
An Integrated Multilevel Learning Approach to Multiagent Coalition Formation

Content Areas: multiagent systems, machine learning, case-based reasoning

Abstract
In this paper we describe an integrated multilevel learn-
ing approach to multiagent coalition formation in a real-
time environment. In our domain, agents negotiate to
form teams to solve joint problems. The agent that ini-
tiates a coalition shoulders the responsibility of
overseeing and managing the formation process. A
coalition formation process consists of two stages.
During the first stage, the initiating agent identifies the
candidates of its coalition, i.e., known neighbors that
could help. The initiating agent negotiates with these
candidates during the finalization stage to determine the
neighbors that are willing to help. Since our domain is
dynamic, noisy, and time-constrained, our coalitions are
not optimal. However, our approach employs learning
mechanisms at several levels to improve the quality of
the coalition formation process. At a tactical level, we
use reinforcement learning to identify viable candidates
based on their potential utility to the coalition, and case-
based learning to refine negotiation strategies. At a
strategic level, we use distributed, cooperative case-
based learning to improve general negotiation strate-
gies. We have implemented the above three learning
components and conducted experiments in multisensor
target tracking and CPU re-allocation applications.

1 Introduction
Multiagent coalition formation is important for distributed
applications ranging from electronic business to mobile and
ubiquitous computing where adaptation to changing re-
sources and environments is crucial. It increases the ability
of agents to execute tasks and maximize their payoffs.
Moreover, coalitions can dynamically disband when they
are no longer needed or effective. Thus the automation of
coalition formation will not only save considerable labor
time, but also may be more effective at finding beneficial
coalitions than human in complex settings [Jennings, 2002].

Although considerable research has been conducted either
in coalition formation among self-interested agents (e.g.,
[Tohme and Sandholm, 1999], [Sandholm et al., 1999],
[Sen and Dutta, 2000]), or in coalition formation among
cooperative agents (e.g., [Shehory et al., 1997]), little work
has been done in coalition formation among both self-
interested and cooperative agents. Furthermore, there have
been no attempts to study coalition formation among such
agents in a dynamic, real-time, uncertain, and noisy envi-

ronment, which is a typical real-world environment and in
which a sub-optimal coalition needs to be formed in a real-
time manner.

Here we propose an integrated multilevel learning ap-
proach to multiagent coalition formation. In our approach,
agents are assumed to be cautiously cooperative—they are
willing to help only when they think they benefit from it—
and honest. However, due to the noisy, uncertain, dynamic
and real-time nature of our domain, not every agent can be
correct in its perceptions and assumptions. Thus, to achieve
a coalition, an initiating agent has to negotiate with other
agents. Through concurrent, multiple 1-to-1 negotiations,
the initiating agent identifies the agents that are willing to
help. The formation process is successful if the initiating
agent successfully persuades enough agents to join the
coalition.

Note that in this paper, we focus on improving the quality
of the coalition formation process, and not on the quality of
the coalition after it is formed and executed.

Note also that our approach is an example of the “good
enough, soon enough” design paradigm. In our domain, an
agent has incomplete information about the environment,
the task execution is time constrained, and the communica-
tion between agents is not reliable, so an optimal coalition
formed from the deep learning is impractical. Thus, a sub-
optimal yet fast coalition formation process is warranted.

2 Coalition Formation
Figure 1 depicts our coalition formation modules that make
up the two stages: initialization and finalization. The feasi-
bility study and the ranking of candidates are the initializa-
tion stage whereas the negotiations and their management
the finalization stage. This two-stage model [Soh and Tsat-
soulis, 2001] allows an agent to form an initial coalition
hastily and quickly to react an event and to rationalize to
arrive at a working final coalition as time progresses. Here
we briefly describe each module of the design:
(1) Dynamic profiling: Every agent dynamically profiles
each neighbor as a vector in the agent about the negotiation
relationship between them, and profiles each negotiation
task as a case in the casebase about the negotiation strategy
description and negotiation outcome.
(2) Feasibility study: This module analyzes the problem
and computes (a) whether the agent has the resources to do
something about it, and (b) if yes, the list of agents that the
agent thinks could help.

