
Integrated Introspective Case-Based Reasoning for

Intelligent Tutoring Systems

Leen-Kiat Soh

Computer Science and Engineering, University of Nebraska
256 Avery Hall

Lincoln, NE 68588-0115 USA
lksoh@cse.unl.edu

Abstract
Many intelligent tutoring systems (ITSs) have been devel-
oped, deployed, assessed, and proven to facilitate learning.
However, most of these systems do not generally adapt to
new circumstances, do not self-evaluate and self-configure
their own strategies, and do not monitor the usage history of
the learning content being delivered or presented to the stu-
dents. These shortcomings force ITS developers to often
spend much development time in manual revision and fine-
tuning of the learning and instructional contents of an ITS.
In this paper, we describe an intelligent agent that delivers
learning material adaptively to different students, factoring
in the usage history of the learning materials and student
profiles as observed by the agent. Student-tutor interaction
includes the activities of going through learning material,
such as a topical tutorial, a set of examples, and a set of
problems. Our assumption is that our agent will be able to
capture and utilize these student activities as the primer to
select the appropriate examples or problems to administer to
the student. Using an integrated introspective case-based
reasoning approach, our agent further learns from its ex-
perience and refines its reasoning process—including the
instructional strategies—to adapt to student needs. More-
over, our agent monitors the usage history of the learning
materials to improve its performance. We have built an
end-to-end ITS using an agent powered by this integrated
introspective case-based reasoning engine. We have de-
ployed the ITS in a CS course. Results indicate that the ITS
was able to learn to deliver more appropriate examples and
problems to the students.

Introduction

Intelligent tutoring systems (ITSs) adapt instruction, exam-
ples, problems, and feedback to the needs or state of
knowledge of individual students given the tutoring situa-
tion that the students are in. As summarized in (Graesser et
al. 2001), ITSs are clearly one of the successful outcomes
of Artificial Intelligence (AI) research. Many intelligent

tutoring systems have been developed, deployed, assessed,
and proven to facilitate learning (Graesser et al. 2001).
However, most of these systems do not generally adapt to
new circumstances, do not self-evaluate and self-configure
their own strategies, and do not monitor the usage history
of the learning content being delivered or presented to the
students. Further, these systems do not tag the quality of
the learning content based on how successfully a module
has been used and how it has matched the expected objec-
tives. These shortcomings force ITS developers to often
spend much development time in manual revision and fine-
tuning of the learning and instructional contents. (Here we
define learning content as tutorial material such as an ex-
ample, a problem, or an explanation for a particular topic.
We define instructional content as the instructional strate-
gies—the tutoring heuristics or expertise—that determine
which examples or problems should be delivered to the
students, how to scaffold the explanations appropriately,
and so on.) As a result, in the vast majority of ITS applica-
tions, examples, problems, and instructional strategies must
be authored, evaluated, and modified manually. To auto-
mate the revision process, the selection, sequencing, and
adaptation of examples and problems are thus a key re-
search problem in ITSs. Since examples and questions can
vary according to many dimensions, e.g., difficulty, cogni-
tive level, types of verbiage, context and length, and stu-
dents can vary in aptitude, motivation, and self-efficacy, it
is challenging for an ITS to be able to learn to improve its
own performance over time.
 In this paper, we describe an intelligent tutoring system
called the Intelligent Learning Material Delivery Agent
(ILMDA). This system integrates intelligent techniques
from the research areas of agents, case-based reasoning,
and machine learning. It delivers learning material based
on the usage history of the learning material, the student
relatively static background profile (such as GPA, majors,
interests, and courses taken), and the student dynamic ac-
tivity profile (based on their interactions with the ITS).
The agent uses the profiles to decide, through case-based
reasoning (CBR) (Kolodner 1993), which learning modules
(examples and problems) to present and how to present
them to the students. Our CBR treats the usage history and
the profiles as the input situation of a case, and the output
solution of a case is basically the specification of an appro-

