
Balancing Ontological and Operational Factors in Refining Multiagent
Neighborhoods

Leen-Kiat Soh and Chao Chen
Computer Science and Engineering

University of Nebraska-Lincoln
256 Avery Hall, Lincoln, NE 66588-0115

{lksoh, cchen}@cse.unl.edu

Abstract

In this paper, we present our work balancing onto-
logical and operational factors in building collabora-
tions within multiagent neighborhoods. This innova-
tion takes into account the desired level of perform-
ance, service priorities, and relaying of tasks to deter-
mine whether an agent should entertain ontological
learning, which are more expensive but more reward-
ing in the long run, or carry out operational learning,
which are less expensive and more rewarding in the
short term. The domain of application is multiagent,
distributed information retrieval, where agents, safe-
guarding information or data resources, improve their
local services by collaborating with others. Each agent
is capable of providing query services to its users, and
is equipped with an ontology defining the concepts that
it knows and the associated documents. When col-
laborating, an agent needs to determine which agents
to approach and how to approach them. Experiments
show that with balanced profile-based reinforcement
learning (operational) and inference-based ontologi-
cal learning, agents reach desired level of perform-
ance while improving the neighborhood health and
communication cost.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.
AAMAS'05, July 2529, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

1. Introduction

In information retrieval, large ontologies are usually
so diverse that they are best designed and maintained
in a distributed manner by multiple experts (McGuin-
ness 2002). Ideally, if all parties have a common vo-
cabulary to express their ontology, then knowledge
and ontology can be shared seamlessly. However,

such a vocabulary is difficult to establish as different
users or entities have their own ontological interpreta-
tions (Williams 2004). As a result, agents need to
learn to understand each other when collaborating.
Thus far, most distributed information retrieval (DIR)
research have focused on improving ontology under-
standing among agents based on ontologies alone (e.g.,
Takaai et al. 1997, Bayardo et al. 1998, Williams 2004,
Mine et al. 2004, Zhang et al. 2004), without taking
into account the operational factors such as the number
of threads available for collaboration, the helpfulness
of the agents in addition to their expertise, the desired
performance level of the system, and so on.

Our research takes into account both ontological
and operational factors. The reasons for considering
operational factors are two-fold. First, the quality of
retrieval hinges upon multiple variables such as the
relevance of the retrieved documents and the speed of
the retrieval. The tradeoffs among between variables
depend on the needs of the user. If a user prefers
speed over accuracy, then the user may want a system
that could return good enough results quickly. Second,
for scalability, it is costly for an agent to discover the
best agents in its community that could provide docu-
ments or coverage for each concept or term in the
agent’s ontology, especially when the system is large.
Third, learning about ontologies and finding transla-
tions are expensive. It is thus wise for an agent A to
realize first whether it needs to learn about another
agent B’s ontology, and then determine whether B is
able to help operationally. If B is always busy and not
available to provide help, then learning about B’s on-
tology is not rewarding to A operationally, even
though such learning would enhance A’s ontological
knowledge.

Our work’s underlying framework is described in
(Soh 2003), in which each agent safeguards its own
information or data resources and manages its local
services by collaborating with others. Each agent has
both operational and ontological components. When
an agent intends to ask for a particular service from
another agent, it may approach (1) an agent that is very
capable of performing the service, or (2) an agent that
is very helpful though not very capable, or (3) a help-

745

ful agent with good capability. Thus the agent may
decide to learn ontologically—exchange ontological
concepts and knowledge with another agent—only if
such learning leads to operational efficiency. In this
paper, we focus on how an agent refines its collabora-
tion with its neighboring agents to satisfy queries, tak-
ing into account the desired level of performance of
the system, the resources available, the frequency of
queries, and the helpfulness of the neighbors.

2. Related Work

Our research work is particularly related to three re-

search projects. Here we briefly describe them and
distinguish the differences between these projects and
our approach. The key difference is that these systems
do not incorporate operational factors in ontological
understanding and query distribution among agents.