Figure 1. An overview of our coalition formation process

(3) Ranking of Candidates: This module scores and ranks
each candidate, and proportionately assigns the requested
demand to each candidate, based on its potential utility (sec-
tion 3.1).
(4) Management: This module initiates negotiations with
top-ranked candidates. That is, the module manages multi-
ple, concurrent 1-to-1 negotiations. For each negotiation
task, it first finds a negotiation strategy through CBR.
Then, it spawns a thread to execute that negotiation task.
The module oversees the various negotiation threads and
modifies the tasks in real-time. For example, the module
will terminate all remaining negotiations once it finds out
that it no longer can form a viable coalition. The module
will reduce its requests or demands once it has secured
agreements from successful negotiations. And so on. In
effect, this management simulates a 1-to-many negotiation.
(5) CBR: Given the problem description of a task, the
CBR module retrieves the best case from the casebase, and
adapts the solution of that best case to the current problem.
This is based on the work of [Soh and Tsatsoulis, 2001].
(6) Negotiation: Our negotiation protocol is argumenta-
tive. The initiating agent provides evidence for its request
to persuade the responding agent. The responding agent
evaluates these evidence pieces and if they are higher than a
dynamic persuasion threshold, then the responding agent
will agree to the request. The responding agent also has the
ability to counter-offer due to time constraints or poor evi-
dence. This is based on the work of [Soh and Tsatsoulis,
2001].
(7) Acknowledgment: Once all negotiations are com-
pleted, if a coalition has been formed, the agent confirms the
success of the coalition to all agents who have agreed to
help. If the agent has failed to form a coalition, it informs
the agents who have agreed to help so they can release
themselves from the agreements.

In the next section, we will discuss the learning mecha-
nisms, a critical part of our coalition formation approach.

3 Learning
Our learning approach incorporates reinforcement learning
and case-based learning at two levels. At a tactical level, we
use reinforcement learning to identify viable candidates
based on their potential utility to the coalition, and case-
based learning to refine specific negotiation strategies. At a
strategic level, we use distributed, cooperative case-based
learning to improve general negotiation capabilities.

3.1 Reinforcement Learning
Reinforcement learning is evident at the coalition initializa-
tion and finalization stages. During initialization, the initiat-
ing agent measures the potential utility of a candidate based
on a weighted sum of (1) its past cooperation relationship
with the initiator such as the candidate’s helpfulness, friend-
liness, and the agent’s helpfulness and importance to the
candidate, (2) its current cooperation relationship with the
initiating agent such as whether the two agents have already
been negotiating about other problems, and (3) its ability to
help towards the current problem. An initiating agent thus
will more likely approach the agents that have been helpful
before, thus reinforcing the cooperation relationship among
them.

During finalization, an initiating agent also appeals to a
candidate about how helpful the initiating agent has been in
the past. A candidate is more easily persuaded if it realizes
that a particular agent has been helpful in the past, and thus
once again reinforcing their cooperation relationship.

3.2 Case-Based Learning
We use CBR to retrieve and adapt negotiation strategies
for negotiations during coalition finalization. We also
equip our CBR module with both individual and coopera-
tive learning capabil ities (Figure 2). Individual learning
refers to learning based on an agent’ s perceptions and
actions, without direct communication with other agents.
This learning approach allows an agent to build its case-
base from its own experience, eventually forming its own
area of specialization. Cooperative learning refers to
learning other agents’ experience through interaction
among agents. When an agent identifies a problematic
case in its casebase, it approaches other agents to obtain a
possibly better case.

