
An Intelligent Agent that Learns How to
Tutor Students: Design and Results

Leen-Kiat Soh and Todd Blank
Department of Computer Science and Engineering

University of Nebraska, Lincoln, NE 68588-0115 USA
{ lksoh, tblank }@cse.unl.edu

Abstract. In this paper, we describe an intelligent agent that presents different
learning content such as tutorials, examples, and problems adaptively to individual
students and learns from its interaction with the students how to improve its
performance. We have built an end-to-end intelligent tutoring system, premised on
the above goal, with a graphical user interface (GUI) front-end, an agent powered
by case-based reasoning (CBR), and a mySQL database backend. We use a
casebase to store the pedagogical strategies, embedded in the individual cases and
the similarity retrieval and adaptation heuristics. Each case has situation, solution
and outcome parameters. The situation parameters include the students' static and
dynamic profiles and the instructional content’s characteristics while the solution
parameters specify the characteristics of the example or problem to be delivered to
the student. We developed a set of CS1 content that includes five topics and
deployed our system in the laboratories. Our results show that when the machine
learning mechanism is activated, our agent is able to learn to tutor students more
efficiently.

Introduction

There exists no universal agreement on which abilities are needed or present in intelligent
tutoring systems (ITSs) [12]. ITSs may possess a combination of the following attributes
[12]: (1) Generative in which an ITS dynamically generates instructional material including
problems, hints, and help on student performance; (2) Able to model students in which an
ITS assesses the current state of a student’s knowledge and does something instructionally
useful based on the assessment; (3) Able to model expert performance in which an ITS
detects expert performance and derive an instructionally useful model; (4) Able to change
pedagogical strategies in which an ITS changes its instructional style based on the
changing state of the student model, prescriptions of an expert model, or both; (5) Mixed-
initiative in which an ITS changes its presentation schemes to improve human-computer
interaction; and (6) Self-improving in which an ITS has the capacity to monitor, evaluate,
and improve its own teaching performance as a function of experience.

Based on the above, a truly intelligent ITS should be adaptive, leading to customized
tutoring and learning for individual students. Further, for any intelligent system to be
adaptive, it must be able to (1) monitor and evaluate its own interaction with the students,
(2) modify its knowledge if the evaluation result is below par, and (3) subsequently apply
the modified knowledge. An ITS’ knowledge generally consists of instructional content
(tutorials, examples, problems, etc.), modeling of students, and pedagogical strategies.

Instructional content might not be always appropriate (for example, a particular problem
may be appropriate for one student but too easy for another student), modeling of students
might not be accurate (for example, a student who fails three problems in a row could be
perceived as lacking understanding of the topics involved or lacking motivation to study the

problems carefully), and in some instances, pedagogical strategies might not be applied
correctly. Thus, when an ITS modifies its knowledge, it could modify its instructional
content, its modeling of a particular student, or its confidence in a particular pedagogical
strategy

In this paper, we propose an ITS with machine learning capabilities to refine its
performance over time. The ITS, named Intelligent Learning Materials Delivery Agent
(ILMDA), models students based on how they interact with the system (not just question-
answer assessment), changes its pedagogical strategies, and self-improves. ILMDA’s
machine learning capabilities are powered by case-based reasoning (CBR) [8]. We use a
casebase to store the pedagogical strategies, embedded in the individual cases and the
similarity retrieval and adaptation heuristics.

In the following, we first discuss some related work in the area of intelligent tutoring
systems. Then, we present our ILMDA project, its goals and framework. Subsequently, we
outline our use of the CBR methodology. We then describe the implementation of ILMDA
briefly. We have built an end-to-end ILMDA infrastructure, with an interactive GUI front-
end, an agent powered by CBR and capable of learning, and a mySQL multi-database
backend. We have deployed ILMDA in a CS1 course in the Fall semester of 2004. The
results, though preliminary, are encouraging, indicating that ILMDA is able to learn to
deliver more appropriate examples and problems based on student behavior.