In DOGGIE (Williams 2004), the distributed ontol-
ogy understanding among agents is carried out in three
steps: locating similar semantic concepts, translating
semantic concept and learning key missing attributes.
To locate similar semantic concepts, an agent sends
other agents the name of the concept and a sample of
semantic objects of that concept. The receiving agent
interprets the semantics by comparing the concept and
objects and then sends back the result. In essence,
DOGGIE agents are able to teach each other what their
concepts mean using their own conceptualization. Our
work uses the same principle that allows agents to ex-
change ontology understanding by multiple 1-to-1 col-
laborations. However, our approach considers opera-
tional factors that prevent unnecessary ontological
learning from taking place.

Mine et al. (2004) propose an agent community ar-
chitecture that performs peer-to-peer information re-
trieval with three types of agents: User Interface (UI)
Agents, Information Retrieval (IR) Agents and History
Management (HM) Agents. A UI-agent is responsible
for collecting user’s query. An IR-agent is responsible
for query retrieval and the communication with other
agents in the community. An HM-agent is responsible
for updating a pair of history: (a) a query-retrieved
document history, and (b) a query-sender agent history.
In our approach, each agent has the ability to interface
with the user, retrieve information, and manage history
of other neighbors. Moreover, Mine et al. (2004) do
not consider diverse ontologies.

Zhang et al. (2004) propose another peer-to-peer in-
formation retrieval system. The agents apply an agent-
view reorganization algorithm to form a local view of
what other agents know and information clusters. The
agents select a coalition to collaboratively share que-
ries based on the local view. After receiving a query,
an agent uses a gradient search scheme to identify the
best coalition and distribute the queries to the identi-
fied coalition. When an agent is not able to locate a
useful local view, it automatically forwards the query

to high-degree connective agents, allowing the query
to jump out of a “bad zone” to a likely “good zone.”
Similarly, our agents use reinforcement learning for an
agent to find a “good zone” by filtering out incapable
and non-helpful neighbors. However, faced with an
unknown query, our agent is able to relay the query to
a “good zone” using the recipient agent’s profile of its
neighborhood, to the neighbor that has been known to
be useful (ontologically) and helpful (operationally).

Our work extends the results and design of (Chen
and Soh 2004). Here we briefly summarize the results
in (Chen and Soh 2004). First, collaboration among
agents greatly improves their query services for the
users. Second, learning allows agents to improve their
performance over time from observing their opera-
tional neighborhoods. Third, the operational infrastruc-
ture facilitates some rudimentary ontology inference.
Our current focus investigates how agents decide
among two types of learning to balance its activities
such that the performance of the system is maintained
at a desired level.

3. Framework and Methodology

Our framework is based on (Soh 2003) where

agents interact and collaborate to process and satisfy
queries. Each agent has operational and ontological
components designed for: operational and ontological.

The operational component is domain independent,
addressing issues such as the appropriate number of
threads, the response behavior of neighbors, and so on,
for an agent to maintain a certain level of performance.
The operational knowledge for collaboration is stored
in a neighborhood profile. This is based on the rela-
tionship between the agent and its neighboring agents
and the agent’s current view of its resources. We will
discuss this further in Section 3.1.

The ontological component is domain-specific, al-
lowing the agent to satisfy its user’s demands (i.e.,
queries) and exchange the content (mapping of ontolo-
gies) between the agent and its neighboring agents.
An agent’s ontology repository and translation table
constitute its ontological knowledge. An agent can also
initiate a collaboration process to learn about other
ontologies. Given information from the collaboration,
it infers the mapping between two concepts of differ-
ent ontologies, and saves the mapping in the transla-
tion table dynamically. An agent’s ontology reposi-
tory consists of a set of concepts, with each concept
supported by a set of documents. Two agents learn
about the mapping between their concepts by compar-
ing the associated documents. We will discuss this
further in Section 3.2.

When an agent receives a query from its user, it
checks the concept against its own ontology reposi-
tory. If the agent finds a match and there are enough
documents to satisfy the user, then it needs no collabo-
ration from other agents and returns the result to the
user directly. If the agent cannot satisfy the query on

746

its own, it will contact its neighbors for collaboration.
There are three possible scenarios. First, if the agent
recognizes the concept in its ontology base but does
not have enough documents to fulfill the query, then it
will approach its neighbors to ask for more documents.
How many documents to ask from each neighbor is
based on the agent’s perception of the neighbor: a col-
laboration utility and a credibility score. Second, if
the agent does not recognize the concept, then it will
check its translation table and see whether the concept
in the query matches (in terms of its name) any entries
in the table. If found, the agent forms and relays a new
query to the corresponding neighbor. Third, if the
agent does not recognize the queried concept and does
not believe that other neighbors know the concept, it
will simply distribute the query to all its neighbors in
an order derived from the collaboration utility values
and past relay scores. An agent’s relay score of one of
its neighbors is the average search ratio of all the que-
ries relayed to that neighbor.

