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Abstract 
 

In this paper, we present our work balancing onto-
logical and operational factors in building collabora-
tions within multiagent neighborhoods. This innova-
tion takes into account the desired level of perform-
ance, service priorities, and relaying of tasks to deter-
mine whether an agent should entertain ontological 
learning, which are more expensive but more reward-
ing in the long run, or carry out operational learning, 
which are less expensive and more rewarding in the 
short term.  The domain of application is multiagent, 
distributed information retrieval, where agents, safe-
guarding information or data resources, improve their 
local services by collaborating with others. Each agent 
is capable of providing query services to its users, and 
is equipped with an ontology defining the concepts that 
it knows and the associated documents.  When col-
laborating, an agent needs to determine which agents 
to approach and how to approach them.  Experiments 
show that with balanced profile-based reinforcement 
learning (operational) and inference-based ontologi-
cal learning, agents reach desired level of perform-
ance while improving the neighborhood health and 
communication cost. 
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1. Introduction 
 

In information retrieval, large ontologies are usually 
so diverse that they are best designed and maintained 
in a distributed manner by multiple experts (McGuin-
ness 2002).  Ideally, if all parties have a common vo-
cabulary to express their ontology, then knowledge 
and ontology can be shared seamlessly.  However, 

such a vocabulary is difficult to establish as different 
users or entities have their own ontological interpreta-
tions (Williams 2004).  As a result, agents need to 
learn to understand each other when collaborating. 
Thus far, most distributed information retrieval (DIR) 
research have focused on improving ontology under-
standing among agents based on ontologies alone (e.g., 
Takaai et al. 1997, Bayardo et al. 1998, Williams 2004, 
Mine et al. 2004, Zhang et al. 2004), without taking 
into account the operational factors such as the number 
of threads available for collaboration, the helpfulness 
of the agents in addition to their expertise, the desired 
performance level of the system, and so on.   

Our research takes into account both ontological 
and operational factors.  The reasons for considering 
operational factors are two-fold.  First, the quality of 
retrieval hinges upon multiple variables such as the 
relevance of the retrieved documents and the speed of 
the retrieval. The tradeoffs among between variables 
depend on the needs of the user.  If a user prefers 
speed over accuracy, then the user may want a system 
that could return good enough results quickly.  Second, 
for scalability, it is costly for an agent to discover the 
best agents in its community that could provide docu-
ments or coverage for each concept or term in the 
agent’s ontology, especially when the system is large.  
Third, learning about ontologies and finding transla-
tions are expensive.  It is thus wise for an agent A to 
realize first whether it needs to learn about another 
agent B’s ontology, and then determine whether B is 
able to help operationally.  If B is always busy and not 
available to provide help, then learning about B’s on-
tology is not rewarding to A operationally, even 
though such learning would enhance A’s ontological 
knowledge.  

Our work’s underlying framework is described in 
(Soh 2003), in which each agent safeguards its own 
information or data resources and manages its local 
services by collaborating with others.  Each agent has 
both operational and ontological components.  When 
an agent intends to ask for a particular service from 
another agent, it may approach (1) an agent that is very 
capable of performing the service, or (2) an agent that 
is very helpful though not very capable, or (3) a help-
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ful agent with good capability.  Thus the agent may 
decide to learn ontologically—exchange ontological 
concepts and knowledge with another agent—only if 
such learning leads to operational efficiency.  In this 
paper, we focus on how an agent refines its collabora-
tion with its neighboring agents to satisfy queries, tak-
ing into account the desired level of performance of 
the system, the resources available, the frequency of 
queries, and the helpfulness of the neighbors.   

 
2. Related Work 

 
Our research work is particularly related to three re-

search projects.  Here we briefly describe them and 
distinguish the differences between these projects and 
our approach.  The key difference is that these systems 
do not incorporate operational factors in ontological 
understanding and query distribution among agents.  