1. Related Work

There have been successful ITSs such as PACT [7], ANDES [4], AutoTutor [5], and SAM
[3]. Though ITSs have been tested on students and have been proven to facilitate learning,
Graesser et al. [5] pointed out the weaknesses of the current state of tutoring systems: First,
it is possible for students to guess and find an answer and such shallow learning will not be
detected by the system. Second, ITSs do not involve students in conversations so students
might not learn the domain’s language. Third, to understand the students’ thinking, the
GUI of the ITSs encourages students to tend to focus on the details instead of the overall
picture of a solution. Furthermore, these systems do not generally adapt to new
circumstance, do not self-evaluate and self-configure their own strategies, and do not
monitor the usage history of the instructional content being delivered or presented to the
students.
 A closely-related work to ILMDA is AnimalWatch. AnimalWatch [12] is an arithmetic
tutor tailored for female elementary school students. It has a reinforcement learning
component that automatically computes an optimal teaching policy, such as reducing the
amount of mistakes made or time spent on each problem by using a “ two-phase” learning
algorithm: (1) model how a student interacted with the tutor, and (2) construct a tutoring
policy. The reinforcement learning mechanism takes as input as set of abilities that
describe the current tutoring situation and output a recommended action (e.g., which
problems to generate and what type of hints to show). The tutor then observes whether the
student’s response is correct and how much it takes the student to generate this response.
By keeping these observations over time, AnimalWatch is able to make predictions about
“an average student with a proficiency of x who has made y mistakes so far on the
problem.” The authors report that students using the machine learning version averaged
27.7 seconds to solve a problem, while students using the classic version averaged 39.7
seconds. Our ILMDA design is similar to AnimalWatch in terms of the underlying
concept—observing student interaction with the system and reinforcing decisions based on
the observed outcomes. However, our machine learning component is comprehensive: it
refines the existing pedagogical strategies that it has in its repository, learns new

pedagogical strategies, learns how to apply them, learns when to use them; it also learns to
quality-tag the system’s instructional content.

2. Design

Our ILMDA system is based on a three-tier design. It consists of a graphical user interface
(GUI) front-end application, a database backend, and the intelligent agent reasoning in
between. A student user accesses the content set via the GUI. The agent captures the
student’s interactions with the GUI and provides the ILMDA reasoning module with a
parametric profile of the student and environment. The ILMDA reasoning module
performs CBR to obtain a search query (a vector of search keys), and then uses the query to
retrieve the most appropriate example or problem from the database. The agent then
delivers the example or problem in real-time back to the user through the interface.

2.1 Case

Each instructional content set consists of three parts: (1) a tutorial, (2) a set of related
examples, and (3) a set of exercise problems to assess the student’s understanding of the
topic. Based on how a student progresses through the content set and based on his or her
profile, ILMDA chooses the appropriate examples and exercise problems for the student.
How to choose the appropriate examples and exercise problems is based on case-based
reasoning (CBR). ILMDA has a casebase of cases. Each case is composed of three parts:
situation, solution, and outcome parameters.
 The situation parameters include the student static and dynamic profiles and the
instructional content’s characteristics. The student static and dynamic profiles form the
basis for the ILMDA’s learner model. A learner model tells us the metacognitive level of a
student by looking at the student’s behavior as he or she interacts with the instructional
content set. We achieve this by profiling a learner/student along two dimensions: student
static background and dynamic student activity. The background of a student stays
relatively static and consists of the student’s last name, first name, major, GPA, goals,
affiliations, aptitudes, and competencies. It also includes self-reported self-efficacy and
motivation, based on a survey taken before a student processes a content set. The dynamic
student profile captures the student’s real-time behavior and patterns. It consists of the
student’s online interactions with the GUI module of ILMDA including the number of
attempts on the same item, number of different modules taken so far, average number of
mouse clicks during the tutorial, average number of mouse clicks viewing the examples,
average length of time spent during the tutorial, number of quits after tutorial, number of
successes, and so on. For details on these parameters, please refer to [1].
 The solution parameters specify the characteristics of the example or problem to be
delivered to the student. Each example or problem is meta-tagged with a set of attributes:
length, interest, Bloom’s taxonomy, level of difficulty, degree of scaffolding, the number of
times viewed, the average time per use, average number of clicks per use, and so on.
 Bloom et al. [2] identified three domains of educational activities. The three domains are
cognitive, affective, and psychomotor. Cognitive is for mental skills (Knowledge), affective
is for growth in feelings or emotional areas (Attitude), while psychomotor is for manual or
physical skills (Skills). There are six major categories, starting from the simplest behavior
to the most complex: knowledge, comprehension, application, analysis, synthesis, and
evaluation. Currently, most of our examples and problems are at first four of Bloom’s
levels.