When an agent receives a request, it checks for the
request type. First, there are collaboration requests to
supply relevant documents to a particular query. The
agent will check its translation table and, depending on
a successful match, retrieves the required number of
documents to return to the initiator. Second, there are
inference requests to provide ontological similarity
mapping. Together with an inference request is a list of
supplemental documents. The agent checks its own
ontology repository to compute the similarity between
its own documents and the supplemental ones, and
returns the best-matched concept.

A query collaboration service is less expensive
computationally and rewarding in the short term.
However, an inference service is expensive computa-
tionally and only rewarding in the long run. Further,
with better ontological understanding among the
agents, the system as a whole will retrieve documents
that are more relevant. However, when the system is
resource-constrained and time-constrained, a trade-off
exists such that agents may decide to learn only suffi-
ciently about other agents’ ontologies as long as each
believes that it is achieving the desired performance
level of the system.

In our design, each agent has both inference-based
ontological learning and profile-based reinforcement
learning. Via reinforcement learning, an agent is more
likely to contact neighbors that have been helpful. Via
ontological learning, an agent is more likely to ap-
proach neighbors that are considered knowledgeable.

3.1. Collaboration Utility

Our collaboration utility is based on negotiation-

based parameters introduced in (Soh and Tsatsoulis
2001). We define the collaboration utility of a
neighbor as perceived by an agent as the average of (a)
_helpRate, the ratio of successful collaborations when
the agent receives a request from the neighbor over the

total number of requests from the neighbor to the
agent, (b) _successRate, the ratio of successful col-
laborations when the agent initiates a request to the
neighbor over the number of total requests from the
agent to the neighbor, (c) _nowCollaborating, a Boo-
lean indicator as to whether the agent and the neighbor
are currently collaborating on another task, (d)
_requestToRate, the ratio of the total number of re-
quests from the agent to the neighbor over the total
number of all requests from the agent, indicating the
reliance of the agent on the neighbor, and (e)
_requestFromRate, the ratio of the total number of
requests from the neighbor to the agent over the total
number of all requests from the neighbor to the agent,
indicating the reliance of the neighbor on the agent.
The collaboration utility is:
Collaboration Utility = (_successRate + _helpRate +

_requestToRate + _requestFromRate +(1-
_nowCollaborating))/5.

With the above score, we see that if an agent has been
in close relationship with a neighbor, then the
neighbor’s collaboration utility is high. That the agent
is not currently collaborating with the neighbor adds to
the utility as well.

3.2. Ontology Repository and Credibility Score

As previously discussed, we describe each concept

with a set of descriptors. In our framework, we use a
single phrase to represent a concept and use WWW
links as the descriptors. These concepts together with
their links form an agent’s ontology. The initial re-
pository was built based on the WWW bookmarks of
several students, where each bookmark title was used
as the concept name, and the links filed under a book-
mark were retrieved as the associated documents.

To computer the relevance between two documents,
we use the vector-based cross product common in in-
formation retrieval (Baeza and Ribeiro 1999). The
credibility of a translation between two concept names
is thus the average relevance between the two sets of
associated documents.

A translation table is agent-specific. It has C rows where
C is the number of concepts in the agent’s ontology reposi-
tory. It has N columns for the N neighbors. Each entry is the
corresponding concept name in a neighbor for a particular
concept name that the agent knows and the translation credi-
bility. There are entries that are NIL indicating an empty
translation.
3.3. Balancing Ontological and Operational Factors

When an agent realizes that its translation table is
poor, then it has the motivation to perform ontological
inferences to learn more about its neighbors’ ontolo-
gies. For each concept, it will attempt to resolve the
least credible translation first. It does this by initiating
an inference service request hoping that the responding
neighbor will provide a mapping.

747

For the responding agent, the inference process is
time consuming since it involves retrieving documents,
extracting keywords, and comparing among numerous
documents of different concepts. Such a process costs
thread resources and computation, especially when the
ontology repository of the responding agent is large.