In DOGGIE (Williams 2004), the distributed ontol-
ogy understanding among agents is carried out in three 
steps: locating similar semantic concepts, translating 
semantic concept and learning key missing attributes.  
To locate similar semantic concepts, an agent sends 
other agents the name of the concept and a sample of 
semantic objects of that concept.  The receiving agent 
interprets the semantics by comparing the concept and 
objects and then sends back the result.  In essence, 
DOGGIE agents are able to teach each other what their 
concepts mean using their own conceptualization. Our 
work uses the same principle that allows agents to ex-
change ontology understanding by multiple 1-to-1 col-
laborations.  However, our approach considers opera-
tional factors that prevent unnecessary ontological 
learning from taking place. 

Mine et al. (2004) propose an agent community ar-
chitecture that performs peer-to-peer information re-
trieval with three types of agents: User Interface (UI) 
Agents, Information Retrieval (IR) Agents and History 
Management (HM) Agents. A UI-agent is responsible 
for collecting user’s query. An IR-agent is responsible 
for query retrieval and the communication with other 
agents in the community.  An HM-agent is responsible 
for updating a pair of history: (a) a query-retrieved 
document history, and (b) a query-sender agent history. 
In our approach, each agent has the ability to interface 
with the user, retrieve information, and manage history 
of other neighbors.  Moreover, Mine et al. (2004) do 
not consider diverse ontologies. 

Zhang et al. (2004) propose another peer-to-peer in-
formation retrieval system.  The agents apply an agent-
view reorganization algorithm to form a local view of 
what other agents know and information clusters. The 
agents select a coalition to collaboratively share que-
ries based on the local view. After receiving a query, 
an agent uses a gradient search scheme to identify the 
best coalition and distribute the queries to the identi-
fied coalition. When an agent is not able to locate a 
useful local view, it automatically forwards the query 

to high-degree connective agents, allowing the query 
to jump out of a “bad zone” to a likely “good zone.” 
Similarly, our agents use reinforcement learning for an 
agent to find a “good zone” by filtering out incapable 
and non-helpful neighbors. However, faced with an 
unknown query, our agent is able to relay the query to 
a “good zone” using the recipient agent’s profile of its 
neighborhood, to the neighbor that has been known to 
be useful (ontologically) and helpful (operationally). 

Our work extends the results and design of (Chen 
and Soh 2004). Here we briefly summarize the results 
in (Chen and Soh 2004).  First, collaboration among 
agents greatly improves their query services for the 
users.  Second, learning allows agents to improve their 
performance over time from observing their opera-
tional neighborhoods. Third, the operational infrastruc-
ture facilitates some rudimentary ontology inference.  
Our current focus investigates how agents decide 
among two types of learning to balance its activities 
such that the performance of the system is maintained 
at a desired level.  

 
3. Framework and Methodology 

 
Our framework is based on (Soh 2003) where 

agents interact and collaborate to process and satisfy 
queries.  Each agent has operational and ontological 
components designed for: operational and ontological. 

The operational component is domain independent, 
addressing issues such as the appropriate number of 
threads, the response behavior of neighbors, and so on, 
for an agent to maintain a certain level of performance.  
The operational knowledge for collaboration is stored 
in a neighborhood profile.  This is based on the rela-
tionship between the agent and its neighboring agents 
and the agent’s current view of its resources.  We will 
discuss this further in Section 3.1. 

The ontological component is domain-specific, al-
lowing the agent to satisfy its user’s demands (i.e., 
queries) and exchange the content (mapping of ontolo-
gies) between the agent and its neighboring agents.  
An agent’s ontology repository and translation table 
constitute its ontological knowledge. An agent can also 
initiate a collaboration process to learn about other 
ontologies. Given information from the collaboration, 
it infers the mapping between two concepts of differ-
ent ontologies, and saves the mapping in the transla-
tion table dynamically.  An agent’s ontology reposi-
tory consists of a set of concepts, with each concept 
supported by a set of documents.  Two agents learn 
about the mapping between their concepts by compar-
ing the associated documents.  We will discuss this 
further in Section 3.2. 

