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Abstract 
In this paper we describe an integrated multilevel learn-
ing approach to multiagent coalition formation in a real-
time environment.  In our domain, agents negotiate to 
form teams to solve joint problems.  The agent that ini-
tiates a coalition shoulders the responsibility of 
overseeing and managing the formation process.  A 
coalition formation process consists of two stages.  
During the first stage, the initiating agent identifies the 
candidates of its coalition, i.e., known neighbors that 
could help.  The initiating agent negotiates with these 
candidates during the finalization stage to determine the 
neighbors that are willing to help.  Since our domain is 
dynamic, noisy, and time-constrained, our coalitions are 
not optimal.  However, our approach employs learning 
mechanisms at several levels to improve the quality of 
the coalition formation process.  At a tactical level, we 
use reinforcement learning to identify viable candidates 
based on their potential utility to the coalition, and case-
based learning to refine negotiation strategies.  At a 
strategic level, we use distributed, cooperative case-
based learning to improve general negotiation strate-
gies.  We have implemented the above three learning 
components and conducted experiments in multisensor 
target tracking and CPU re-allocation applications. 

1 Introduction 
Multiagent coalition formation is important for distributed 
applications ranging from electronic business to mobile and 
ubiquitous computing where adaptation to changing re-
sources and environments is crucial.  It increases the ability 
of agents to execute tasks and maximize their payoffs.  
Moreover, coalitions can dynamically disband when they 
are no longer needed or effective.  Thus the automation of 
coalition formation will not only save considerable labor 
time, but also may be more effective at finding beneficial 
coalitions than human in complex settings [Jennings, 2002]. 

Although considerable research has been conducted either 
in coalition formation among self-interested agents (e.g., 
[Tohme and Sandholm, 1999], [Sandholm et al., 1999], 
[Sen and Dutta, 2000]), or in coalition formation among 
cooperative agents (e.g., [Shehory et al., 1997]), little work 
has been done in coalition formation among both self-
interested and cooperative agents. Furthermore, there have 
been no attempts to study coalition formation among such 
agents in a dynamic, real-time, uncertain, and noisy envi-

ronment, which is a typical real-world environment and in 
which a sub-optimal coalition needs to be formed in a real-
time manner. 

Here we propose an integrated multilevel learning ap-
proach to multiagent coalition formation.  In our approach, 
agents are assumed to be cautiously cooperative—they are 
willing to help only when they think they benefit from it—
and honest.  However, due to the noisy, uncertain, dynamic 
and real-time nature of our domain, not every agent can be 
correct in its perceptions and assumptions.  Thus, to achieve 
a coalition, an initiating agent has to negotiate with other 
agents.  Through concurrent, multiple 1-to-1 negotiations, 
the initiating agent identifies the agents that are willing to 
help.  The formation process is successful if the initiating 
agent successfully persuades enough agents to join the 
coalition.   

Note that in this paper, we focus on improving the quality 
of the coalition formation process, and not on the quality of 
the coalition after it is formed and executed. 

Note also that our approach is an example of the “good 
enough, soon enough”  design paradigm.  In our domain, an 
agent has incomplete information about the environment, 
the task execution is time constrained, and the communica-
tion between agents is not reliable, so an optimal coalition 
formed from the deep learning is impractical.  Thus, a sub-
optimal yet fast coalition formation process is warranted.  

2 Coalition Formation 
Figure 1 depicts our coalition formation modules that make 
up the two stages: initialization and finalization.  The feasi-
bility study and the ranking of candidates are the initializa-
tion stage whereas the negotiations and their management 
the finalization stage.  This two-stage model [Soh and Tsat-
soulis, 2001] allows an agent to form an initial coalition 
hastily and quickly to react an event and to rationalize to 
arrive at a working final coalition as time progresses.  Here 
we briefly describe each module of the design: 
(1) Dynamic profiling:  Every agent dynamically profiles 
each neighbor as a vector in the agent about the negotiation 
relationship between them, and profiles each negotiation 
task as a case in the casebase about the negotiation strategy 
description and negotiation outcome.   
(2) Feasibility study: This module analyzes the problem 
and computes (a) whether the agent has the resources to do 
something about it, and (b) if yes, the list of agents that the 
agent thinks could help. 