There has been research in distributed and cooperative
CBR. [Prasad and Plaza, 1996] proposed treating corporate
memories as distributed case libraries. Resource discovery
was achieved through (1) negotiated retrieval that dealt with
retrieving and assembling case pieces from different re-
sources in a corporate memory to form a good overall case,
and (2) federated peer learning that dealt with distributed
and collective CBR [Plaza and Arcos, 1997]. [Martin et al.,
1999] extended the model using the notion of competent
agents. [Martin and Plaza, 1999] employed an auction-
based mechanism that focused on agent-mediated systems
where the best case was selected from the bid cases.

Figure 2. The relationship between case learning and CBR as
well as negotiation tasks in an agent

Our methodology employs a cautious utility-based adap-
tive mechanism to combine the two learning approaches, an
interaction protocol for soliciting and exchanging informa-
tion, and the idea of a chronological casebase. It empha-
sizes individual learning and only triggers cooperative learn-
ing when necessary. Our cooperative learning also differs
from collective CBR in that it does not merge case pieces
into one as it considers entire cases. In addition, our re-
search focus here is to define a mechanism that combines
individual and cooperative learning.

Note that the communication and coordination overhead
of cooperative learning may be too high for cooperative
learning to be cost-effective or timely. Moreover, since an
agent learns from its own experience and its own view of
the world, its solution to a problem may not be applicable
for another agent facing the same problem. This injection of
foreign knowledge may also be risky as it may add to the
processing cost without improving the solution quality of an
agent [Marsella et al., 1999].

3.2.1 Chronological Casebase and Case Utility
We have uti l ized the notion of a chronological casebase
in which each case is stamped with a time-of-birth (when
it was created) and a time-of-membership (when it joined
the casebase). All initial cases are given the same time-
of-birth and time-of-membership. In addition, we profi le
each case’s usage history (Table 1). An agent evaluates
the uti l i ty of a case based on its usage history. If the case
has a low uti l i ty, it may be replaced (or forgotten). If the
case is deemed problematic, then a cooperative learning
will be triggered and the case will be replaced. Table 2
shows the heuristics we use in tandem with the chrono-
logical casebase. When a negotiation completes, if the
new case is useful to add the casebase’s diversity, the
agent learns it. I f the casebase’s size has reached a preset
l imit, then the agent considers replacing one of the exist-
ing cases with the new case. For our individual case-
based learning, we use heuristics H1, H2, and H3.

Parameters Description
TU The number of times the case has been used
TSU The number of times the case has been used in a

successful negotiation
TINC The number of times the usage of the case has led to a

new case getting added to the casebase
TR The number of times the case has been designated as

a problematic case, i.e., with very low utility
TS The last time that the case was used or the time when

the case was added

Table 1. The usage history that an agent profiles of each case

Heuristics Description
H1
 Currency

If a case has not been used in a long time, then this
case is more likely to be replaced.

H2
Evolution

With everything else equal, an old case is more likely
to be replaced than a young case.

H3
Usefulness

If a case’s TSU is significantly small, then the case is
more likely to be replaced.

H4 Solution
Quality I

If a case has a high TU but a low TSU, then it is a
problematic case.

H5 Solution
Quality II

If a case has a low TSU, and a high TINC, then the
solution of this case is probably not suitable for the
problems encountered by the agent and it is a prob-
lematic case.

H6
Persistence

The urgency to trigger a cooperative learning process
is directly dependent on the case’s TR, until a pre-
determined threshold is reached.

H7 Igno-
rance

If a case’s TR has reached a pre-determined threshold
and it is still not replaced, then the problematic case is
removed without replacement.