When an agent receives a query from its user, it 
checks the concept against its own ontology reposi-
tory.  If the agent finds a match and there are enough 
documents to satisfy the user, then it needs no collabo-
ration from other agents and returns the result to the 
user directly. If the agent cannot satisfy the query on 
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its own, it will contact its neighbors for collaboration.  
There are three possible scenarios.  First, if the agent 
recognizes the concept in its ontology base but does 
not have enough documents to fulfill the query, then it 
will approach its neighbors to ask for more documents. 
How many documents to ask from each neighbor is 
based on the agent’s perception of the neighbor: a col-
laboration utility and a credibility score.  Second, if 
the agent does not recognize the concept, then it will 
check its translation table and see whether the concept 
in the query matches (in terms of its name) any entries 
in the table.  If found, the agent forms and relays a new 
query to the corresponding neighbor.  Third, if the 
agent does not recognize the queried concept and does 
not believe that other neighbors know the concept, it 
will simply distribute the query to all its neighbors in 
an order derived from the collaboration utility values 
and past relay scores.  An agent’s relay score of one of 
its neighbors is the average search ratio of all the que-
ries relayed to that neighbor. 

When an agent receives a request, it checks for the 
request type. First, there are collaboration requests to 
supply relevant documents to a particular query.  The 
agent will check its translation table and, depending on 
a successful match, retrieves the required number of 
documents to return to the initiator. Second, there are 
inference requests to provide ontological similarity 
mapping. Together with an inference request is a list of 
supplemental documents.  The agent checks its own 
ontology repository to compute the similarity between 
its own documents and the supplemental ones, and 
returns the best-matched concept.   

A query collaboration service is less expensive 
computationally and rewarding in the short term.  
However, an inference service is expensive computa-
tionally and only rewarding in the long run.  Further, 
with better ontological understanding among the 
agents, the system as a whole will retrieve documents 
that are more relevant.  However, when the system is 
resource-constrained and time-constrained, a trade-off 
exists such that agents may decide to learn only suffi-
ciently about other agents’ ontologies as long as each 
believes that it is achieving the desired performance 
level of the system.  

In our design, each agent has both inference-based 
ontological learning and profile-based reinforcement 
learning. Via reinforcement learning, an agent is more 
likely to contact neighbors that have been helpful.  Via 
ontological learning, an agent is more likely to ap-
proach neighbors that are considered knowledgeable. 

 
3.1. Collaboration Utility  

 
Our collaboration utility is based on negotiation-

based parameters introduced in (Soh and Tsatsoulis 
2001).  We define the collaboration utility of a 
neighbor as perceived by an agent as the average of (a) 
_helpRate, the ratio of successful collaborations when 
the agent receives a request from the neighbor over the 

total number of requests from the neighbor to the 
agent, (b) _successRate, the ratio of successful col-
laborations when the agent initiates a request to the 
neighbor over the number of total requests from the 
agent to the neighbor, (c) _nowCollaborating, a Boo-
lean indicator as to whether the agent and the neighbor 
are currently collaborating on another task, (d) 
_requestToRate, the ratio of the total number of re-
quests from the agent to the neighbor over the total 
number of all requests from the agent, indicating the 
reliance of the agent on the neighbor, and (e)  
_requestFromRate, the ratio of the total number of 
requests from the neighbor to the agent over the total 
number of all requests from the neighbor to the agent, 
indicating the reliance of the neighbor on the agent.   
The collaboration utility is: 
Collaboration Utility  = (_successRate + _helpRate + 

_requestToRate + _requestFromRate +(1-
_nowCollaborating))/5. 

With the above score, we see that if an agent has been 
in close relationship with a neighbor, then the 
neighbor’s collaboration utility is high.  That the agent 
is not currently collaborating with the neighbor adds to 
the utility as well. 
 
3.2.  Ontology Repository and Credibility Score  

 
As previously discussed, we describe each concept 

with a set of descriptors.  In our framework, we use a 
single phrase to represent a concept and use WWW 
links as the descriptors.  These concepts together with 
their links form an agent’s ontology.  The initial re-
pository was built based on the WWW bookmarks of 
several students, where each bookmark title was used 
as the concept name, and the links filed under a book-
mark were retrieved as the associated documents.    