Because of the limited resources, an agent has to
regulate its inference processes. It must balance be-
tween knowing more ontologically and providing good
enough services to its users. Our design discourages
an agent from initiating too many inference processes
in the following manner. First, when the responding
agent, after the inference process, finds the credibility
value to be very low (lower than a pre-defined thresh-
old), then both the agents will remember it. It is more
likely for the responding agent to entertain another
inference request from the initiating agent in the fu-
ture. Thus, the initiating agent has to choose carefully
which neighbors to approach. Second, if the past rela-
tionship between two agents has not been good, then
(1) it is more likely for the agents to have nothing in
common in terms of concepts, and (2) even if they do,
it is unlikely for them to help each other via the query
collaboration requests due to the operational issues.

Therefore, if an agent focuses too much of its effort
on ontological inferences, it might not have enough
resources to handle the actual queries from its users.
Thus, the ontological inferences and the query satisfac-
tion tasks could benefit each other as well as detract
from each other. Both improve the system and agent’s
performance but both also compete for resources and
neither can be dominating at the same time. The chal-
lenge is to find a balanced level so that both work rela-
tive well together to achieve the desired level of per-
formance.
Desired Level of Performance. In our design, we use
a desired level of performance to help guide the agents
in their balancing act. For example, if the system is
expected to perform at a 60% success rate, then each
agent will try to reach that level by learning about its
neighbors if it does not have enough knowledge to
achieve that success rate; if the system performs above
that success rate, each agent will reduce its workload
(i.e., the number of neighbors approached for help),
thus reducing the message traffic and computations.
Priority. Since inference is costly, the translation table
should only be improved gradually and selectively
(Chen and Soh 2004). For example, when an agent
tries to decide when to ask for the translation of a cer-
tain concept, it should decide based on how well the
queries for that concept have been satisfied. If it has
been successful, the motivation to ask for a translation
is low. An agent’s ability to evaluate the incoming
requests and to select the most important tasks to per-
form becomes crucial. It should refuse some of the
query collaboration requests if they do not add to the
goal of the system. Towards this end, each agent
keeps track of priority values of ontological learning

and query collaboration. When an agent is performing
poorly in satisfying its own queries and its translation
table is not credible, it increases its priority for onto-
logical learning. On the other hand, when the agent is
performing well in satisfying its own queries, it be-
comes more altruistic and increases its priority for
query collaboration. Each agent sets its priority based
on its observation of its performance in the past W =
10 cycles.
Relays. Finally, relays occur when an agent does not
recognize a query. When the agent does not recognize
the queried concept, it checks its translation table to
find any matched entries. If a match is found, the
agent knows that one of its neighbors is likely to be
able to answer the query. Thus, it forms and relays a
new query to the corresponding neighbor. We call this
type of collaboration a “targeted relay”. However, if
the agent does not recognize the queried concept and
does not believe that other neighbors know the con-
cept, it will simply distribute the query to all its
neighbors in an order according to the collaboration
utility scores of its neighbors. We call this type of col-
laboration a “generic relay”.

4. Experiments

We have conducted a comprehensive set of experi-
ments to investigate the ontology inference and opera-
tional efficiency. Due to the page limit, we will report
on the changes in performance as agents learn to col-
laborate while adjusting to the desired level of system
performance, and the impact of learning on the health
of the neighborhood and the communication cost. For
a detailed treatment of all the experimental results on
incorporating ontological and operational factors,
please refer to (Chen 2004).

4.1. Experimental Setup

In our experiments, we setup a multiagent system

with 5 agents and 5 simulated software users. Each
agent is paired up with a particular software user—the
agent receives queries from the software user periodi-
cally. Initially, each agent’s neighborhood consists of
all other agents. That means, each agent is able to
communicate with all other agents directly. For differ-
ent experiments, an agent may have 5, 10, 15, and 25
collaboration threads. The results reported here are
based on the configuration where an agent had only 10
such threads.

The agents’ ontology repositories are heterogene-
ous with different concepts. Some agents also have
larger repositories than the others. This difference
implies that an agent with a larger repository will ex-
pend more effort when it performs ontology inferences
but can be more resourceful in terms of satisfying que-
ries and helping other agents. We decided to use such

748

a setup to more closely simulate a real world environ-
ment.