Table 2. Heuristics that support the chronological casebase

3.2.2 Cooperative Learning
Figure 3 depicts our cooperative learning design. We
adhere to a cautious approach to cooperative learning:

Figure 3. The cooperative learning design

(1) The agent evaluates the case to determine whether it is
problematic. To designate a case as problematic, we use
heuristics H4 and H5: a (frequently used) case is problem-
atic if it has a low success rate (TSU/TU) and a high incur-
rence rate (TINC/TU). The profiling module keeps track of
the utility of the cases.
(2) The agent only requests help from a selected agent that
it thinks is good at a particular problem. We want to ap-
proach neighbors who have initiated successful negotiations
with the current agent, with the hope that the agent may be
able to learn how those neighbors have been able to be suc-

cessful. This is determined based on the profile of each
neighbor that the agent maintains. The exchange protocol is
carried out by the case request and response modules.
(3) If the foreign case is similar to the problematic case, the
agent adapts the foreign case before adopting it into its
casebase. At the same time, the usage history parameters of
the new case are reset.
(4) If a problematic case cannot be fixed after K times, it
will be removed (Heuristics H6 and H7).

Note that this cooperative learning is performed sepa-
rately from the actual coalition formation process due to
real-time constraints — a negotiation task needs immedi-
ate attention and cannot afford meddling with coopera-
tive learning.

4 Experiments and Results
We have implemented a multiagent system with multiple
agents that perform multi-sensor target tracking and adap-
tive CPU reallocation in a noisy environment (simulated by
a JAVA-based program called RADSIM). Each agent has
the same capabilities, but is located at a unique position.
Each agent controls a sensor and can activate the sensor to
search-and-detect the environment. When an agent detects a
moving target, it tries to implement a tracking coalition by
cooperating with at least two neighbors. And this is when a
CPU shortage may arise: the activity may consume more
CPU resource. When an agent detects a CPU shortage, it
needs to form a CPU coalition to address the crisis.

The multi-agent system is implemented in C++. In the
current design, each agent has N+3 threads. The core
thread is responsible for making decisions, managing tasks,
and overseeing negotiations. A communication thread is
used to interact with the message passing system of the sen-
sor. An execution thread actuates the physical sensor: cali-
bration, search-and-detect for a target, etc. Each agent also
has N negotiation threads to concurrently negotiate with
other agents.

We used two simulations for our experiments. We con-
ducted experiments in a simulation called RADSIM where
communication may be noisy and unreliable, and one or two
targets may appear in the environment. We also designed
and implemented our own CPU shortage simulation module.
Each task is designated with a CPU usage amount plus a
random factor. When an agent detects a CPU shortage, the
tasks that it currently performs slow down. Thus, a CPU
shortage that goes unresolved will result in failed negotia-
tions since our negotiations are time-constrained.

4.1 Impacts of Learning
We also conducted experiments with four versions of learn-
ing: (1) both case-based reasoning and reinforcement learn-
ing (CBRRL), (2) only case-based reasoning (NoRL), (3)
only reinforcement learning (NoCBR), and (4) no learning
at all (NoCBRRL). Figure 4 shows the result in terms of the
success rates for negotiations and coalition formations.

0

5

10

15

20

25

30

35

40

45

50

CBRRL NoRL NoCBR NoCBRRL

Various Learning Mechanisms

Su
cc

es
s

R
at

e
(%

)

Negotiation

Coalition Formed

Figure 4. Success rates of negotiations and coalition formations for
different learning mechanisms

The agent design with both case-based reasoning/learning
and reinforcement learning outperformed others in both
negotiation success rate and coalition formation success
rate. That means with learning, the agents were able to ne-
gotiate more effectively (and perhaps more efficiently as
well) that led to more coalitions formed. Without either
learning (but not both), the negotiation success rates re-
mained about the same but the coalition formation rate
tended to deteriorate. This indicates that without one of the
learning methods, the agents were still able to negotiate ef-
fectively, but may be not efficiently (resulting in less proc-
essing time for the initiating agent to post-process an
agreement). With no learning, the agents fared noticeably
poorly.