 

Figure 1. An overview of our coalition formation process  

(3) Ranking of Candidates:  This module scores and ranks 
each candidate, and proportionately assigns the requested 
demand to each candidate, based on its potential utility (sec-
tion 3.1). 
(4) Management:  This module initiates negotiations with 
top-ranked candidates.  That is, the module manages multi-
ple, concurrent 1-to-1 negotiations.  For each negotiation 
task, it first finds a negotiation strategy through CBR.  
Then, it spawns a thread to execute that negotiation task.  
The module oversees the various negotiation threads and 
modifies the tasks in real-time.  For example, the module 
will terminate all remaining negotiations once it finds out 
that it no longer can form a viable coalition.  The module 
will reduce its requests or demands once it has secured 
agreements from successful negotiations.  And so on.  In 
effect, this management simulates a 1-to-many negotiation. 
(5) CBR:  Given the problem description of a task, the 
CBR module retrieves the best case from the casebase, and 
adapts the solution of that best case to the current problem.  
This is based on the work of [Soh and Tsatsoulis, 2001]. 
(6) Negotiation:  Our negotiation protocol is argumenta-
tive.  The initiating agent provides evidence for its request 
to persuade the responding agent.  The responding agent 
evaluates these evidence pieces and if they are higher than a 
dynamic persuasion threshold, then the responding agent 
will agree to the request.  The responding agent also has the 
ability to counter-offer due to time constraints or poor evi-
dence.  This is based on the work of [Soh and Tsatsoulis, 
2001]. 
(7) Acknowledgment:  Once all negotiations are com-
pleted, if a coalition has been formed, the agent confirms the 
success of the coalition to all agents who have agreed to 
help.  If the agent has failed to form a coalition, it informs 
the agents who have agreed to help so they can release 
themselves from the agreements. 

In the next section, we will discuss the learning mecha-
nisms, a critical part of our coalition formation approach.  

3 Learning 
Our learning approach incorporates reinforcement learning 
and case-based learning at two levels.  At a tactical level, we 
use reinforcement learning to identify viable candidates 
based on their potential utility to the coalition, and case-
based learning to refine specific negotiation strategies.  At a 
strategic level, we use distributed, cooperative case-based 
learning to improve general negotiation capabilities.   

3.1 Reinforcement Learning 
Reinforcement learning is evident at the coalition initializa-
tion and finalization stages.  During initialization, the initiat-
ing agent measures the potential utility of a candidate based 
on a weighted sum of (1) its past cooperation relationship 
with the initiator such as the candidate’s helpfulness, friend-
liness, and the agent’s helpfulness and importance to the 
candidate, (2) its current cooperation relationship with the 
initiating agent such as whether the two agents have already 
been negotiating about other problems, and (3) its ability to 
help towards the current problem.  An initiating agent thus 
will more likely approach the agents that have been helpful 
before, thus reinforcing the cooperation relationship among 
them.  

During finalization, an initiating agent also appeals to a 
candidate about how helpful the initiating agent has been in 
the past.  A candidate is more easily persuaded if it realizes 
that a particular agent has been helpful in the past, and thus 
once again reinforcing their cooperation relationship. 

3.2 Case-Based Learning 
We use CBR to retrieve and adapt negotiation strategies 
for negotiations during coalition finalization.  We also 
equip our CBR module with both individual and coopera-
tive learning capabil ities (Figure 2).  Individual learning 
refers to learning based on an agent’ s perceptions and 
actions, without direct communication with other agents.  
This learning approach allows an agent to build its case-
base from its own experience, eventually forming its own 
area of specialization.  Cooperative learning refers to 
learning other agents’  experience through interaction 
among agents.  When an agent identifies a problematic 
case in its casebase, it approaches other agents to obtain a 
possibly better case. 

There has been research in distributed and cooperative 
CBR.  [Prasad and Plaza, 1996] proposed treating corporate 
memories as distributed case libraries.  Resource discovery 
was achieved through (1) negotiated retrieval that dealt with 
retrieving and assembling case pieces from different re-
sources in a corporate memory to form a good overall case, 
and (2) federated peer learning that dealt with distributed 
and collective CBR [Plaza and Arcos, 1997].  [Martin et al., 
1999] extended the model using the notion of competent 
agents.  [Martin and Plaza, 1999] employed an auction-
based mechanism that focused on agent-mediated systems 
where the best case was selected from the bid cases.   