To computer the relevance between two documents, 
we use the vector-based cross product common in in-
formation retrieval (Baeza and Ribeiro 1999).  The 
credibility of a translation between two concept names 
is thus the average relevance between the two sets of 
associated documents.   

A translation table is agent-specific.  It has C rows where 
C is the number of concepts in the agent’s ontology reposi-
tory.  It has N columns for the N neighbors.  Each entry is the 
corresponding concept name in a neighbor for a particular 
concept name that the agent knows and the translation credi-
bility.  There are entries that are NIL indicating an empty 
translation.  
3.3. Balancing Ontological and Operational Factors  
 

When an agent realizes that its translation table is 
poor, then it has the motivation to perform ontological 
inferences to learn more about its neighbors’ ontolo-
gies.  For each concept, it will attempt to resolve the 
least credible translation first.  It does this by initiating 
an inference service request hoping that the responding 
neighbor will provide a mapping.   
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For the responding agent, the inference process is 
time consuming since it involves retrieving documents, 
extracting keywords, and comparing among numerous 
documents of different concepts. Such a process costs 
thread resources and computation, especially when the 
ontology repository of the responding agent is large. 

Because of the limited resources, an agent has to 
regulate its inference processes.  It must balance be-
tween knowing more ontologically and providing good 
enough services to its users.  Our design discourages 
an agent from initiating too many inference processes 
in the following manner. First, when the responding 
agent, after the inference process, finds the credibility 
value to be very low (lower than a pre-defined thresh-
old), then both the agents will remember it.  It is more 
likely for the responding agent to entertain another 
inference request from the initiating agent in the fu-
ture.  Thus, the initiating agent has to choose carefully 
which neighbors to approach.  Second, if the past rela-
tionship between two agents has not been good, then 
(1) it is more likely for the agents to have nothing in 
common in terms of concepts, and (2) even if they do, 
it is unlikely for them to help each other via the query 
collaboration requests due to the operational issues.   

Therefore, if an agent focuses too much of its effort 
on ontological inferences, it might not have enough 
resources to handle the actual queries from its users.  
Thus, the ontological inferences and the query satisfac-
tion tasks could benefit each other as well as detract 
from each other.  Both improve the system and agent’s 
performance but both also compete for resources and 
neither can be dominating at the same time.  The chal-
lenge is to find a balanced level so that both work rela-
tive well together to achieve the desired level of per-
formance. 
Desired Level of Performance.  In our design, we use 
a desired level of performance to help guide the agents 
in their balancing act.  For example, if the system is 
expected to perform at a 60% success rate, then each 
agent will try to reach that level by learning about its 
neighbors if it does not have enough knowledge to 
achieve that success rate; if the system performs above 
that success rate, each agent will reduce its workload 
(i.e., the number of neighbors approached for help), 
thus reducing the message traffic and computations.   
Priority.  Since inference is costly, the translation table 
should only be improved gradually and selectively 
(Chen and Soh 2004).  For example, when an agent 
tries to decide when to ask for the translation of a cer-
tain concept, it should decide based on how well the 
queries for that concept have been satisfied.  If it has 
been successful, the motivation to ask for a translation 
is low. An agent’s ability to evaluate the incoming 
requests and to select the most important tasks to per-
form becomes crucial.  It should refuse some of the 
query collaboration requests if they do not add to the 
goal of the system.  Towards this end, each agent 
keeps track of priority values of ontological learning 

and query collaboration.  When an agent is performing 
poorly in satisfying its own queries and its translation 
table is not credible, it increases its priority for onto-
logical learning.  On the other hand, when the agent is 
performing well in satisfying its own queries, it be-
comes more altruistic and increases its priority for 
query collaboration.  Each agent sets its priority based 
on its observation of its performance in the past W = 
10 cycles.   
Relays. Finally, relays occur when an agent does not 
recognize a query.  When the agent does not recognize 
the queried concept, it checks its translation table to 
find any matched entries.  If a match is found, the 
agent knows that one of its neighbors is likely to be 
able to answer the query.  Thus, it forms and relays a 
new query to the corresponding neighbor. We call this 
type of collaboration a “targeted relay”. However, if 
the agent does not recognize the queried concept and 
does not believe that other neighbors know the con-
cept, it will simply distribute the query to all its 
neighbors in an order according to the collaboration 
utility scores of its neighbors. We call this type of col-
laboration a “generic relay”.    