4.2 Resource Allocation and System Coherence
We conducted experiments in CPU re-allocation to test the
coherence of our system. We refer to the CPU allocation as
a sustenance resource since in order for an agent to obtain
more CPU, it needs to incur CPU usage while negotiating
for the resource. By varying the amount of the initial CPU
allocation to each agent, we created mildly-constrained,
overly-constrained, and unevenly-constrained scenarios.
Tables 3 and 4 compared the agents’ behavior in terms of
successes in negotiations and coalition formations. In par-
ticular, the coalition success rate is the number of success-
fully formed coalitions over the number of coalitions initi-
ated, where a coalition is successfully formed when the
CPU obtained satisfies the agent’s need. We observed the
following:
(1) In all experiments, the reduction in CPU shortage of
each agent and the whole system was obvious. Gradually,
the CPU resource was reallocated more evenly among
agents. The possibility of a CPU shortage decreases and
each agent’s shortage amount decreases. This shows a
coherent, cooperative behavior among the agents.

(2) In all experiments, after some period of time, each
agent’s CPU allocation converged to an average level
(14%). After that, each agent fluctuated around that level.
(3) We also observed that the coalition formation was the
most successful for the system as a whole when there were
roughly the same number of resourceful and resource-
starved agents (Experiment #3) and this type of system also
required the least number of negotiations and coalitions to
converge.

 Initial CPU allocation (%) / Negotiation success rate (%) / # of negotiations

Experiment #1 Experiment #2 Experiment #3 Experiment #4
Initiating
agent

Total CPU = 28% Total CPU = 56% Total CPU = 56% Total CPU = 56%

1 7 15 20 7 45.5 11 7 80 5 7 42.9 14

2 7 25 12 7 55.6 9 7 75 8 14 80 5

3 7 35.3 17 7 41.7 12 21 62.5 8 14 44.4 9

4 7 30 10 35 25 4 21 80 5 21 66.7 3

Average 7 25.4 14.75 14 44.4 9 14 73.1 6.5 14 51.6 7.75

Table 3. Comparison between negotiations in experiments

 Initial CPU allocation (%) / Coalition formation rate (%) / Coalition success rate (%) / # of coalitions

Experiment #1 Experiment #2 Experiment #3 Experiment #4
Initiating

agent

Total CPU = 28% Total CPU = 56% Total CPU = 56% Total CPU = 56%

1 7 28.6 14.3 7 7 80 20 5 7 100 100 2 7 66.7 16.7 6

2 7 60 40 5 7 75 50 4 7 100 100 3 14 66.7 66.7 3

3 7 57.1 28.6 7 7 80 40 5 21 100 66.7 3 14 75 25 4

4 7 40 20 5 35 33.3 0 3 21 100 100 2 21 50 50 2

Average 7 45.8 25 6 14 70.6 29.4 4.25 14 100 90 2.5 14 66.7 33.3 3.75

Table 4. Comparison between coalitions in experiments

4.3 Individual & Cooperative Case-Based Learning
For our investigation of individual and cooperative case-
based learning, we conducted two sets of experiments,
Comprehensive Experiment A (CEA) and Comprehensive
Experiment B (CEB). We carried out CEA to study the
effects of individual learning in subsequent cooperative
learning and the roles of cooperative learning in agents of
different initial knowledge. We performed CEB to investi-
gate the effects of the environment on the agents’ learning.

4.3.1 Comprehensive Experiment A (CEA)
We conducted four sets of experiments in CEA as shown in
Table 5. The goal of these experiment sets was to investi-
gate how learning differed given different casebase sizes,
and how learning differed given different types of initial
casebases (some had cases collected from different agents
from an earlier run, some had only their own cases). Note
that for the following experiments we set the limit on the
casebase size as 30 where case replacement started to take
place after the casebase reached this number. We used two

main parameters to evaluate the casebases: utility and diver-
sity. First, we rank the outcome of each case following the
utility values of Table 6.