 Instructional scaffolding [11] is support for learning, and the level of scaffolding varies
for different students and scenarios. In ILMDA, we use scaffolding similar those proposed
in [6]. Specifically, we use cues, hints, references, and elaborations. Cues are highlighted
phrases. A hint poses “what if” and “ think about this” statements. A reference points the
student to a particular item in the content set. An elaboration explains the steps or partial
solutions. We use highlighted phrases, diagrams, and figures as cues; “What if” and “Think
about this” questions as hints and prompts; and stepwise, spelled-out solutions as partial
solutions. In addition, references will be used to point students back to certain pages of a
tutorial or an example.
 The outcome parameters are based on the usage history of a case, which includes the
number of times the case has been used, the number of times the case has been used
successfully, whether the student quit the example or problem, whether the student answers
the problem correctly, and so on.

2.2. Case-Based Reasoning (CBR) and Learning

Briefly, a CBR system works as follows. When a new situation arises, the system searches
its casebase for cases whose situations are similar to the new situation. This is termed
similarity-based retrieval. Usually, the system retrieves the most similar case as the best
case. Given the best case, the system now has in its reasoning process a solution.
However, this solution is one that corresponds to the best case’ situation. Thus, the system
has to adapt the solution to match the new situation. Usually, the system modifies the
solution based on the differences between the best case’s situation and the new case's
situation. After adaptation, the solution is applied. After application, the new situation and
the adapted solution, together with the outcome, become a new case. If this new case is
sufficiently different from all existing cases in the casebase, the system adds it to the
casebase. The addition of a new case is case-based learning (CBL).
 Each case documents a unique pedagogical strategy: given the situation, what is the
appropriate solution? ILMDA forms the situation based on its observation of the student.
For example, for students who have higher motivation, self-efficacy and aptitude, ILMDA
will give lower level of scaffolding such as cues; and vice versa. With this strategy,
ILMDA will gradually withdraw the scaffolds as a student is observed to have improved
his/her performance.
 In our agent design, we have three case-based learning modules. First, there is a case
learning module that learns about good and bad cases. Secondly, we have a similarity
learning module to learn about the significance of situation parameters such as GPA and
the time spent in the tutorial. This allows us to retrieve most weighted similar cases as best
cases, taking into consideration that some parameters are more important than the others.
Finally, we have an adaptation learning module that learns about the importance or quality
of the adaptation heuristics. The case learning module uses traditional CBL and a small
amount of reinforcement learning. The other two modules meta-learn how to better retrieve
from the database, evaluate the similarity between two cases, and adapt the solution of the
best case to the current problem. For details on these modules, please refer to [1]. Briefly,
by recording the success rate of each case, ILMDA refines its existing pedagogical
strategies. Through the case learning module, ILMDA learns new pedagogical strategies.
Through the similarity learning module, ILMDA learns when to use them. Through the
adaptation learning module, ILMDA learns how to apply them. For detailed assumptions
behind our agent learning and case adaptation, please refer to [9].

3. Implementation

We have implemented an end-to-end prototype ILMDA system with a front-end, applet-
based Graphical User Interface (GUI) that captures all user mouse activities, a CBR-
powered agent, and a backend database system containing a set of learning materials. The
ILMDA system is written in Java (SDK version 1.4.2). Both integrated development
environments were run under Windows 2000/XP operating systems. The backend database
is a MySQL database (Version 3.23). The system connects to the database using the JDBC
drivers for Java. We have also built a comprehensive simulator [10] to provide us with
virtual students to use ILMDA. This simulator allows us to test the correctness and
feasibility of the ILDMA before deployment.