 

 

 

Figure 2. The relationship between case learning and CBR as 
well as negotiation tasks in an agent 

Our methodology employs a cautious utility-based adap-
tive mechanism to combine the two learning approaches, an 
interaction protocol for soliciting and exchanging informa-
tion, and the idea of a chronological casebase.  It empha-
sizes individual learning and only triggers cooperative learn-
ing when necessary.  Our cooperative learning also differs 
from collective CBR in that it does not merge case pieces 
into one as it considers entire cases.  In addition, our re-
search focus here is to define a mechanism that combines 
individual and cooperative learning.   

Note that the communication and coordination overhead 
of cooperative learning may be too high for cooperative 
learning to be cost-effective or timely.  Moreover, since an 
agent learns from its own experience and its own view of 
the world, its solution to a problem may not be applicable 
for another agent facing the same problem.  This injection of 
foreign knowledge may also be risky as it may add to the 
processing cost without improving the solution quality of an 
agent [Marsella et al., 1999]. 

3.2.1 Chronological Casebase and Case Utility 
We have uti l ized the notion of a chronological casebase 
in which each case is stamped with a time-of-birth (when 
it was created) and a time-of-membership (when it joined 
the casebase).  All initial cases are given the same time-
of-birth and time-of-membership.  In addition, we profi le 
each case’s usage history (Table 1).  An agent evaluates 
the uti l i ty of a case based on its usage history.  If the case 
has a low uti l i ty, it may be replaced (or forgotten).  If the 
case is deemed problematic, then a cooperative learning 
will be triggered and the case will be replaced.  Table 2 
shows the heuristics we use in tandem with the chrono-
logical casebase.  When a negotiation completes, if the 
new case is useful to add the casebase’s diversity, the 
agent learns it.  I f the casebase’s size has reached a preset 
l imit, then the agent considers replacing one of the exist-
ing cases with the new case.  For our individual case-
based learning, we use heuristics H1, H2, and H3. 
 

Parameters Description 
TU The number of times the case has been used 
TSU The number of times the case has been used in a 

successful negotiation 
TINC The number of times the usage of the case has led to a 

new case getting added to the casebase 
TR The number of times the case has been designated as 

a problematic case, i.e., with very low utility 
TS The last time that the case was used or the time when 

the case was added 

Table 1. The usage history that an agent profiles of each case 

Heuristics Description 
H1 
 Currency 

If a case has not been used in a long time, then this 
case is more likely to be replaced. 

H2 
Evolution 

With everything else equal, an old case is more likely 
to be replaced than a young case. 

H3 
Usefulness 

If a case’s TSU is significantly small, then the case is 
more likely to be replaced.   

H4 Solution 
Quality I 

If a case has a high TU but a low TSU, then it is a 
problematic case. 

 
H5 Solution 
Quality II 

If a case has a low TSU, and a high TINC, then the 
solution of this case is probably not suitable for the 
problems encountered by the agent and it is a prob-
lematic case. 

H6 
Persistence 

The urgency to trigger a cooperative learning process 
is directly dependent on the case’s TR, until a pre-
determined threshold is reached. 

H7 Igno-
rance 

If a case’s TR has reached a pre-determined threshold 
and it is still not replaced, then the problematic case is 
removed without replacement. 

Table 2. Heuristics that support the chronological casebase 

3.2.2 Cooperative Learning 
Figure 3 depicts our cooperative learning design.  We 
adhere to a cautious approach to cooperative learning: 

 

Figure 3. The cooperative learning design 

(1)  The agent evaluates the case to determine whether it is 
problematic.  To designate a case as problematic, we use 
heuristics H4 and H5: a (frequently used) case is problem-
atic if it has a low success rate (TSU/TU) and a high incur-
rence rate (TINC/TU).  The profiling module keeps track of 
the utility of the cases. 
(2)  The agent only requests help from a selected agent that 
it thinks is good at a particular problem.  We want to ap-
proach neighbors who have initiated successful negotiations 
with the current agent, with the hope that the agent may be 
able to learn how those neighbors have been able to be suc-



cessful.  This is determined based on the profile of each 
neighbor that the agent maintains.  The exchange protocol is 
carried out by the case request and response modules. 
(3)  If the foreign case is similar to the problematic case, the 
agent adapts the foreign case before adopting it into its 
casebase.  At the same time, the usage history parameters of 
the new case are reset.   
(4) If a problematic case cannot be fixed after K times, it 
will be removed (Heuristics H6 and H7). 