Each software user has a query configuration file
that submits pre-defined queries to the corresponding
agent. Each query in a configuration file consists of (a)
a cycle number, (b) the queried concept, (c) the num-
ber of link desired and (d) the time constraint given by
the software user indicating how long the user will
wait for the query result.

The queries that each agent received several types of
queries: (a) queries that are known to the agent, (b)
queries that are known to one of its neighbors but un-
known to the agent, (c) queries that are known to one
or more of its neighbors but not known to the agent,
and, and (d) queries that are unknown to the entire
neighborhood. The percentage of queries received that
is known to an agent is a random number uniformly
generated between 20.0% and 33.3%. The percentage
of queries received that triggered a relay (either tar-
geted or generic) is set roughly at 25%. These queries
were arranged into a batch and the same batch was fed
into the system 7 times. Each segment had 150 differ-
ent total queries.
Query-Triggered Collaborations. Here we list the six
collaboration types that an agent might encounter dur-
ing its query satisfaction process.
• Collaboration Type 1: The agent knows the queried

concept and has enough documents to satisfy the
query alone. In this case, no collaboration is needed.
The agent will answer the query alone.

• Collaboration Type 2: The agent knows the queried
concept but does not have enough documents to sat-
isfy this query. It has some idle threads. It will use
the translation table and neighborhood profile to
rank the neighbors and distribute the remaining
number of requested documents among its neighbors
based on the weighted sum of both the collaboration
utility and the translation credibility of the individual
neighbors.

• Collaboration Type 3: Similar to Type 2, but the
agent has no idle threads and returns whatever
documents that it has immediately.

• Collaboration Type 4: The agent does not know the
queried concept. The agent has no idle threads and
directly terminates the query process.

• Collaboration Type 5: The agent does not know the
concept. It has some idle threads. It discovers that
one of its neighbors knows this query by checking
its translation table. The agent will relay the query to
that specific neighbor and record the acceptance and
satisfaction quality of the neighbor. This is a tar-
geted relay.

• Collaboration Type 6: The agent does not know the
queried concept. It has some idle threads. However,
it cannot find any neighbor that might know this
concept. The agent will distribute the request among
all neighbors based on their collaboration utility and
relay scores. This is a generic relay.

Types 3 and 4 collaborations are situations in which
the agent cannot approach potentially helpful
neighbors for help because it does not have available
collaboration threads. Further, Types 2, 5, and 6 col-
laborations are situations where the agent has the re-
sources to carry out query collaborations, indicating
that it is capable operationally. A good multiagent
system should reduce such the occurrences of Types 3
and 4 collaborations and increase Types 2, 5, and 6
collaborations. Reducing the numbers of Types 3 and
4 collaborations indicates that the agents are able to
better utilize their resources and avoid fruitless re-
quests for collaboration. Increasing the numbers of
Types 2, 5, and 6 collaborations, on the other hand,
indicate that the agents are able to identify helpful and
useful neighbors.

4.2. Experimental Results

Query Frequencies and Learning Rate. We were
interested in how the profile-based reinforcement
learning behaved under different query frequencies.
We investigated two query configurations. In the first
configuration (30/30), the software user submitted
thirty queries to the agent in thirty cycles of an agent,
constituting one batch, and iterated this process seven
times, resulting in a total of seven batches of queries.
In the second configuration (30/60), the software user
performed the same thing in sixty cycles. Thus, the
first configuration has a higher query frequency than
the second one. A higher query frequency means a
more demanding load on the system. We would like to
observe how learning is affected by the load of the
system. We set the desired performance level, DP, at
0.6 (or 60% query satisfaction) for these two configu-
rations. Note that we have carried out experiments on
different performance levels (0.2, 0.4, 0.6, 0.8, and
1.0). As will be discussed later in our summary, the
results with DP = 0.6 is representative of the results
with DP = 0.2 and DP = 0.4.

Figures 1-3 show, respectively, the average re-
sponse time per batch, the average search ratio per
batch, and the average number of neighbors contacted
per batch in each configuration.

From Figure 1, we see that the average response
time in 30/30 decreased significantly over time. It in-
dicates that the agents learned how to satisfy queries
more quickly over time under demanding load. How-
ever, in the case of 30/60, because the agents were not
under the same stress, the impact of learning was not
as significant. That is, all batches of queries were an-
swered in a rather uniform, timely manner.