4. Results

In Fall 2004, we deployed ILMDA to CSCE155 at the Department of Computer Science
and Engineering at the University of Nebraska. CSCE155 is the first core course for the
Computer Science majors. Typically, it has about 150 students per year, with a diverse
group of students from majors such as CS, Math, Engineering, and so on. Further, the
programming background of these students is highly diverse. Some incoming freshmen
have had some programming in their high schools; some have had none. Thus, it is
important for the course to be able to adapt to the different student aptitude levels and
motivations. This course is thus well-suited for evaluating ILMDA.
 The course has a 2-hour structured lab component once a week. We used ILMDA in
four CS1 labs: (1) File I/O, (2) Exceptions, (3) Inheritance and Polymorphism, and (4)
Recursion. For each topic, the content set had a tutorial, a set of 3-4 examples, and a set of
20-25 problems. Students reviewed these materials through ILMDA prior to their labs.
 For our evaluation, we used two types of agents: learning and non-learning. Our non-
learning ILMDA did not refine its adaptation heuristics, did not learn new cases, and did
not adjust it similarity weights. It basically disabled all its learning capabilities. The
learning ILMDA enables all its machine learning mechanisms. We set up the ILMDA
system such that it toggled on and off the learning mechanisms alternatively for each login.

4.1 Case-Based Learning Results: Impact on Pedagogical Strategies

Initially, at the beginning of the Fall 2004 semester, we set the weights on the situation
parameters to 1.0; that is, all situation parameters are considered equally important. At the
end of the semester, however, ILMDA modified these weights based on its observation of
how many times a retrieved case was useful. Briefly, we found that GPA was not that
important (dropping from 1.0 to 0.46), quitting a problem before answering it was
important (increasing from 1.0 to 2.54), the number of times a student went back-and-forth
between an example and the tutorial was quite important (0.80) but not as important as the
back-and-forth between a problem and the tutorial (0.99), and so on. These results are
empirical data, key to the self-evaluation capabilities of ILMDA to meta-learn about when
to use which pedagogical strategies.
 We also observe learning results in adaptation heuristics—there are 9 sets of heuristics,
and each heuristic is triggered by a subset of about 20 situation parameters. An example of
adaptation heuristics is as follows: To adapt the solution parameter BLOOM (i.e., the
Bloom’s taxonomy), we look at the differences between the new situation and the best case’
situation. Initially, at the beginning of the semester, we set the weights of each situation

parameters on the adaptation heuristics to be 1.0. Take the number of questions answered
correctly by a student (extracted from the student’s profile) as “successes”. If “successes”
of the new situation is greater than “successes” of the best case’ situation, then increase the
Bloom’s taxonomy level of the problem to be selected next. At the end of the semester, this
number increased to 9.0. We also observe a significant change in the weight of
“exmpQuits” (the number of quits during an example), going from 1.0 to -11.76. This
indicates that the more often a student has quit during the viewing of an example, the lower
the Bloom’s taxonomy level is for the problem to be selected.
 Another example is to adapt the solution parameter SCAFFOLDING (i.e., the degree of
scaffolding). Initially, we expected that if a student is observed to have spent more time on
a tutorial, example, or problem, or if a student is observed to go back-and-forth between
example and tutorial, or problem and example, then ILMDA should provide a higher degree
of scaffolding. However, after a semester of using ILMDA, our expectation was not met
for “aveExmpTime” (average time spent on an example), “expToTtrl” (number of times
going from example to tutorial, and “probToExmp” (number of times going from problem
to example). We suspect that this was due to the following: When students were found to
spend more time on examples, or were found to refer back to the examples, they were more
likely to quit ILMDA before answering questions correctly. As a result, ILMDA adjusted
its adaptation heuristics to reduce the degree of scaffolding, thinking that this would
improve its performance.

4.2 A Case Study: Recursion

Here we report a case study on the Recursion topic:
• The average numbers of examples and problems that a student read when interacting with

the learning ILMDA were 2.216, and 10.946, respectively and that with the non-learning
ILMDA were 3.047 and 15.116, respectively. This indicates that the learning ILMDA
system was able to deliver fewer examples and problems.

• The average percentage of problems answered correctly by a student indicates how well a
student did as part of our assessment. When interacting with the learning ILMDA sys-
tem, the percentage was 66.2%. When interacting with the non-learning ILMDA system,
it was 60.2%. This is encouraging. This hints that the learning ILMDA was able deliver
more appropriate examples and problems. Combining these two observations, we see
that the learning ILMDA seems to be effective (delivering more appropriate examples
and problems) and efficient (delivering fewer examples and problems).

