dton
heuristics.

tracked activities the student performed when vigwthe
tutorial, and (3) the parameters of the tutorighwéd. The
agent subsequently uses this new situation toexetrthe
best case+e., the case with the most similar situation to
the new situatiorfrom the casebase. The agent then
adapts the solution of that similar case dependimdnow
the cases differ, and uses the adapted outputtclséor a
suitable example (with the appropriate level oficlifity,

Principle 4. The framework has tuning parameters for scaffolding, Bloom's level, length, and so on) teegto the

each learning module that specify the amount ohghdn
weights used in reinforcement. This allows theedieper
to inject his or her confidence in the instructiooantent.
For example, if the similarity weights—i.e., the atdle
importance of the features—are highly regarded todre
rect, then the amount of changes allowed on thesghis
can be set to be small. This in turn facilitates overall
coherence or convergence of the various learnindules.

Principle 5.
changing only the most influential similarity wetghand
adaptation heuristics for each learning episoddat Ts,
after the blame or credit assignment, the simjlasieights
or adaptation heuristics are ranked in terms obtame or
credit. Only the top contributor to a failure osaccess is
penalized or rewarded accordingly. This has tifiecebf
reducing the impact of a single outcome on the sigr
heuristics, allowing the system to gradually adjhst im-
pact of each weight or heuristic.

Principle 6. The framework staggers its learning activi-

ties with different activation frequencies. Foraele,
case learning can be activated every time a new tas
evaluated while weights or heuristics learning banacti-

vated after everm cases, or only when the system has seen

too many failures for some period of time.

We have implemented our integrated introspectivdiRCB

system following all the above principles. We hadepted
Principles 1 and 2 in the case learning modulehdiyies
3, 4, and 5 in the similarity weights and adaptatieuris-
tics learning modules, and Principle 6 in the olldearn-
ing management.

I mplementation and Deployment

We have implemented the integrated introspectiveRCB

framework in ILMDA. As alluded to earlier, ILMDAsI
designed to deliver the appropriate tutorial, exasypand
exercises to the students based on student aitace
backgrounds, their interactions with the systendy #me
learning content. For each session, the CBR mduageto
decide what examples or problems to deliver tosthdent
and how to present these examples or problems ésuitie
amount of scaffolding) for ILMDA. Figure 1 showset
flowchart of ILMDA.

When a student starts the ILMDA application, hesloe
is first asked to login. This associates the wg#r his or

The framework learns conservatively—

student. After the student is done looking atekamples,
the same process is used to select an appropriaidem.
Again, the agent takes into account how the stuthent
haved during the example, as well as his or helkdvaand
profile. After the student completes an examplegmb-
lem, he or she may choose to be given another laed t
process repeats. We deem an instructional stratagg
case) as successful if a student behaves withimaheal
(or Gaussian) range of the expected behavior adsoki
with each example or problem. Also, if a studdatts to
view another example after viewing one, that atsbdates
that the first example might not have been appateri If a
studentquits—exiting out of the session—before finishing
an example or answering a question, that also ateficthat
the example or question might not have been apiatepr

QuitfFailed Login login Mesw Liser
£ — T user
. —— panel
Sutessiul -
Login - i

Pick = e e e d
tutarial e

panel

Tutorial
panel | =
Quit
lExampIe weanted .
Example | gy
panel . .
Review
Quit N
¢. Problern wanted
B e .
-e Review
- 13
Quit e et

Figure 1. GUI and interactions between ILMDA and students.

We deployed ILMDA to the first core course for the
computer science and computer engineering majagdC
at the University of Nebraska. Typically, this ceeirhas



about 100 students per year, with a diverse grdugte
dents from majors such as CS, Math, Engineerind,san
on. Further, the programming backgrounds of thstge
dents are very diverse. Some incoming freshmep had
some programming in their high schools; some hag h
none. Thus, it is important for the course to béedo
adapt to the different student aptitude levels arativa-
tions. For details on the deployment, a simulétaitt to
analyze the ITS, and a case study on a Recursjun, to
please refer to (Blank 2005), (Soh and Blank 2005ph
et al. 2005), respectively. In this paper, we fon the
comparison of two versions of ILMDA: learning, andn-
learning. The non-learning agent performs CBR atith
any learning. The learning ILMDA enables all its RBnd
machine learning modules. Here is a report on skeye
results briefly: how the introspective CBR impactiu
outcomes of the tutoring system and how it revigedin-
structional content: cases, similarity weights, #mel adap-
tation heuristics.