Experiment Set A1 A2 A3 A4
ES1 16 16 16 16
ES2 2 16 16 16
ES3 16 16 16 28
ES4 2 10 20 28

Table 5. Experiment sets. For example, in ES1, every agent
has 16 cases in its casebase; and so on

Table 6. Utility of each outcome for a case

The average utility of the case base is the average product of
each case’s TU value and the utility value of its outcome.
The diversity measure of a casebase is computed as the av-
erage difference between each pair of cases in the casebase.
Three slopes, sizeSlope, diffSlope, and utilSlope, were com-
puted as growth rate between the first learning point and the
last learning point, for size, diversity, and utility, respec-
tively. Table 7 shows one example of the results on initiat-
ing casebases.

 Size

Slope
Utility
Slope

Diff.
Slope

Ave.
Utility
Gain

Ave.
Diff.
Gain

indi 0.1207 0.0832 0.0225 0.0718 0.0938 A1
coop 0.1143 0.0752 0.0173 0.2242 0.0299
indi 0.0469 0.1112 0.0108 0.1035 0.0779 A2
coop 0.0385 0.119 0.0064 0.2152 -0.0005
indi 0.1642 0.086 0.0322 0.0932 0.0719 A3
coop 0.1667 0.0579 0.03 0.0084 0.0569
indi 0.1507 0.0784 0.0224 0.0788 0.072

Experi
ment 1
Combi
ne-
first-
combin
e-later A4

coop 0.1556 0.0697 0.0218 0.1025 0.1022
 ave 0.1197 0.0851 0.0204 0.1122 0.0630

indi 0.1429 0.107 0.0447 0.0957 0.1391 A1
coop 0.1351 0.1106 0.0402 0.1899 -0.0007
indi 0.1569 0.062 0.0364 0.0614 0.1314 A2
coop 0.1795 0.0683 0.038 0.0884 -0.0071
indi 0.2 0.1317 0.0575 0.1339 0.2887 A3
coop One

point
 -0.0974 0.1831

indi 0.1136 0.0735 0.0318 0.0598 0.145

Experi
ment 2
Individ
ual-
first-
combin
e-later

A4
coop 0.1154 0.0648 0.0333 0.1858 0.1005

 ave 0.1406 0.0810 0.0374 0.1135 0.0847

Table 7. Utility and difference gains for both Sub-Experiments
Exp1 and Exp2, after the second stage, for initiating casebases

Looking at all our results, we observed the following:
(1) Cooperative learning results in more utility and diver-
sity per learning occurrence than individual learning,
(2) A small casebase learns more effectively in terms of
utility and diversity, but not faster since our learning is

Outcome Utility
success 10

channel_jammed 6
Aborted 5

out_of_time 4
out_of_resources 3

rejected 2
others 0

problem-driven. A large casebase learns in a similar man-
ner as an average casebase except when it is greater than the
preset limit that triggers case replacement.
(3) The initial casebase affects the effectiveness of learn-
ing. Both types of learning bring more utility and diversity
to an initial casebase previously grown within an agent than
one that has been influenced by other agents.

4.3.1 Comprehensive Experiment B (CEB)
The objective of CEB was to see how the learning results
changed in different environments, as shown in Table 8.

 Combination of CPU and Tracking Coalitions
ES1 CPU coalitions more often than tracking
ES2 CPU and tracking coalitions similarly frequent
ES3 Tracking coalitions more often than CPU

Table 8. Sub-Experiments setup in CEB

A tracking coalition is more taxing since it requires at least
three agents to be successfully formed. Moreover, a track-
ing task is durational such that it takes time to actually carry
out the tracking task. However, a CPU re-allocation task is
carried out at a point in time. In addition, a tracking task is
highly time-constrained. A coalition has to be formed in
time to catch the target before the target moves out of the
sensor coverage area. Thus, negotiations related to tracking
are more difficult to manage and handle. For these three
sets of sub-experiments, they had a few things in common:
(1) all of them began with the same set of initial case bases,
and (2) every sub-experiment ran with the both individual
and cooperative learning. We observed the following:
(1) Different environments affect agents’ learning behavior.
Depending on the frequency of a task and its characteristics,
an agent may rely more on individual learning or coopera-
tive learning. For example, if a type of tasks (tracking) is
time consuming and durational, then increasing its fre-
quency actually weakens the potential benefit of individual
learning and encourages the agent to perform more coopera-
tive learning.
(2) The environments impact the two initiating and respond-
ing roles differently, especially for negotiations associated
with tough requirements (such as at least three members of a
tracking coalition). Since an initiating agent has to shoulder
the coalition management and decision making, it is able to
learn more diverse and useful cases. But, negotiating as a
responder, an agent’s responsibility is less and thus consid-
ers fewer issues; thus the learning is less impressive.