Note that this cooperative learning is performed sepa-
rately from the actual coalition formation process due to 
real-time constraints — a negotiation task needs immedi-
ate attention and cannot afford meddling with coopera-
tive learning. 

4 Experiments and Results 
We have implemented a multiagent system with multiple 
agents that perform multi-sensor target tracking and adap-
tive CPU reallocation in a noisy environment (simulated by 
a JAVA-based program called RADSIM).  Each agent has 
the same capabilities, but is located at a unique position.  
Each agent controls a sensor and can activate the sensor to 
search-and-detect the environment.  When an agent detects a 
moving target, it tries to implement a tracking coalition by 
cooperating with at least two neighbors.  And this is when a 
CPU shortage may arise: the activity may consume more 
CPU resource.  When an agent detects a CPU shortage, it 
needs to form a CPU coalition to address the crisis.  

The multi-agent system is implemented in C++.  In the 
current design, each agent has N+3  threads.  The core 
thread is responsible for making decisions, managing tasks, 
and overseeing negotiations.  A communication thread is 
used to interact with the message passing system of the sen-
sor.  An execution thread actuates the physical sensor: cali-
bration, search-and-detect for a target, etc.  Each agent also 
has N negotiation threads to concurrently negotiate with 
other agents. 

We used two simulations for our experiments.  We con-
ducted experiments in a simulation called RADSIM where 
communication may be noisy and unreliable, and one or two 
targets may appear in the environment.  We also designed 
and implemented our own CPU shortage simulation module.  
Each task is designated with a CPU usage amount plus a 
random factor.  When an agent detects a CPU shortage, the 
tasks that it currently performs slow down.  Thus, a CPU 
shortage that goes unresolved will result in failed negotia-
tions since our negotiations are time-constrained.  

4.1 Impacts of Learning 
We also conducted experiments with four versions of learn-
ing: (1) both case-based reasoning and reinforcement learn-
ing (CBRRL), (2) only case-based reasoning (NoRL), (3) 
only reinforcement learning (NoCBR), and (4) no learning 
at all (NoCBRRL).  Figure 4 shows the result in terms of the 
success rates for negotiations and coalition formations.   
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Figure 4. Success rates of negotiations and coalition formations for 
different learning mechanisms 

The agent design with both case-based reasoning/learning 
and reinforcement learning outperformed others in both 
negotiation success rate and coalition formation success 
rate.  That means with learning, the agents were able to ne-
gotiate more effectively (and perhaps more efficiently as 
well) that led to more coalitions formed. Without either 
learning (but not both), the negotiation success rates re-
mained about the same but the coalition formation rate 
tended to deteriorate.  This indicates that without one of the 
learning methods, the agents were still able to negotiate ef-
fectively, but may be not efficiently (resulting in less proc-
essing time for the initiating agent to post-process an 
agreement). With no learning, the agents fared noticeably 
poorly. 

4.2 Resource Allocation and System Coherence 
We conducted experiments in CPU re-allocation to test the 
coherence of our system.  We refer to the CPU allocation as 
a sustenance resource since in order for an agent to obtain 
more CPU, it needs to incur CPU usage while negotiating 
for the resource.  By varying the amount of the initial CPU 
allocation to each agent, we created mildly-constrained, 
overly-constrained, and unevenly-constrained scenarios.  
Tables 3 and 4 compared the agents’  behavior in terms of 
successes in negotiations and coalition formations.  In par-
ticular, the coalition success rate is the number of success-
fully formed coalitions over the number of coalitions initi-
ated, where a coalition is successfully formed when the 
CPU obtained satisfies the agent’s need.  We observed the 
following: 
(1) In all experiments, the reduction in CPU shortage of 
each agent and the whole system was obvious.  Gradually, 
the CPU resource was reallocated more evenly among 
agents.  The possibility of a CPU shortage decreases and 
each agent’s shortage amount decreases.  This shows a 
coherent, cooperative behavior among the agents. 