Copyright © 2007, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

priate example or problem. Our agent also uses the usage
history of each learning material to adjust the appropriate-
ness of the examples and problems in a particular situation.
Each case is thus an instructional strategy.
 We have also devised an introspective CBR engine that
incorporates elements of machine learning such that the
agent examines its similarity-based retrieval, adaptation,
and case learning processes: heuristics or weights associ-
ated with an instructional strategy (a case) are reinforced
according to the outcome of applying that case. To inte-
grate the impacts of the three learning mechanisms on the
agent’s casebase and reasoning, we have also used a prin-
cipled approach to minimize the “canceling out” effects on
the learned knowledge. This allows the ITS itself to gradu-
ally adjusts its instructional strategies and also to tag the
quality of the learning material. We have deployed
ILMDA in a CS1 (first CS core course). Results show that
ILMDA is able to refine its instructional strategies to im-
prove outcomes and pedagogy.

Related Work

There have been successful ITSs such as as PACT (Koed-
inger et al. 1997), ANDES (Gertner and VanLehn 2000),
AutoTutor (Graesser et al. 2001), and SAM (Cassell et al.
2000). Some have the capabilities to classify learner en-
gagement (Beal et al. 2006), detect student motivation and
proficiency (Johns and Woolf 2006), and recognize goals
(Mott et al. 2006) by tracking and modeling real-time inter-
active data through “machine learning”-like steps. How-
ever, these systems do not have “introspective” capabilities
to modify, for example, possibly weights on the multiple
data sources during integration in (Beal et al. 2006), or the
different mixture models in (Johns and Woolf 2006). That
is, these systems do not self-evaluate and self-configure
their own strategies to improve their own performance over
time. ILMDA is different; it learns how to deliver appro-
priate learning content to different types of students and to
monitor and evaluate how the learning materials are re-
ceived by the students.

The notion of instrospective CBR has also been pro-
posed with the emphasis on feature weighting for similar-
ity-based case retrieval. For example, Wettschereck and
Aha (1995) proposed weighting features automatically for
case retrieval using a hill-climbing algorithm; Cardie
(1999) used cognitive biases to modify feature set selection
(changing, deleting, and weighting features appropriately);
Bonzano et al. (1997) used a decay policy together with a
push-pull perspective to adjust the term weights; Avesani et
al. (1998) used reinforcement learning to reward nearest
neighbors that can be used correctly to solve input prob-
lems to adapt the local weights to the input space; Jarmulak
et al. (2000) used genetic algorithms to determine the rele-
vance or importance of case features and to find optimal
retrieval parameters; Zhang and Yang (2001) used quanti-
tative introspective learning resembling back-propagation
neural networks to learn feature weights of cases; Park and

Han (2002) used an analogical reasoning structure for fea-
ture weighting using a new framework called the analytic
hierarchy process; and Patterson et al. (2002) proposed a
hybrid approach based on the k-nearest neighbor algorithm
and regression analysis. While case learning has also been
a staple of CBR (e.g., Watson and Marir 1994), learning
about case adaptation has not received as much attention.
Leake et al. (1995) formulated the task of acquiring case
adaptation knowledge as learning the transformation and
memory search knowledge, by learning successful adapta-
tion cases for future use. In Stahl (2005)’s formal view of a
generalized CBR model, the author considered learning
similarity measures while assuming that the adaptation and
output function remain static during the lifetime of the
CBR system. However, none of the above approaches pro-
posed an integrated, introspective machine learning frame-
work for CBR that learns cases, revises similarity weights,
and revises adaptation heuristics at the same time.

An important and relevant work in introspective learning
is the Meta-AQUA system (Cox and Ram 1999) that learns
to improve its story-understanding performance through
analysis of its own reasoning. The system uses cases to tie
explanation-patterns. The learning is separated into three
phases: (1) failure explanation, (2) learning decision (what
to learn), and (3) strategy construction (how to learn). In
our work, there is no failure explanation as the domain
knowledge is not rich or complete enough to be able to
pinpoint the causes for failure in, say, a tutoring session,
especially when there are external factors that ITSs of to-
day still cannot track or observe and consider.