 
4. Experiments 
 

We have conducted a comprehensive set of experi-
ments to investigate the ontology inference and opera-
tional efficiency.  Due to the page limit, we will report 
on the changes in performance as agents learn to col-
laborate while adjusting to the desired level of system 
performance, and the impact of learning on the health 
of the neighborhood and the communication cost.  For 
a detailed treatment of all the experimental results on 
incorporating ontological and operational factors, 
please refer to (Chen 2004). 
 
4.1. Experimental Setup 

 
In our experiments, we setup a multiagent system 

with 5 agents and 5 simulated software users.  Each 
agent is paired up with a particular software user—the 
agent receives queries from the software user periodi-
cally.  Initially, each agent’s neighborhood consists of 
all other agents.  That means, each agent is able to 
communicate with all other agents directly.  For differ-
ent experiments, an agent may have 5, 10, 15, and 25 
collaboration threads.  The results reported here are 
based on the configuration where an agent had only 10 
such threads. 

The agents’ ontology repositories are heterogene-
ous with different concepts.  Some agents also have 
larger repositories than the others.  This difference 
implies that an agent with a larger repository will ex-
pend more effort when it performs ontology inferences 
but can be more resourceful in terms of satisfying que-
ries and helping other agents.  We decided to use such 
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a setup to more closely simulate a real world environ-
ment. 

Each software user has a query configuration file 
that submits pre-defined queries to the corresponding 
agent. Each query in a configuration file consists of (a) 
a cycle number, (b) the queried concept, (c) the num-
ber of link desired and (d) the time constraint given by 
the software user indicating how long the user will 
wait for the query result.  

The queries that each agent received several types of 
queries: (a) queries that are known to the agent, (b) 
queries that are known to one of its neighbors but un-
known to the agent, (c) queries that are known to one 
or more of its neighbors but not known to the agent, 
and, and (d) queries that are unknown to the entire 
neighborhood.  The percentage of queries received that 
is known to an agent is a random number uniformly 
generated between 20.0% and 33.3%.  The percentage 
of queries received that triggered a relay (either tar-
geted or generic) is set roughly at 25%.  These queries 
were arranged into a batch and the same batch was fed 
into the system 7 times.  Each segment had 150 differ-
ent total queries. 
Query-Triggered Collaborations. Here we list the six 
collaboration types that an agent might encounter dur-
ing its query satisfaction process. 
• Collaboration Type 1:  The agent knows the queried 

concept and has enough documents to satisfy the 
query alone. In this case, no collaboration is needed. 
The agent will answer the query alone.  

• Collaboration Type 2:  The agent knows the queried 
concept but does not have enough documents to sat-
isfy this query. It has some idle threads. It will use 
the translation table and neighborhood profile to 
rank the neighbors and distribute the remaining 
number of requested documents among its neighbors 
based on the weighted sum of both the collaboration 
utility and the translation credibility of the individual 
neighbors.  

• Collaboration Type 3:  Similar to Type 2, but the 
agent has no idle threads and returns whatever 
documents that it has immediately.  

• Collaboration Type 4: The agent does not know the 
queried concept. The agent has no idle threads and 
directly terminates the query process.  

• Collaboration Type 5:  The agent does not know the 
concept.  It has some idle threads.  It discovers that 
one of its neighbors knows this query by checking 
its translation table. The agent will relay the query to 
that specific neighbor and record the acceptance and 
satisfaction quality of the neighbor.  This is a tar-
geted relay. 