Figure 2 depicts the average search ratio, a metric
measuring the ratio of number of documents retrieved
over the number of requested documents for a query,
per batch for the two frequency configuration. This
measures how well an agent satisfied the queries in
terms of the retrieved results. We saw that due to
learning, the agents in the 30/30 configuration strived

749

to reach the targeted DP = 0.6. After three batches,
they reached the target. But to clamp the improvement
at 0.6, the agents over-adjusted and decreased their
search ratio values. A low load with 30/60 did not see
any trends towards reaching DP. Note that when an
agent realizes that it is performing around the desired
level of performance of the system, it changes its pri-
ority of services, de-emphasizing query collaborations
and favoring ontological learning, as it tried to squeeze
in costly ontological inference tasks when its query
tasks are going well. However, these costly inferences,
though gradual and selective, could still hold up criti-
cal resources such as the collaboration threads. Look-
ing more closely at Figure 2, we see that every agent
had an upward tendency towards the later portion of
their runs, hinting that each might be able to reach DP
again if the runs were extended further.

Figure 1. Average response time per batch for query
frequency 30/30 and 30/60 (DP = 0.6).

Figure 2. Average search ratio per batch for query fre-
quency 30/30 and 30/60 (DP = 0.6).

Figure 3 shows the average number of neighbors

contacted per batch for the two query configurations.
We see that the agents were able to reduce the number
of neighbors contacted. Compared to Figures 1 and 2,
we see that the agents were able to improve their re-
sponse time, the search ratio, and the numbers of

neighbors contacted at the same time, around the third
and fourth batches of queries.
Figure 3. Average number of neighbors contacted per
batch for query frequency 30/30 and 30/60 (DP = 0.6).

We conclude that the learning rate is much more

significant when the load is more demanding (30/30
vs. 30/60). We also observe that profile-based rein-
forcement learning is adaptive to the circumstance that
the agents are in. If the resources are abundant and the
user’s demand is not high, then the need for learning is
low and will not be carried out as often as the agents
will enjoy a rather good level of performance. If the
resources are highly constrained and the user’s demand
is high, the system will not do as well and thus agents
are motivated to learn. Not shown in this paper are the
neighborhood response rate and on time rate, which
measures the percentage of neighbors responding to a
query help request and the percentage of times a
neighbor returns the requested documents on time,
respectively. Both these rates improve. That is, the
agents are able to contact fewer neighbors but with
neighbors that are more helpful and useful. As a re-
sult, the queries can be answered on time more often
and with better recalls (higher search ratios).

Average Response Time per Batch in Different
Query Frequencies

0
20
40
60
80

100
120
140
160

A0 A1 A2 A3 A4

A
ve

ra
ge

 r
es

po
ns

e
tim

e
in

se

co
nd

30/30
30/60

Neighborhood Health. We take a closer look at the
improvements incurred in the neighborhood of each
agent. The neighborhood health is a composite index
that indicates the quality of the neighborhood of an
agent. The health of an agent’s neighborhood is a
weighted sum of three parameters: (1) the average
credibility score stored in the translation table of the
agent counting only the neighbors approached, (2) the
average collaboration utility of the neighbors ap-
proached, and (3) the average relay score of the
neighbors approached for relaying. Each neighbor
approached will contribute at most 3 points to the qual-
ity of the neighborhood health. So the maximum pos-
sible quality of health in this case is 12 for each agent
since each has 4 neighbors.

Average Search Ratio per Batch for Different
Query Frequencies

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A0 A1 A2 A3 A4

Av
er

ag
e

se
ar

ch
 r

at
io

30/30
30/60

Figure 4 shows the neighborhood health as the
agents gain knowledge in translation and expertise in
collaboration through inference-based ontological
learning and profile-based reinforcement learning. It
shows that each agent is able to refine its neighbor-
hood gradually and converge. Indeed, though each
agent does not improve its own neighborhood signifi-
cantly beyond a certain point, each was able to form
different collaborations for different queries, contact-
ing only a subset of neighbors for each query. As a
result, each contacted about 2 neighbors after conver-
gence, with a “good enough” translation table to
achieve DP = 0.6.