Integrated Introspective CBR Framework

The integrated introspective CBR framework learns new
cases, learns about how to determine case similarity (fea-
ture weights), and about how to adapt previous solutions to
new situations. This machine learning is driven by feed-
back provided by the environment about how well the solu-
tion of a case has worked.

In this framework for our intelligent tutoring system
ILMDA, a case consists of a situation and a solution. The
situation describes the learning material that a student has
just viewed, the student’s relatively static background pro-
file, and the student’s dynamic profile. The set of parame-
ters used to describe the learning material includes the av-
erage amount of time spent on the learning material, the
average number of examples viewed for this particular
topic, and the number of going back-and-forth between an
example and the tutorial, and between a question and an
example, and between a question and a tutorial.

The student static and dynamic profiles form the basis
for the ILMDA’s learner model. A learner model tells us
the metacognitive level of a student by looking at the stu-
dent’s behavior as he or she interacts with the instructional
content set. The background of a student stays relatively
static and consists of the student’s major, GPA, goals, af-
filiations, aptitudes, and competencies. It also includes

self-reported self-efficacy and motivation, based on a sur-
vey taken before a student processes a content set. The
dynamic student profile captures the student’s real-time
behavior and patterns. It consists of the student’s online
interactions with ILMDA including the number of attempts
on the same item, number of different modules taken so far,
average number of mouse clicks during the tutorial, aver-
age number of mouse clicks viewing the examples, average
length of time spent during the tutorial, number of quits
after tutorial, number of successes, and so on.

Given the situation, a solution specifies the characteris-
tics of the most appropriate examples or problems to be
delivered next to the student. The characteristics include
the level of difficulty, the cognitive level in terms of
Bloom’s taxonomy (Bloom et al. 1964) (i.e., recall, com-
prehension, application, analysis, evaluation, and synthe-
sis), the level of scaffolding (whether to provide highlights,
hints, references or additional explanations), length (in
terms of text length and average amount of time taken by
students to view a content set), and the amount of interac-
tions (i.e., the average number of clicks by students when
viewing a content set).

Thus, in ILMDA, a case is an instructional strategy map-
ping a tutoring situation that takes into account the learning
material and the student profile to a decision on what the
characteristics of the next appropriate example or problem
should be.

Case Learning Module
The case learning module is typical. It allows the system to
learn new, different cases in order to build a more robust
casebase. It compares the situation description (i.e., the
input space of a case) with the currently stored cases. If the
new case' situation is distinct enough from the other cases',
the new case is stored in the casebase, diversifying the
casebase in order to cover more situations. The system
learns new cases in order to allow the system to more easily
handle a wider range of situations that it will inevitably
encounter when faced with different types of students.

Similarity Weights Learning Module
This learning module uses the outcome to analyze the true
similarity of two given problems in order to re-weight the
case features (i.e., situation parameters in our design). It is
built on several base assumptions: (1) similar cases will
have similar solutions; and (2) if a solution has been gener-
ally successful, and the system believes that if a new situa-
tion is similar to the situation to which this solution has
been applied successfully, then the solution should have
been successful for this problem. If the situations are
deemed to be truly similar, then the system will reward the
feature (parameter) weights that most strongly influenced
the similarity. If they are not deemed similar, then those
strongly influencing weights will be penalized. The system
analyzes several iterations worth of adaptations at once, in
order to have an accurate depiction of how each case has
performed and an accurate assessment of the true similar-

ity. Adjusting these weights allows the system to value the
similarity of certain situation parameters more heavily than
other parameters. For instance, if the system deemed that a
situation parameter a was the most influential in determin-
ing that case x and case y were very similar, but the cases
had very different performances, then the learning module
will adjust the similarity weights to make a less influential,
thereby making cases x and y less similar. However, if our
similarity measurement did not determine that the cases
were similar, then we do not adjust the weights as the cases
may or may not perform similarly.