Impact on Outcome

One metric to measure the impact of integratedéptec-
tive CBR is the average number of problems deliydre-
tween a wrong answer and solving a problem cogrectl
This metric indicates how effective and efficieime system
is in adjusting to an unsuccessful session—givimyab-
lem that a student answered incorrectly—to eventual
cate a problem that the student is able to ansareedcly.
Though given the same casebase to begin withegtiraihg
agent outperformed the non-learning agent on tkeeage
number of problems delivered between an incorreatly
swered problem and a correctly answered one (093 v
1.72). This indicates that the net learning ga@s wositive
for the integrated introspective CBR framework.

Further, the learning agent was able to increaseitility
of the instructional content of ILMDA, as shownkigure
3. The utility of the instructional content is teem of (1)
the utility of each similarity weight in retrieving success-
fully applied case; (2) the utility of each adamatheuris-
tic in contributing significantly to an adaptatiof the old
solution to the new situation that led to the ssstd ap-
plication of the adapted solution; and (3) theitytibf each
case as the ratio of the number of successful cgidins of
the case over the number times the case has beeved.
As shown in Figure 3, there is a significant immment
from the first time period to the second time périand
then there is a slow decline. However, even withdlight
decline in outcome, the final content set stillgarformed
the first one significantly. This graph shows Higlity of
the learning agent to improve the utility of thetiuctional
content set.

Impact on Instructional Strategies

Here we briefly summarize how integrated introsjvect
CBR has allowed us to evaluate, refine, and discave
structional strategies on effective delivery ofrtéag mate-
rials.

For example, the initial instructional content aeed
that GPA was an important indicator in deciding et
appropriate example or problem, and that the “feaiu
going back-and-forth” behavior of a student wases in-
dicator that a student is trying to look for anssvir prob-
lems without actually reading through the learncogtent
carefully in the first place, as encoded in theesasHow-
ever, ILMDA learned that (1) GPA was not an impaotta
situation feature (its importance dropped from tb.@.46)
and (2) the number of times a student went backfarii
between an example and the tutorial was quite itapor
(0.80) but not as important as the back-and-foetfwben a
problem and the tutorial (0.99).

0.7
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0:5 /'\\-\.\'
0.4 \\./

0.3

o

0.2 4
01 —&— non-learning | |
—&— learning
T T T

1 2 3 4 5

Uility of Instructional Content

Time Periods

Figure 3. Utility of instructional content set over the coelisf
five time periods ILMDA was used.

Another example involves the adjustment of an tadap
tion heuristic. Originally, there was a heuristiat in-
creased the degree of scaffolding when presentingxa
ample to the students if the new situation shovied the
student failed to answer problems correctly moterothan
the student profile in the situation of the besteca How-
ever, the learning ILMDA learned to reduce the éegof
scaffolding to better guide a student to attemprewer a
problem. ILMDA observed that when students werentb
to spend more time on examples, or were found fier re
back to the examples, they were more likely to quit
ILMDA before answering questions correctly. Thus,
ILMDA cut down the amount of scaffolding to redutte
length of the examples delivered.

These examples show that, using the introspe@BR
engine, an ITS can refine its own instructionaht&tgies to
better adapt to the students that it deals withtaedearn-
ing content that it has.

Conclusions

We have built an intelligent tutoring system calleMDA
with the underlying reasoning being the propose-in
grated introspective case-based reasoning. Tiusoaph
integrates case learning, revision of similarityighs and
revision of adaptation heuristics such that the tB& re-
ward and penalize the cases and heuristics acgptalithe
outcomes of their usages. To minimize the “cangetiut”



effects, we have also used a set of principlesatilitate
concurrent learning modes. Together, this appradlolvs
the agent to refine its instructional content. @uperi-
ments, based on an actual deployment in an inttoduc
CS course, indicated that the ILMDA learning agemas
able to learn to better deliver more appropriatangdes
and problems and refine its instructional stratedeases,
similarity weights, and adaptation heuristics), mgkit
more adaptive to different learner models topics.

For our future work, we plan to study how the éhre
learning modules interact and how each principlpaiots
the overall learning behavior. We also plan toinesf
ILMDA to make it a testbed to quality tag the ldagcon-
tent. Currently, it is able to reduce the weigbts the
learning content (as situation parameters in a)caséng
an overall picture of how consistent or accuratedbllec-
tive set of examples or the collective set of peatd has
been labeled. We plan to translate that into ditguag
for each individual example or problem. .
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