• Table 1 shows the average number of seconds spent in each section. Students interacting
with the learning ILMDA spent more time than students interacting with the non-learning
ILMDA. This could be due to the learning ILMDA providing more interesting and ap-
propriate examples and problems, engaging the students to invest more time and effort
into reading the materials.

Section Tutorial Per Example Per Problem
Learning 457 64 74
Non-Learning 276 61 30

Table 1: Average time spent on each section in seconds for learning and non-learning ILMDA.

4.3 Efficiency and Effectiveness

To further measure the efficiency and effectiveness of ILMDA’s machine learning
capabilities, we devise a scheme as follows. We first identify a level of topical

comprehension for students to attain: answering one of the most difficult problems
correctly. To be effective, ILMDA should learn to guide students to reach that level. To be
efficient, ILMDA should learn to guide students to reach that level with a small number of
problems. Tables 2 and 3 show the results. From Table 2, for File I/O, Exceptions, and
Inheritance, the learning ILMDA consistently used fewer problems to bring a student to the
level of topical understanding. However, the learning ILMDA did more poorly for the
Recursion topic—requiring more than 2 additional problems on average to achieve a level
of topical understanding. Comparing this observation with that in the above case study, we
conclude this: Although the learning ILMDA increased the percentage of correct answers
from the students, it did not bring them towards answering difficult problems efficiently.
We suspect that the reason for this learning failure is due to the recursion topic. Unlike the
other three topics which are closely related to programming, recursion is more closely
related to problem solving. Upon closer analysis, we realized that ILMDA gave students
difficult questions more often than easy questions in the recursion topic, with a correlation
of 0.11 between the number of times a question is given and its difficulty level, whereas
ILMDA gave students easy questions more often in other topics (correlations = 0.2–0.56).
We will investigate this further in our next round of evaluation.

 File I/O Exceptions Inheritance Recursion
Deg.
Diff.

No
Learning Learning

No
Learning Learning

No
Learning Learning

No
Learning Learning

5.5 8.78 6.50 8.75 4.10 3.57 2.50 4.34 6.67
6.0 8.78 6.50 8.75 4.10 3.57 2.50 4.34 6.67
6.5 12.00 11.36 15.28 15.80 4.00 2.50 7.44 10.33
7.0 12.00 11.36 25.66 14.50 6.60 2.75 7.44 10.33
7.5 8.2 7.25 8.00 11.28
8.0 8.2 7.25 8.08 11.28
8.5 13.13 15.10
9.0 13.13 15.10

Table 2: Average number of problems given by ILMDA to a student to eventually correctly answer a prob-
lem with a certain degree of difficulty. Empty cells are due to that there are not problems of that degree of

difficulty. Also, we did not include the data for problems with degree of difficulty smaller than 5.5.

 Table 3 shows the percentages of failed sessions. A failed session is one in which a
student quits before reaching one of the most difficult problems. We see that the results are
not conclusive. That means we do not have evidence that learning ILMDA is more
effective than the non-learning ILMDA. Upon closer analysis, we realize that the cases in
our casebase were initially tuned to minimize the number of problems given to the students,
thus prompting ILMDA to be more aggressive in giving more difficult problems but more
conservative in giving easier problems. Further, in a student profile, a student usually
answers questions correctly more often than not since there are more easy questions. Thus,
an incorrect answer might not cause ILMDA to change its perception of the student
drastically. Combining the results of Table 3 with that of the case study on recursion, we
conclude this: Even though the learning ILMDA was able to increase the percentage of
correct answers from the students, it was not able to engage students consistently longer for
them to stay on through the set of problems.

5. Conclusions and Future Work

We have described an intelligent tutoring system that learns how to tutor students. The
system, called ILMDA, uses case-based reasoning to apply pedagogical strategies, and

learn new ones, learn how and when to apply them. By storing the pedagogical strategies
in cases, our ILMDA could be applied to different student groups and content topics by
replacing the cases. This “plug-and-play” feature makes ILMDA a potentially useful
testbed and knowledge-discovery platform. Results from our initial deployment in Fall
2004 are mixed. There are encouraging indicators that the learning ILMDA is efficient.
Yet, there lacks evidence for the learning ILMDA being effective. Our current and future
work include the continuous deployment in Spring 2005 and more comprehensive analyses.