• Collaboration Type 6:  The agent does not know the 
queried concept.  It has some idle threads. However, 
it cannot find any neighbor that might know this 
concept. The agent will distribute the request among 
all neighbors based on their collaboration utility and 
relay scores. This is a generic relay. 

Types 3 and 4 collaborations are situations in which 
the agent cannot approach potentially helpful 
neighbors for help because it does not have available 
collaboration threads.  Further, Types 2, 5, and 6 col-
laborations are situations where the agent has the re-
sources to carry out query collaborations, indicating 
that it is capable operationally.  A good multiagent 
system should reduce such the occurrences of Types 3 
and 4 collaborations and increase Types 2, 5, and 6 
collaborations.  Reducing the numbers of Types 3 and 
4 collaborations indicates that the agents are able to 
better utilize their resources and avoid fruitless re-
quests for collaboration.  Increasing the numbers of 
Types 2, 5, and 6 collaborations, on the other hand, 
indicate that the agents are able to identify helpful and 
useful neighbors. 
 
4.2. Experimental Results 
 
Query Frequencies and Learning Rate.  We were 
interested in how the profile-based reinforcement 
learning behaved under different query frequencies. 
We investigated two query configurations. In the first 
configuration (30/30), the software user submitted 
thirty queries to the agent in thirty cycles of an agent, 
constituting one batch, and iterated this process seven 
times, resulting in a total of seven batches of queries. 
In the second configuration (30/60), the software user 
performed the same thing in sixty cycles. Thus, the 
first configuration has a higher query frequency than 
the second one.  A higher query frequency means a 
more demanding load on the system.  We would like to 
observe how learning is affected by the load of the 
system. We set the desired performance level, DP, at 
0.6 (or 60% query satisfaction) for these two configu-
rations.  Note that we have carried out experiments on 
different performance levels (0.2, 0.4, 0.6, 0.8, and 
1.0).  As will be discussed later in our summary, the 
results with DP = 0.6 is representative of the results 
with DP = 0.2 and DP = 0.4. 

Figures 1-3 show, respectively, the average re-
sponse time per batch, the average search ratio per 
batch, and the average number of neighbors contacted 
per batch in each configuration.   

From Figure 1, we see that the average response 
time in 30/30 decreased significantly over time. It in-
dicates that the agents learned how to satisfy queries 
more quickly over time under demanding load. How-
ever, in the case of 30/60, because the agents were not 
under the same stress, the impact of learning was not 
as significant.  That is, all batches of queries were an-
swered in a rather uniform, timely manner. 

Figure 2 depicts the average search ratio, a metric 
measuring the ratio of number of documents retrieved 
over the number of requested documents for a query, 
per batch for the two frequency configuration.  This 
measures how well an agent satisfied the queries in 
terms of the retrieved results.  We saw that due to 
learning, the agents in the 30/30 configuration strived 
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to reach the targeted DP = 0.6.  After three batches, 
they reached the target.  But to clamp the improvement 
at 0.6, the agents over-adjusted and decreased their 
search ratio values.  A low load with 30/60 did not see 
any trends towards reaching DP.  Note that when an 
agent realizes that it is performing around the desired 
level of performance of the system, it changes its pri-
ority of services, de-emphasizing query collaborations 
and favoring ontological learning, as it tried to squeeze 
in costly ontological inference tasks when its query 
tasks are going well.  However, these costly inferences, 
though gradual and selective, could still hold up criti-
cal resources such as the collaboration threads.  Look-
ing more closely at Figure 2, we see that every agent 
had an upward tendency towards the later portion of 
their runs, hinting that each might be able to reach DP 
again if the runs were extended further.   

Figure 1. Average response time per batch for query 
frequency 30/30 and 30/60 (DP = 0.6). 

Figure 2. Average search ratio per batch for query fre-
quency 30/30 and 30/60 (DP = 0.6). 

 
Figure 3 shows the average number of neighbors 

contacted per batch for the two query configurations.  
We see that the agents were able to reduce the number 
of neighbors contacted.  Compared to Figures 1 and 2, 
we see that the agents were able to improve their re-
sponse time, the search ratio, and the numbers of 

neighbors contacted at the same time, around the third 
and fourth batches of queries. 
Figure 3. Average number of neighbors contacted per 
batch for query frequency 30/30 and 30/60 (DP = 0.6). 