Adaptation Heuristics Learning Module
This module revises how the system adapts old solutions to
new situations. The system analyzes past adaptations, in-
cluding (1) the new situation specification it was given, (2)
the case from the casebase that was used, (3) the adapted
solution that was reached, and (4) the outcome that resulted
from this solution. It determines which adaptation heuristic
was the cause of a good or bad adaptation and adjusts the
heuristics accordingly. The adaptation heuristics in our
system modify the retrieved solution to account for differ-
ences in the parameters described in the situation space.
Similar to the previous module, if an adaptation is deemed
successful—i.e., the adapted solution leads to a successful
outcome, then the heuristics that were influential in making
that adaptation will be reinforced, and vice versa.

Integrated Learning
This framework presents several advantages and disadvan-
tages over a static CBR system. One key advantage is that
no one module is entirely responsible for improving the
performance of the system. However, this also exposes a
potential weakness of our approach. The system may never
converge on a steady state of knowledge as one module
improving may undo the improvements made by another
module. For example, adjusting the similarity weights af-
fects how the system decides which new cases to learn and
which best case to retrieve and adapt. Learning new cases
reduces the need for the adaptation module to make radical,
far reaching heuristics, and allows for more choices when
the similarity module attempts to find a case to use. Ad-
justing the adaptation heuristics will reduce the need for the
casebase to cover every situation. To minimize the “can-
celing each other out” effects, we have devised a set of
principles to guide the design of the integrated approach:

Principle 1. When the framework learns a new case, its
objective is to expand the situation space but not the solu-
tion space of the casebase. With this arrangement, while it
is still possible for the solution coverage of the casebase to
expand, it is the adaptation heuristics that have to shoulder
the task of expanding the solution space.

Principle 2. The framework may also learn new cases
with failed solutions as the CBR system also performs fail-
ure-driven adaptations. This means if the same situation
arises in the future, it is possible for the system to retrieve a
newly-learned case with a failed solution, and adapt away

from the failed solution, to incrementally and eventually
obtain a successful solution without straining the adaptation
heuristics.

Principle 3. Each case is tagged with a utility or compe-
tence vector that records how successful the case has been
used, how often the case has been retrieved, and how many
new cases has been spawned as a result of the retrieval of
this case (Soh and Luo 2004). Cases that have been more
successful will carry more weight, for example, in changing
the similarity weights. Cases that have spawned more new
cases will carry more weight in determining the adaptation
heuristics.

Principle 4. The framework has tuning parameters for
each learning module that specify the amount of change in
weights used in reinforcement. This allows the developer
to inject his or her confidence in the instructional content.
For example, if the similarity weights—i.e., the relative
importance of the features—are highly regarded to be cor-
rect, then the amount of changes allowed on these weights
can be set to be small. This in turn facilitates the overall
coherence or convergence of the various learning modules.

Principle 5. The framework learns conservatively—
changing only the most influential similarity weights and
adaptation heuristics for each learning episode. That is,
after the blame or credit assignment, the similarity weights
or adaptation heuristics are ranked in terms of the blame or
credit. Only the top contributor to a failure or a success is
penalized or rewarded accordingly. This has the effect of
reducing the impact of a single outcome on the weights or
heuristics, allowing the system to gradually adjust the im-
pact of each weight or heuristic.

Principle 6. The framework staggers its learning activi-
ties with different activation frequencies. For example,
case learning can be activated every time a new case is
evaluated while weights or heuristics learning can be acti-
vated after every n cases, or only when the system has seen
too many failures for some period of time.

We have implemented our integrated introspective CBR
system following all the above principles. We have adopted
Principles 1 and 2 in the case learning module, Principles
3, 4, and 5 in the similarity weights and adaptation heuris-
tics learning modules, and Principle 6 in the overall learn-
ing management.

Implementation and Deployment

We have implemented the integrated introspective CBR
framework in ILMDA. As alluded to earlier, ILMDA is
designed to deliver the appropriate tutorial, examples, and
exercises to the students based on student aptitudes and
backgrounds, their interactions with the system, and the
learning content. For each session, the CBR module has to
decide what examples or problems to deliver to the student
and how to present these examples or problems (such as the
amount of scaffolding) for ILMDA. Figure 1 shows the
flowchart of ILMDA.