(2) In all experiments, after some period of time, each 
agent’s CPU allocation converged to an average level 
(14%).  After that, each agent fluctuated around that level.  
(3) We also observed that the coalition formation was the 
most successful for the system as a whole when there were 
roughly the same number of resourceful and resource-
starved agents (Experiment #3) and this type of system also 
required the least number of negotiations and coalitions to 
converge.   
 

 Initial CPU allocation (%) / Negotiation success rate (%) / # of negotiations 

Experiment #1 Experiment #2 Experiment #3 Experiment #4 
Initiating 
agent 

Total CPU = 28% Total CPU = 56% Total CPU = 56% Total CPU = 56% 

1 7 15 20 7 45.5 11 7 80 5 7 42.9 14 

2 7 25 12 7 55.6 9 7 75 8 14 80 5 

3 7 35.3 17 7 41.7 12 21 62.5 8 14 44.4 9 

4 7 30 10 35 25 4 21 80 5 21 66.7 3 

Average 7 25.4 14.75 14 44.4 9 14 73.1 6.5 14 51.6 7.75 

 
 

Table 3. Comparison between negotiations in experiments 

 Initial CPU allocation (%) / Coalition formation rate (%) / Coalition success rate (%) / # of coalitions 

Experiment #1 Experiment #2 Experiment #3 Experiment #4 
Initiating 

agent 

Total CPU = 28% Total CPU = 56% Total CPU = 56% Total CPU = 56% 

1 7 28.6 14.3 7 7 80 20 5 7 100 100 2 7 66.7 16.7 6 

2 7 60 40 5 7 75 50 4 7 100 100 3 14 66.7 66.7 3 

3 7 57.1 28.6 7 7 80 40 5 21 100 66.7 3 14 75 25 4 

4 7 40 20 5 35 33.3 0 3 21 100 100 2 21 50 50 2 

Average 7 45.8 25 6 14 70.6 29.4 4.25 14 100 90 2.5 14 66.7 33.3 3.75 

  

Table 4. Comparison between coalitions in experiments 

4.3 Individual & Cooperative Case-Based Learning 
For our investigation of individual and cooperative case-
based learning, we conducted two sets of experiments, 
Comprehensive Experiment A (CEA) and Comprehensive 
Experiment B (CEB).  We carried out CEA to study the 
effects of individual learning in subsequent cooperative 
learning and the roles of cooperative learning in agents of 
different initial knowledge.  We performed CEB to investi-
gate the effects of the environment on the agents’  learning.   

4.3.1 Comprehensive Experiment A (CEA) 
We conducted four sets of experiments in CEA as shown in 
Table 5.  The goal of these experiment sets was to investi-
gate how learning differed given different casebase sizes, 
and how learning differed given different types of initial 
casebases (some had cases collected from different agents 
from an earlier run, some had only their own cases).  Note 
that for the following experiments we set the limit on the 
casebase size as 30 where case replacement started to take 
place after the casebase reached this number.  We used two 

main parameters to evaluate the casebases: utility and diver-
sity.  First, we rank the outcome of each case following the 
utility values of Table 6.   

Experiment Set A1 A2 A3 A4 
ES1 16 16 16 16 
ES2 2 16 16 16 
ES3 16 16 16 28 
ES4 2 10 20 28 

  

Table 5. Experiment sets.  For example, in ES1, every agent 
has 16 cases in its casebase; and so on 

Table 6. Utility of each outcome for a case 

The average utility of the case base is the average product of 
each case’s TU value and the utility value of its outcome. 
The diversity measure of a casebase is computed as the av-
erage difference between each pair of cases in the casebase.  
Three slopes, sizeSlope, diffSlope, and utilSlope, were com-
puted as growth rate between the first learning point and the 
last learning point, for size, diversity, and utility, respec-
tively.  Table 7 shows one example of the results on initiat-
ing casebases.  
  