 
We conclude that the learning rate is much more 

significant when the load is more demanding (30/30 
vs. 30/60). We also observe that profile-based rein-
forcement learning is adaptive to the circumstance that 
the agents are in. If the resources are abundant and the 
user’s demand is not high, then the need for learning is 
low and will not be carried out as often as the agents 
will enjoy a rather good level of performance.  If the 
resources are highly constrained and the user’s demand 
is high, the system will not do as well and thus agents 
are motivated to learn.  Not shown in this paper are the 
neighborhood response rate and on time rate, which 
measures the percentage of neighbors responding to a 
query help request and the percentage of times a 
neighbor returns the requested documents on time, 
respectively.  Both these rates improve.  That is, the 
agents are able to contact fewer neighbors but with 
neighbors that are more helpful and useful.  As a re-
sult, the queries can be answered on time more often 
and with better recalls (higher search ratios).  
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Neighborhood Health.  We take a closer look at the 
improvements incurred in the neighborhood of each 
agent.  The neighborhood health is a composite index 
that indicates the quality of the neighborhood of an 
agent.  The health of an agent’s neighborhood is a 
weighted sum of three parameters: (1) the average 
credibility score stored in the translation table of the 
agent counting only the neighbors approached, (2) the 
average collaboration utility of the neighbors ap-
proached, and (3) the average relay score of the 
neighbors approached for relaying.  Each neighbor 
approached will contribute at most 3 points to the qual-
ity of the neighborhood health.  So the maximum pos-
sible quality of health in this case is 12 for each agent 
since each has 4 neighbors. 

Average Search Ratio per Batch for Different 
Query Frequencies
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Figure 4 shows the neighborhood health as the 
agents gain knowledge in translation and expertise in 
collaboration through inference-based ontological 
learning and profile-based reinforcement learning.  It 
shows that each agent is able to refine its neighbor-
hood gradually and converge.  Indeed, though each 
agent does not improve its own neighborhood signifi-
cantly beyond a certain point, each was able to form 
different collaborations for different queries, contact-
ing only a subset of neighbors for each query.  As a 
result, each contacted about 2 neighbors after conver-
gence, with a “good enough” translation table to 
achieve DP = 0.6.   

Average Number of Neighbors Contacted per 
Batch in Different Query Frequencies

0

20

40

60

80

100

120

A0 A1 A2 A3 A4

Av
er

ag
e 

nu
m

be
r o

f n
ei

gh
bo

rs
 

co
nt

ac
te

d

30/30
30/60

750



Figure 4.  The health of an agent’s neighborhood 
agents over the number of queries seen (DP = 0.6). 

 
Communication Cost.  Our goal is to reduce the num-
ber of messages sent and received by every agent in 
the system while maintaining the quality of services.  
We observe that, in general, the numbers of messages 
sent and received by every agent decreased by around 
25-100 messages per agent between the peak and the 
last measure, as shown in Figure 5.  In the beginning, 
though the agents were contacting fewer neighbors for 
query collaborations, some of them also requested on-
tological inference services.  That caused the number 
of messages to stay high for a while.  The impact of 
learning on the communication cost was actually felt 
during the third or fourth batch of the experiments.   
 

Figure 5. The total number of message sent and re-
ceived for all agents per batch over time. 