When a student starts the ILMDA application, he or she
is first asked to login. This associates the user with his or

her profile information. After a student is logged in, he or
she selects a topic and then views the tutorial on that topic.
Following the tutorial, the agent composes a new situation
from (1) the student’s static profile, (2) the dynamically
tracked activities the student performed when viewing the
tutorial, and (3) the parameters of the tutorial viewed. The
agent subsequently uses this new situation to retrieve the
best case—i.e., the case with the most similar situation to
the new situation—from the casebase. The agent then
adapts the solution of that similar case depending on how
the cases differ, and uses the adapted output to search for a
suitable example (with the appropriate level of difficulty,
scaffolding, Bloom’s level, length, and so on) to give to the
student. After the student is done looking at the examples,
the same process is used to select an appropriate problem.
Again, the agent takes into account how the student be-
haved during the example, as well as his or her background
profile. After the student completes an example or prob-
lem, he or she may choose to be given another and the
process repeats. We deem an instructional strategy (or a
case) as successful if a student behaves within the normal
(or Gaussian) range of the expected behavior associated
with each example or problem. Also, if a student elects to
view another example after viewing one, that also indicates
that the first example might not have been appropriate. If a
student quits—exiting out of the session—before finishing
an example or answering a question, that also indicates that
the example or question might not have been appropriate.

Figure 1. GUI and interactions between ILMDA and students.

 We deployed ILMDA to the first core course for the
computer science and computer engineering majors (CS1)
at the University of Nebraska. Typically, this course has

about 100 students per year, with a diverse group of stu-
dents from majors such as CS, Math, Engineering, and so
on. Further, the programming backgrounds of these stu-
dents are very diverse. Some incoming freshmen have had
some programming in their high schools; some have had
none. Thus, it is important for the course to be able to
adapt to the different student aptitude levels and motiva-
tions. For details on the deployment, a simulator built to
analyze the ITS, and a case study on a Recursion topic,
please refer to (Blank 2005), (Soh and Blank 2005), (Soh
et al. 2005), respectively. In this paper, we focus on the
comparison of two versions of ILMDA: learning, and non-
learning. The non-learning agent performs CBR without
any learning. The learning ILMDA enables all its CBR and
machine learning modules. Here is a report on some key
results briefly: how the introspective CBR impacted the
outcomes of the tutoring system and how it revised the in-
structional content: cases, similarity weights, and the adap-
tation heuristics.

Impact on Outcome
One metric to measure the impact of integrated introspec-
tive CBR is the average number of problems delivered be-
tween a wrong answer and solving a problem correctly.
This metric indicates how effective and efficient the system
is in adjusting to an unsuccessful session—giving a prob-
lem that a student answered incorrectly—to eventually lo-
cate a problem that the student is able to answer correctly.
Though given the same casebase to begin with, the learning
agent outperformed the non-learning agent on the average
number of problems delivered between an incorrectly an-
swered problem and a correctly answered one (0.93 vs.
1.72). This indicates that the net learning gain was positive
for the integrated introspective CBR framework.
 Further, the learning agent was able to increase the utility
of the instructional content of ILMDA, as shown in Figure
3. The utility of the instructional content is the sum of (1)
the utility of each similarity weight in retrieving a success-
fully applied case; (2) the utility of each adaptation heuris-
tic in contributing significantly to an adaptation of the old
solution to the new situation that led to the successful ap-
plication of the adapted solution; and (3) the utility of each
case as the ratio of the number of successful applications of
the case over the number times the case has been retrieved.
As shown in Figure 3, there is a significant improvement
from the first time period to the second time period, and
then there is a slow decline. However, even with the slight
decline in outcome, the final content set still outperformed
the first one significantly. This graph shows the ability of
the learning agent to improve the utility of the instructional
content set.

Impact on Instructional Strategies
Here we briefly summarize how integrated introspective
CBR has allowed us to evaluate, refine, and discover in-
structional strategies on effective delivery of learning mate-
rials.