 File I/O Exceptions Inheritance Recursion
Deg.
Diff.

No
Learning Learning

No
Learning Learning

No
Learning Learning

No
Learning Learning

5.5 41.94% 31.43% 66.67% 40.00% 53.33% 69.23% 40.91% 51.35%
6.0 41.94% 31.43% 66.67% 40.00% 53.33% 69.23% 40.91% 51.35%
6.5 45.16% 37.14% 70.83% 66.67% 60.00% 69.23% 43.18% 59.46%
7.0 45.16% 37.14% 75.00% 66.67% 66.67% 69.23% 43.18% 59.46%
7.5 66.67% 69.23% 45.45% 62.16%
8.0 66.67% 69.23% 45.45% 62.16%
8.5 50.00% 72.97%
9.0 50.00% 72.97%

Table 3: Percentage of failed sessions at various degrees of difficulty for the four topics. For the Inheritance-

Learning column, students who quit all quit at level 5.5.

6. Acknowledgement

This work is supported in part by CSE Department, the Great Plains Software Technology
Initiative, and an Enhancing Teaching and Learning Grant, all at the University of
Nebraska. The authors thank L.D. Miller for his contribution to the project.

References

[1] Blank, T., Miller, L.D., Soh, L.-K., & Person, S. (2004). Case-Based Learning Mechanisms to Deliver
Learning Materials. Proc. ICMLA’2004, Louisville, KY, USA, December 16-18, pp. 423-428.
[2] Bloom, B. S., Mesia, B. B., & Krathwohl, D. R. (1964). Taxonomy of Educational Objectives (two vols:
The Affective Domain & The Cognitive Domain). New York: David McKay.
[3] Cassell, J., Annany, M., Basur, N., Bickmore, T., Chong, P., Mellis, D., Ryokai, K., Smith, J.,
Vilhjálmsson, H., & Yan, H. (2000). Shared Reality: Physical Collaboration with a Virtual Peer, ACM SIG-
CHI Conf. on Human Factors in Computer Systems, April 1-6, The Hague, The Netherlands.
[4] Gertner, A. S. & VanLehn, K. (2000). ANDES: A Coached Problem-Solving Environment for Physics.
Proc. ITS’2000, pp. 133-142.
[5] Graesser, A. C., VanLehn, K., Rosé, C. P., Jordan, P. W., and Harter, D. (2001). Intelligent Tutoring Sys-
tems with Conversational Dialogue, AI Magazine, 22(4):39-51.
[6] Hartman, H. (2002). Scaffolding and Cooperative Learning, Human Learning and Instruction, pp. 23-69. New
York: City College of City University of New York.
[7] Koedinger, K. R., Anderson, J. R., Hadley, W. H., and Mark, M. A. (1997). Intelligent Tutoring Goes to
School in the Big City, Journal of Artificial Intelligence in Education, 8(1):30-43.
[8] Kolodner, J. (1993). Case-Based Reasoning. Morgan Kaufmann.
[9] Soh, L.-K., Blank, T., and Miller, L. D. (forthcoming). Intelligent Agents that Learn to Deliver Online
Materials to Students Better: Agent Design, Simulation, and Assumptions. In C. Chaoui, M. Jain, V. Bannore,
and L. C. Jain (eds.) Studies in Fuzziness and Soft Computing: Knowledge-Based Virtual Education, Chapter
3, Volume 178, May 2005, pp. 49-80.
[10] Soh, L.-K., Blank, T., Miller, L. D., & Person, S. (2005). ILMDA: An Intelligent Learning Materials
Delivery Agent and Simulation. Proc. IEEE Int. EIT. Conf., Lincoln, NE, USA, May 22-25.
[11] Vygotsky, L. S. (1978). Mind in Society, Cambridge, MA: Harvard University Press.
[12] Woolf, B. P., Beck, J., Eliot, C., & Stern, M. (2002). Growth and Maturity of Intelligent Tutoring
Systems: A Status Report. In Forbus, K. D. and P. J. Feltovich (2002). (Eds.) Smart Machines in Education,
Menlo Park, CA: AAAI Press, pp. 99-144.

