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Abstract. We present a framework for the automatic annotation of learning ob-

jects (LOs) with empirical usage metadata.  Our implementation of the Intelligent 
Learning Object Guide (iLOG) was used to collect interaction data of over 200 

students‟ interactions with eight LOs. We show that iLOG successfully tracks stu-

dent interaction data that can be used to automate the creation of meaningful em-
pirical usage metadata that is based on real-world usage and student outcomes.   
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Introduction 

A high school math teacher and a college matrix theory professor each search an online 

learning object repository for a learning object (LO) on “matrix multiplication.”  The 

needs of their respective classes are probably quite different, but the instructors both 

have the same desire—to locate an LO that will provide a successful learning expe-

rience for as many students as possible.  However, locating an appropriate LO is not a 

straightforward process: students have varied background knowledge, experience, mo-

tivation, self-efficacy, and other learning characteristics.  Finally, not all LOs are 

created equal—some LOs will inevitably „work‟ better on average than others.   

Not all LOs are designed with the same type of learner in mind; furthermore, with 

real-world usage, unexpected patterns may emerge: an LO may be unsuitable for stu-

dents with low motivation or for those without Calculus experience, or the LO might 

carry an inherent gender bias. The point is, we cannot be certain what will happen 

when real students use an actual LO—but this information may be critical in making 

an informed LO selection decision.  And for an instructor tasked with locating a suita-

ble LO, without this type of information, the selection process may be daunting enough 

to send them right back to the textbook and chalkboard.   

One possible way to approach this problem is to tag each LO with insightful in-

formation regarding how it has been used and the impact it has had on learning; we 

hereafter refer to this information as empirical usage metadata.  This multi-

dimensional metadata allows LOs to be indexed and searched not only by content but 

also by usage history.  This should precipitate a radical improvement in instructors‟ 

ability to identify high-quality LOs that match the educational, experiential, and affec-



tive backgrounds of students. For example, it would accommodate the identification of 

LOs by way of high-level usage statistics and rules ranked by their relative strength: 

(high motivation → pass .51), or (highSchoolStudent → fail .65), (averageTime = 653 

seconds) would have alerted our high school math teacher that this LO is too advanced 

for her class.   
Further, one of the main benefits of LO standards is the complete decoupling of the 

learning management system (LMS) from the LO itself, because this allows content to 
be interoperable, maintainable, and (in theory) discoverable and reusable.  However, 
widespread discoverability and reusability of LOs has been largely unrealized, likely 
due to insufficient metadata.  A recent real-world study [2] of the most widely used 
standard for tagging LOs, the IEEE Learning Object Metadata (LOM) [1], showed that 
LOM metadata are typically incomplete, inaccurate, and not machine-interpretable.  
Thus, a system that automatically tags LOs with empirical usage metadata will have a 
profound impact on the level of discovery and reuse of LOs.  Such a system should 
have the following properties: (1) general:  based on widespread e-learning standards; 
(2) automatic: metadata annotation should not require human intervention; and (3) in-
terpretable: metadata should be both human- and machine-readable. 

We have implemented an Intelligent Learning Object Guide (iLOG) to automat-

ically generate empirical usage metadata for Sharable Content Object Reference Model 

(SCORM)-conformant LOs.  The MetaGen component of iLOG uses feature selection 

to isolate the attributes most salient to successful learning outcomes, and predictive rule 

mining to automatically generate empirical usage metadata in the form of rules, which 

are in turn used to update the LOM file associated with the SCORM LO.  

Note that the use of such rich metadata is generally associated with Intelligent Tu-

toring Systems rather than standardized e-Learning systems; however, a recent paper 

[3] outlines many opportunities in merging the two approaches.  The authors also out-

line several challenges, including the need for what they term contextualized metadata 

and the need for metadata validation; these are the needs which iLOG will address. 

1. Related Work 

To locate the most appropriate LO for a given situation, we must consider two related 

problems: (1) finding a set of LOs that match the desired topic, and (2) selecting the 

LO that best matches the educational, experiential, and affective needs of students.   
Existing work on automatic generation of standardized LO metadata [4], [5] pri-

marily focuses on extracting ontological and taxonomic information from raw learning 
content.  This work will help a search engine in the retrieval of LOs that more closely 
match the target topic, thus satisfying need (1).  We do not focus on this facet of the 
problem in our own work, but instead build upon it to aid in satisfying need (2).   

Thus, we need contextual LO metadata to relate student profiles and interaction 
behaviors (log files) with learning outcomes.  Log files can be defined as a record of 
student interactions with a learning environment.  Systems that mine information from 
log file data have been shown to have a positive impact on the quality of both instruc-
tion and learning [8].  However, these systems have primarily focused on automatic 
sequencing of content, feedback for course authors [7], and feedback for instructors [8].   

We see two key differences in our research: (1) we are working strictly within ex-
isting LO metadata standards, and (2) we focus on mining empirical metadata rules 
exclusively from pre-existing data sources and log files for the purpose of contextual 
search and retrieval of LOs in learning object repositories.  



2. Empirical Usage Metadata 

As mentioned in the Introduction, we define empirical usage metadata as the set of 

metadata covering: (1) how the LO has been used: the actual usage data as determined 

by empirical evidence; (2) the impact the LO has had on learning.  This information 

facilitates better understanding of an LO‟s real-world impact on learning, and also pro-

vides meaningful data for researchers, courseware developers, and instructors.  

iLOG utilizes data from three key sources: (1) static LO data, describing the con-

tent of the LO, (2) static learner data, describing the learning context of a student, and 

(3) the student-LO session log file.  These data are used to generate empirical usage 

metadata (see examples in Table 1). The use of these three data sources makes it possi-

ble to compute more precise usage metadata.  iLOG‟s empirical usage metadata are 

further organized by the unit of “study”, where each study is self-contained and often 

represents the deployment of an LO to a single class.  A study is composed of statistics 

and association rules that relate student characteristics to learning outcomes.  We or-

ganize the data by study (while also maintaining an LO lifetime metadata summary) 

primarily to mitigate the potential for an individual study to skew the metadata. 