 For example, the initial instructional content assumed
that GPA was an important indicator in deciding the next
appropriate example or problem, and that the “frequent
going back-and-forth” behavior of a student was a key in-
dicator that a student is trying to look for answers to prob-
lems without actually reading through the learning content
carefully in the first place, as encoded in the cases. How-
ever, ILMDA learned that (1) GPA was not an important
situation feature (its importance dropped from 1.0 to 0.46)
and (2) the number of times a student went back-and-forth
between an example and the tutorial was quite important
(0.80) but not as important as the back-and-forth between a
problem and the tutorial (0.99).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5

Time Periods

U
ti
li
ty

 o
f
In

st
ru

ct
io

n
al

 C
o
n
te

n
t

non-learning

learning

Figure 3. Utility of instructional content set over the course of

five time periods ILMDA was used.

 Another example involves the adjustment of an adapta-
tion heuristic. Originally, there was a heuristic that in-
creased the degree of scaffolding when presenting an ex-
ample to the students if the new situation showed that the
student failed to answer problems correctly more often than
the student profile in the situation of the best case. How-
ever, the learning ILMDA learned to reduce the degree of
scaffolding to better guide a student to attempt to answer a
problem. ILMDA observed that when students were found
to spend more time on examples, or were found to refer
back to the examples, they were more likely to quit
ILMDA before answering questions correctly. Thus,
ILMDA cut down the amount of scaffolding to reduce the
length of the examples delivered.
 These examples show that, using the introspective CBR
engine, an ITS can refine its own instructional strategies to
better adapt to the students that it deals with and the learn-
ing content that it has.

Conclusions

We have built an intelligent tutoring system called ILMDA
with the underlying reasoning being the proposed inte-
grated introspective case-based reasoning. This approach
integrates case learning, revision of similarity weights and
revision of adaptation heuristics such that the ITS can re-
ward and penalize the cases and heuristics according to the
outcomes of their usages. To minimize the “canceling out”

effects, we have also used a set of principles to facilitate
concurrent learning modes. Together, this approach allows
the agent to refine its instructional content. Our experi-
ments, based on an actual deployment in an introductory
CS course, indicated that the ILMDA learning agent was
able to learn to better deliver more appropriate examples
and problems and refine its instructional strategies (cases,
similarity weights, and adaptation heuristics), making it
more adaptive to different learner models topics.
 For our future work, we plan to study how the three
learning modules interact and how each principle impacts
the overall learning behavior. We also plan to refine
ILMDA to make it a testbed to quality tag the learning con-
tent. Currently, it is able to reduce the weights on the
learning content (as situation parameters in a case), giving
an overall picture of how consistent or accurate the collec-
tive set of examples or the collective set of problems has
been labeled. We plan to translate that into a quality tag
for each individual example or problem. .

Acknowledgments

This research project was supported by the Great Plains
Software Technology Initiative and the Computer Science
and Engineering Department at the University of Nebraska.
The author thanks Todd Blank, L.D. Miller, and Akira
Endo for their programming work and experiments, and the
anonymous reviewers for their comments and feedback.

References

Avesani, P., Perini, A., and Ricci, F. 1998. The Twofold
Integration of CBR in Decision Support Systems. In Tech-
nical Report AAAI WS-98-02. Menlo Park, CA: AAAI
Press.

Beal, C. R., Qu, L., and Lee, H. 2006. Classifying Learner
Engagement through Integration of Multiple Data Sources,
in Proc. AAAI’2006, Boston, MA, 151-156.

Blank, T. 2005. ILMDA: An Intelligent Tutoring System
with Integrated Learning, MS Thesis, Computer Science &
Engineering, University of Nebraska, Lincoln, NE.

Bloom, B. S., Mesia, B. B., and Krathwohl, D. R. 1964.
Taxonomy of Educational Objectives. New York, NY:
David McKay.