Average Number of Neighbors Contacted per
Batch in Different Query Frequencies

0

20

40

60

80

100

120

A0 A1 A2 A3 A4

Av
er

ag
e

nu
m

be
r o

f n
ei

gh
bo

rs

co
nt

ac
te

d

30/30
30/60

750

Figure 4. The health of an agent’s neighborhood
agents over the number of queries seen (DP = 0.6).

Communication Cost. Our goal is to reduce the num-
ber of messages sent and received by every agent in
the system while maintaining the quality of services.
We observe that, in general, the numbers of messages
sent and received by every agent decreased by around
25-100 messages per agent between the peak and the
last measure, as shown in Figure 5. In the beginning,
though the agents were contacting fewer neighbors for
query collaborations, some of them also requested on-
tological inference services. That caused the number
of messages to stay high for a while. The impact of
learning on the communication cost was actually felt
during the third or fourth batch of the experiments.

Figure 5. The total number of message sent and re-
ceived for all agents per batch over time.

Collaboration Types. Figure 6 shows the numbers of
different types of collaborations in each batch for the
five agents. As learning progresses over time, the
number of Type 5 collaborations (targeted relays) in-
creased because the agents gradually learned what the
other agents knew and what itself did not know
through ontological inferencing. Further, the number
of Type 6 collaborations (generic relays) decreased
because the agents became more knowledgeable about
the other agents’ ontologies. Thus, the agents became
more responsible in asking for help—less
“spamming”. The number of Type 2 collaborations
remained the same as the local ontology repository of
each agent did not change. Best of all, the numbers of
Types 3 and 4 collaborations (situations where no idle

threads were available for collaborations) significantly
decreased. This indicates that the agents were able to
learn to use their resources effectively. Combining
Figure 6 and other figures, we see that the agents,
while reducing their use of the resources (bandwidth
and collaboration threads), were still able to achieve
good neighborhood health and better performance pa-
rameters while adapting to the desired level of per-
formance.

Neighborhood Health

0

0.5

1

1.5

2

2.5

3

3.5

4

1 10 19 28 37 46 55 64 73 82 91 100 109 118

N
ei

gh
bo

rh
oo

d
he

al
th

A0
A1
A2
A3
A4

 Not shown in the figures in this paper are the per-
formance measures of Types 2, 5, and 6 collaborations.
Here we briefly report on them. The performance of
Types 2 and 5 collaborations were significantly im-
proved by profile-based reinforcement learning. In
Type 5 collaborations (targeted relays), we observe
that the agents were able to identify unknown queries
and relay the queries to appropriate neighbors such
that the search ratio improved. However, in Type 6
collaborations (generic relays), the agents needed the
relay score in addition to the collaboration utility to
obtain improved performance. This indicates that even
when an agent had absolutely no idea about which
neighbor knew about a particular queried concept, it
was still able to improve its performance by looking at
two operational factors: the collaboration profile and
the relay score, with the latter keeping track of the
response of a neighbor to a relay request.

Different Types of Collaboration per Batch

0
2
4
6
8

10
12
14
16
18
20

A0 A1 A2 A3 A4Th
e

nu
m

be
r o

f o
cc

ur
ra

nc
e

of
 e

ac
h

ty
pe

Type2 Type3 Type4 Type5 Type6

The Total Number of Messages Sent and
Recieved

0
50

100
150
200
250
300
350
400
450

A0 A1 A2 A3 A4Th
e

to
ta

l n
um

be
r o

f m
es

sa
ge

s

MessageSent MessageRecd

Figure 6. The number of occurrences of different
types of collaborations over time.

Summary and Discussions. Profile-based reinforce-
ment learning is important for the agents to make good
decisions based on what they observe in the past. The
operational knowledge (collaboration utility and relay
scores) stored in the neighborhood profile provides
good information of the probability of a neighbor ac-
cepting a query collaboration request. Combining both
the operational and ontological knowledge, the agents
learn to select the most helpful and capable neighbors
for collaboration. As a result, the quality of collabora-
tion improves. The learning is effective in reducing
the average response time, improving the quality of
query satisfaction, and reducing the number of
neighbors contacted and the communication cost.
 There are also indications that our learning and
adaptive mechanisms are able to adapt to a desired