  Size 

Slope 
Utility 
Slope 

Diff. 
Slope 

Ave. 
Utility 
Gain 

Ave. 
Diff. 
Gain 

indi 0.1207 0.0832 0.0225 0.0718 0.0938 A1 
coop 0.1143 0.0752 0.0173 0.2242 0.0299 
indi 0.0469 0.1112 0.0108 0.1035 0.0779 A2 
coop 0.0385 0.119 0.0064 0.2152 -0.0005 
indi 0.1642 0.086 0.0322 0.0932 0.0719 A3 
coop 0.1667 0.0579 0.03 0.0084 0.0569 
indi 0.1507 0.0784 0.0224 0.0788 0.072 

Experi
ment 1  
Combi
ne-
first-
combin
e-later   A4 

coop 0.1556 0.0697 0.0218 0.1025 0.1022 
  ave 0.1197 0.0851 0.0204 0.1122 0.0630 

indi 0.1429 0.107 0.0447 0.0957 0.1391 A1 
coop 0.1351 0.1106 0.0402 0.1899 -0.0007 
indi 0.1569 0.062 0.0364 0.0614 0.1314 A2 
coop 0.1795 0.0683 0.038 0.0884 -0.0071 
indi 0.2 0.1317 0.0575 0.1339 0.2887 A3 
coop One 

point 
  -0.0974 0.1831 

indi 0.1136 0.0735 0.0318 0.0598 0.145 

Experi
ment 2 
Individ
ual-
first-
combin
e-later 

A4 
coop 0.1154 0.0648 0.0333 0.1858 0.1005 

  ave 0.1406 0.0810 0.0374 0.1135 0.0847 

  

Table 7. Utility and difference gains for both Sub-Experiments 
Exp1 and Exp2, after the second stage, for initiating casebases 

Looking at all our results, we observed the following: 
(1) Cooperative learning results in more utility and diver-
sity per learning occurrence than individual learning,  
(2) A small casebase learns more effectively in terms of 
utility and diversity, but not faster since our learning is 

Outcome Utility 
success 10 

channel_jammed 6 
Aborted 5 

out_of_time 4 
out_of_resources 3 

rejected 2 
others 0 

 



problem-driven.  A large casebase learns in a similar man-
ner as an average casebase except when it is greater than the 
preset limit that triggers case replacement. 
(3) The initial casebase affects the effectiveness of learn-
ing.  Both types of learning bring more utility and diversity 
to an initial casebase previously grown within an agent than 
one  that has been influenced by other agents.   

4.3.1 Comprehensive Experiment B (CEB) 
The objective of CEB was to see how the learning results 
changed in different environments, as shown in Table 8.  
 

 Combination of CPU and Tracking Coalitions 
ES1 CPU coalitions more often than tracking 
ES2 CPU and tracking coalitions similarly frequent 
ES3 Tracking coalitions more often than CPU  

Table 8.  Sub-Experiments setup in CEB 

A tracking coalition is more taxing since it requires at least 
three agents to be successfully formed.  Moreover, a track-
ing task is durational such that it takes time to actually carry 
out the tracking task.  However, a CPU re-allocation task is 
carried out at a point in time.  In addition, a tracking task is 
highly time-constrained.  A coalition has to be formed in 
time to catch the target before the target moves out of the 
sensor coverage area.  Thus, negotiations related to tracking 
are more difficult to manage and handle.  For these three 
sets of sub-experiments, they had a few things in common: 
(1) all of them began with the same set of initial case bases, 
and (2) every sub-experiment ran with the both individual 
and cooperative learning. We observed the following: 
(1) Different environments affect agents’  learning behavior.  
Depending on the frequency of a task and its characteristics, 
an agent may rely more on individual learning or coopera-
tive learning.  For example, if a type of tasks (tracking) is 
time consuming and durational, then increasing its fre-
quency actually weakens the potential benefit of individual 
learning and encourages the agent to perform more coopera-
tive learning. 
(2) The environments impact the two initiating and respond-
ing roles differently, especially for negotiations associated 
with tough requirements (such as at least three members of a 
tracking coalition).  Since an initiating agent has to shoulder 
the coalition management and decision making, it is able to 
learn more diverse and useful cases.   But, negotiating as a 
responder, an agent’s responsibility is less and thus consid-
ers fewer issues; thus the learning is less impressive. 

5 Conclusions 
We have described an integrated multilevel approach to 
coalition formation, using case-based learning and rein-
forcement learning to learn better tactics as the agent solves 
a problem, and distributed, cooperative case-based learning 
to learn improve the agent’s knowledge base strategically.  
We have conducted several experiments and the results have 

been promising in proving the feasibility of our approach. 
With learning, our agents negotiate and form coalitions bet-
ter.  Our future work will focus on tying the outcome of an 
executed coalition (already formed) to the planning stage to 
improve our strategic learning. 
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