Bonzano, A., Cunningham, P., and Smyth, B. 1997. Using
Introspective Learning to Improve Retrieval in CBR: A
Case Study in Air Traffic Control. In Proc. ICCBR’97,
291-302.

Cardie, C. 1999. Integrating Case-Based Learning and
Cognitive Biases for Machine Learning of Natural Lan-
guage, J. Experimental & Theoretical AI, 11(3):297-337.

Cassell, J., Annany, M., Basur, N., Bickmore, T., Chong,
P., Mellis, D., Ryokai, K., Smith, J., Vilhjálmsson, H., and
Yan, H. 2000. Shared Reality: Physical Collaboration with
a Virtual Peer, ACM SIGCHI Con. on Human Factors in
Comp. Sys., April 1-6, The Hague, The Netherlands

Cox, M. T. and Ram, A. 1999. Introspective Multistrategy
Learning: On the Construction of Learning Strategies, AI,
112(1-2):1-55.

Gertner, A. S. and VanLehn, K. 2000. ANDES: A
Coached Problem-Solving Environment for Physics, in
Proc. ITS’2000, 133-142.

Graesser, A. C., VanLehn, K., Rosé, C. P., Jordan, P. W.,
and Harter, D. 2001. Intelligent Tutoring Systems with
Conversational Dialogue, AI Magazine, 22(4):39-51.

Jarmulak, J., Craw, S., and Rowe, R. 2000. Self-
Optimising CBR Retrieval. In Proc. Int. Conf. Tools with
AI, 376-383.

Johns, J. and Woolf, B. 2006. A Dynamic Mixture Model
to Detect Student Motivation and Proficiency, in Proc.
AAAI’2006, Boston, MA, 163-168.

Koedinger, K. R., Anderson, J. R., Hadley, W. H., and
Mark, M. A. 1997. Intelligent Tutoring Goes to School in
the Big City, Int. J. AI in Ed. 8(1):30-43.

Kolodner, J. 1993. Case-Based Reasoning. Morgan
Kaufmann.

Leake, D. B., Kinley, A., and Wilson, D. 1995. Learning
to Improve Case Adaptation by Introspective Reasoning
and CBR. In Proc. ICCBR’95, 229-240.

Mott, B., Lee, S., and Lester, J. 2006. Probabilistic Goal
Recognition in Interactive Narrative Environments, in
Proc. AAAI’2006, Boston, MA, 187-192.
Park, C.-S. and Han, I. (2002). A Case-Based Reasoning
with the Feature Weights Derived by Analytic Hierarchy
Process for Bankruptcy Prediction, Expert Systems with
Applications, 23(3):255-264.

Patterson, D., Rooney, N., and Galushka, M. 2002. A Re-
gression Based Adaptation Strategy for Case-Based Rea-
soning. In Proc. AAAI’2002, 87-92.

Soh, L.-K., Blank, T. and Miller, L. D. 2005. Intelligent
Agents that Learn to Deliver Online Materials to Students
Better: Agent Design, Simulation, and Assumptions, in C.
Chaoui, M. Jain, V. Bannore, and L. C. Jain (eds.) Studies
in Fuzziness and Soft Computing: Knowledge-Based Vir-
tual Education, Chapter 3, 49-80.

Soh, L.-K. and Blank, T. 2005. An Intelligent Agent that
Learns How to Tutor Students: Design and Results. In
Proc. Int. Conf. on Computers in Education, 420-427.

Soh, L.-K. and Luo, J. 2004. Cautious Cooperative Learn-
ing for Automated Reasoning in a Multiagent System,
Frontiers in Artificial Intelligence and Applications, pp.
183-199, IOS Press.

Watson, I. And Marir, F. 1994. Case-Based Reasoning: A
Review, The Knowledge Engr. Review, 9(4):327-354.

Wettschereck, D. and Aha, D. W. 1995. Weighting fea-
tures. In Proc. ICCBR’1995, 347-358.

Zhang, Z. and Yang, Q. 2001. Feature Weight Maintenance
in Case Bases Using Introspective Learning, J. Intelligent
Information Systems, 16(2): 95-116.