5 Conclusions
We have described an integrated multilevel approach to
coalition formation, using case-based learning and rein-
forcement learning to learn better tactics as the agent solves
a problem, and distributed, cooperative case-based learning
to learn improve the agent’s knowledge base strategically.
We have conducted several experiments and the results have

been promising in proving the feasibility of our approach.
With learning, our agents negotiate and form coalitions bet-
ter. Our future work will focus on tying the outcome of an
executed coalition (already formed) to the planning stage to
improve our strategic learning.

References
[Jennings, 2002] N. R. Jennings. Coalition formation algo-

rithms for virtual organizations.
http://www.iam.ecs.soton.ac.uk/projects/cfvo.

[Marsella et al., 1999] S. Marsella, J. Adibi, Y. Al-
Onaizan, G. A. Kaminka, I. Muslea, M. Tall is, and M.
Tambe. On being a teammate: experiences acquired in
the design of RoboCup teams. In Proc. 3rd Agents’99,
pages 221-227, Seattle, WA, 1999.

[Martin and Arcos, 1999] F. J. Martin, E. Plaza and J. L.
Arcos. Knowledge and experience through communica-
tion among competent (peer) agents, Int. J. Software
Engr. & Knowledge Engr., 9(3):319-341, 1999.

[Martin and Plaza, 1999] F. J. Martin and E. Plaza Auction-
based retrieval, Proc. 2nd Congres Catala d'Intel.ligencia
Artificial, pages 1-9, 1999.

[Plaza et al., 1997] E. Plaza, J. L. Arcos and F. Martin. Co-
operative case-based reasoning, in G Weiss (ed.) Distrib-
uted Artificial Intelligence Meets Machine Learning, Lec-
ture Notes in Artificial Intelligence, Springer Verlag,
pages 1-21, 1997.

[Prasad and Plaza, 1996] M. V. N. Prasad, and E. Plaza.
Corporate memories as distributed case libraries, Proc.
10th KAW’96, pages 1-19, 1996.

[Sandholm et al., 1999] T. W. Sandholm, K. Larson, M.
Andersson, O. Shehory, and F. Tohme. Coalition structure
generation with worst case guarantees. Artificial Intelli-
gence, 111(1-2): 209-238, 1999.

[Sen and Dutta, 2000] S. Sen and P. S. Dutta. Searching for
optimal coalition structures. In Proc. 4th Int. Conf. on
Multiagent Systems, pages 286-292, Boston, MA, July 7-
12, 2000.

[Shehory et al., 1997] O. Shehory, K. Sycara, and S. Jha.
Multi-agent coordination through coalition formation. In
Intelligent Agents IV: Agent Theories, Architectures and
Languages, Lecture Notes in Artificial Intelligence, num-
ber 1365, pages 143-154, Springer, 1997.

[Soh and Tsatsoulis, 2001] L.-K. Soh and C. Tsatsoulis.
Reflective negotiating agents for real-time multisensor
target tracking. In Proc. of IJCAI’01, pages 1121-1127,
Seattle, WA, 2001.

 [Tohme and Sandholm, 1999] F. Tohme and T. Sandholm.
Coalition formation processes with belief revision among
bounded rational self-interested agents. Journal of Logic
and Computation, 9(6):793-815, December 1999.