751

level of performance. When the desired level of per-
formance is too high (> 0.6) such that the system does
not have the ontological resources (documents) to sus-
tain that type of performance, the agents will go into
an overdrive to try to match it. In that case, the agents
were observed to constantly conduct ontological infer-
ences; the requests among the agents were mostly for
ontological inference services as those became the
priority of the agents. The system’s performance thus
suffered. On the other hand, when the desired level of
performance is low (≤0.6), the agents were observed to
be able to adapt rather well, reducing their response
time, the number of neighbors used, etc., while nearing
the desired level of performance.
 Our ontology repository for the experiments is still
simplistic. There is no hierarchical relationship within
our ontologies. In real-world applications, ontologies
are usually organized into hierarchies and there are
many relations among the concepts such as super class
and sub-class relation, equivalent relation, is-a and
has-a relations, etc. We are also designing a recom-
mender module in each agent based on the relay scores
of its neighbors. With this module, we aim to allow a
user to be directly routed to the responsive neighbors
for certain queries that the agent does not recognize.

5. Conclusions

We have presented a multiagent, distributed infor-
mation retrieval system in which collaborating agents
improves their performance by learning ontologically
and operationally. This paper investigates the trade-
offs between ontological and operational factors in
refining multiagent neighborhoods. We have de-
scribed the use of collaboration utility and translation
credibility, the adoption of a desired performance level
to tradeoff between the operational and ontological
activities, the dynamic determination of service prior-
ity based on agent observation of past performance,
and the use of generic and targeted relays. We have
reported on profile-based reinforcement learning, in-
ference-based ontological learning, and observation-
based priority determination. Our experiments have
shown that our “balanced” approach was able to im-
prove the quality of the collaborations in terms of the
response time, quality of the retrieved results, the
number of neighbors contacted, the number of mes-
sages sent, and the neighborhood health.

6. References

Baeza, R. and B. Ribeiro (1999). Modern Information
Retrieval, The ACM Press, Addison Wesley.

Bayardo, R., W. Bohrer, R. Brice, et al. (1998).
InfoSleuth: Agent-Based Semantic Integration of In-
formation in Open and Dynamic Environments, In
Readings in Agents, M. Huhns and M. Singh (Eds.),
San Francisco: Morgan Kaufmann, 205-216.

Chen, C. (2004). A Multiagent Approach Using On-
tology and Operational Learning to Improve Distrib-
uted Information Retrieval, M.S. Thesis, University of
Nebraska, Lincoln, NE.

Chen, C. and L.-K., Soh (2004). Adaptive Learning to
Optimize Resource Management in a Multiagent
Framework, Proc. ICAI’2004 Las Vegas, NV, pp. 386-
389.

McGuinness, D. L. (2002). Conceptual Modeling for
Distributed Ontology Environments, Proc. 8th Int.
Conf. Conceptual Structures Logical, Linguistic, and
Computational Issues, Darmstadt, Germany, August.

Mine T., Matsuno D., Takaki K., and M. Amamiya
(2004). Agent Community based Peer-to-Peer Infor-
mation Retrieval, Proc. AAMAS’2004, July 19-23, NY,
pp. 1484-1485.

Soh, L.-K. (2003). Collaborative Understanding of
Distribute Ontologies in a Multiagent Framework:
Design and Experiments, Proc. AAMAS 2003 Work-
shop OAS, Melbourne, Australia, pp. 47-54.

Soh, L.-K. and C. Tsatsoulis (2001). Reflective Nego-
tiating Agents for Real-Time Multisensor Target
Tracking, in Proc. IJCAI’01, August 6-11, Seattle,
WA, pp. 1121-1127.

Takaai, M., H. Takeda, and T. Nishida (1997). Dis-
tributed Ontology Development Environment for
Multi-Agent Systems, Working Notes AAAI-97 Spring
Symp. Series on Ontological Engr., pp. 149-153.

Williams, B. A. (2004). Learning to Share Meaning in
a Multi-Agent System, J. Autonomous Agents & Mul-
tiagent Systems, 8(1):165-193.

Zhang, H., Croft, W. B., Levine, B., and V. Lesser
(2004). A Multiagent Approach for Peer-to-Peer In-
formation Retrieval, Proc. AAMAS’2004, July 19-23,
NY, pp. 456-463.

752