 
Collaboration Types.  Figure 6 shows the numbers of 
different types of collaborations in each batch for the 
five agents.  As learning progresses over time, the 
number of Type 5 collaborations (targeted relays) in-
creased because the agents gradually learned what the 
other agents knew and what itself did not know 
through ontological inferencing.  Further, the number 
of Type 6 collaborations (generic relays) decreased 
because the agents became more knowledgeable about 
the other agents’ ontologies.  Thus, the agents became 
more responsible in asking for help—less 
“spamming”.  The number of Type 2 collaborations 
remained the same as the local ontology repository of 
each agent did not change.  Best of all, the numbers of 
Types 3 and 4 collaborations (situations where no idle 

threads were available for collaborations) significantly 
decreased.  This indicates that the agents were able to 
learn to use their resources effectively.  Combining 
Figure 6 and other figures, we see that the agents, 
while reducing their use of the resources (bandwidth 
and collaboration threads), were still able to achieve 
good neighborhood health and better performance pa-
rameters while adapting to the desired level of per-
formance. 
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 Not shown in the figures in this paper are the per-
formance measures of Types 2, 5, and 6 collaborations.  
Here we briefly report on them.  The performance of 
Types 2 and 5 collaborations were significantly im-
proved by profile-based reinforcement learning.  In 
Type 5 collaborations (targeted relays), we observe 
that the agents were able to identify unknown queries 
and relay the queries to appropriate neighbors such 
that the search ratio improved.  However, in Type 6 
collaborations (generic relays), the agents needed the 
relay score in addition to the collaboration utility to 
obtain improved performance.  This indicates that even 
when an agent had absolutely no idea about which 
neighbor knew about a particular queried concept, it 
was still able to improve its performance by looking at 
two operational factors: the collaboration profile and 
the relay score, with the latter keeping track of the 
response of a neighbor to a relay request.    
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Figure 6. The number of occurrences of different 
types of collaborations over time. 

Summary and Discussions.  Profile-based reinforce-
ment learning is important for the agents to make good 
decisions based on what they observe in the past. The 
operational knowledge (collaboration utility and relay 
scores) stored in the neighborhood profile provides 
good information of the probability of a neighbor ac-
cepting a query collaboration request.  Combining both 
the operational and ontological knowledge, the agents 
learn to select the most helpful and capable neighbors 
for collaboration.  As a result, the quality of collabora-
tion improves.  The learning is effective in reducing 
the average response time, improving the quality of 
query satisfaction, and reducing the number of 
neighbors contacted and the communication cost.   
 There are also indications that our learning and 
adaptive mechanisms are able to adapt to a desired 
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level of performance.  When the desired level of per-
formance is too high (> 0.6) such that the system does 
not have the ontological resources (documents) to sus-
tain that type of performance, the agents will go into 
an overdrive to try to match it.  In that case, the agents 
were observed to constantly conduct ontological infer-
ences; the requests among the agents were mostly for 
ontological inference services as those became the 
priority of the agents.  The system’s performance thus 
suffered.  On the other hand, when the desired level of 
performance is low (≤0.6), the agents were observed to 
be able to adapt rather well, reducing their response 
time, the number of neighbors used, etc., while nearing 
the desired level of performance. 
 Our ontology repository for the experiments is still 
simplistic. There is no hierarchical relationship within 
our ontologies. In real-world applications, ontologies 
are usually organized into hierarchies and there are 
many relations among the concepts such as super class 
and sub-class relation, equivalent relation, is-a and 
has-a relations, etc. We are also designing a recom-
mender module in each agent based on the relay scores 
of its neighbors.  With this module, we aim to allow a 
user to be directly routed to the responsive neighbors 
for certain queries that the agent does not recognize.  
 
5. Conclusions 
 

We have presented a multiagent, distributed infor-
mation retrieval system in which collaborating agents 
improves their performance by learning ontologically 
and operationally.  This paper investigates the trade-
offs between ontological and operational factors in 
refining multiagent neighborhoods.  We have de-
scribed the use of collaboration utility and translation 
credibility, the adoption of a desired performance level 
to tradeoff between the operational and ontological 
activities, the dynamic determination of service prior-
ity based on agent observation of past performance, 
and the use of generic and targeted relays.  We have 
reported on profile-based reinforcement learning, in-
ference-based ontological learning, and observation-
based priority determination.  Our experiments have 
shown that our “balanced” approach was able to im-
prove the quality of the collaborations in terms of the 
response time, quality of the retrieved results, the 
number of neighbors contacted, the number of mes-
sages sent, and the neighborhood health. 
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