 

Table 1. Examples of static and dynamic parameters iLOG uses to generate empirical usage metadata. 

Static Learner Data Static LO Data Interaction Data 

Baseline motivation 

Baseline self-efficacy 
Gender 

Major 

GPA 
SAT/ACT score 

⁞ 

Topic 

Length 
Degree of difficulty 

Level of feedback. 

Blooms‟ level for assessment questions 

⁞ 

Total time on tutorial 

Total time on exercises 
Total time on assessment 

Min time spent on a tutorial page 

Max time spent on a tutorial page 
Avg. time per assessment question 

⁞ 

3. The iLOG Framework 

In this section, we describe the two main components in the iLOG framework (as 

shown in Figure 1): (1) the LO wrapper, which is responsible for logging student inte-

ractions and updating the LO metadata, and (2) MetaGen, which processes the log file 

data in order to generate empirical usage metadata that is then sent back to the LO 

wrapper.  As discussed in the Introduction, to satisfy the complementary goals of LO 

reusability and discoverability, the logging and annotation process should be general, 

automatic, and interpretable. Thus, iLOG adheres to the SCORM and LOM learning 

standards; however, any combination of standards could work within this framework.  

 

 

Figure 1. The Intelligent Learning Object Guide (iLOG) Framework. 



The LO wrapper (Section 3.1) automatically logs a student‟s LO interactions and 

at the end of each student session this log file is forwarded to a database in the Meta-

Gen module (Section 3.2).  Next, MetaGen processes the raw interactions and runs 

feature selection and rule mining algorithms (Section 3.3) to generate contextual meta-

data.  Finally, this metadata is sent to the LO wrapper, which updates the metadata file. 

3.1. LO Wrapper 

Most methods for tracking LO interaction data are done by altering the LMS or LO 

player to collect and store log file data.  However, we find that it makes more sense for 

the tracking capabilities to reside with the LO itself.  Thus, our LO wrapper can be in-

tegrated into any existing LO. The LO wrapper is responsible for (1) collecting log file 

data and transmitting it to MetaGen, and (2) updating the LO metadata with empirical 

usage metadata when it is returned by MetaGen.  The main function of the LO wrapper 

is to provide a bridge between the LO and the MetaGen component.  

First, the wrapper automatically logs each student‟s interactions with the LO using 

a web scripting language such as JavaScript to listen for web events. These include 

items such as: number of clicks on each page, time spent per page/question/exercise, 

and interactions with exercises (see table 1). It then calls the LMS‟s API to retrieve 

assessment scores, converts log and assessment data to the MetaGen database format, 

and again uses web scripting to transmit these to MetaGen. Once all student sessions 

from a study have been received, MetaGen sends a request to the LO wrapper for exist-

ing contextualized metadata.  In this way, MetaGen can generate study metadata (using 

only data from the current deployment) and also maintain lifetime LO usage metadata. 

After MetaGen completes the metadata generation process, it returns both the 

study and lifetime contextualized metadata to the LO wrapper in batch format.  Finally, 

the LO wrapper converts the usage metadata to the metadata format used by the LO.     

3.2. MetaGen Modules 

The MetaGen component of the iLOG system generates the empirical usage metadata 

to automatically tag the LOs and is composed of three separate modules:  (1) data log-

ging, (2) data extraction, and (3) data analysis.  The data logging module of MetaGen 

integrates data from three sources: static LO data, static student data, and log file data 

(from the LO wrapper).  Next, the data extraction module extracts the iLOG dataset 

from the database; each dataset instance represents a single student-LO session.  The 

data analysis module is a multi-step process: (1) feature selection to identify the salient 

features in the iLOG dataset, (2) predictive association rule mining on the iLOG data-

subset, and (3) deriving usage statistics from the iLOG dataset. The data analysis step 

serves two important functions: isolating salient features associated with learning out-

comes for each LO, and generating empirical usage metadata.  

3.3. Feature Selection and Data Mining in MetaGen 

As alluded to earlier, iLOG utilizes feature selection and data mining to isolate the cha-

racteristics associated with learning outcomes and subsequently mine empirical meta-

data using these salient features.  MetaGen uses two main types of feature selection 

algorithms from Weka [11]: (1) those that evaluate features independently and produce 

a ranked list, and (2) those that pair a selection metric with a search heuristic in order to 



explore the space of possible feature subsets.  In MetaGen, we are not simply interested 

in finding a good subset, we are also interested in isolating as many salient features as 

possible while limiting the number of irrelevant features in the subset.  Table 2 shows 

the selection criteria and search heuristics used in MetaGen. We used more than a doz-

en combinations of selection metric and search heuristics as each has different strengths 

[9]. Then, MetaGen counts the total number of times that each feature in the iLOG da-

taset is selected by any of the feature selection methods, and ultimately forms the fea-

ture subset as the attributes that are most frequently selected, thresholded by majority 

vote.  This reduction in the number of attributes not only drastically speeds up the sub-

sequent predictive rule mining step, but it also gives us stronger rules. 

 

Table 2.  Selection Metrics and Search Heuristics used by MetaGen to rank features (from Weka [11]) 

Selection Metric Characteristics  Search Heuristics Characteristics 

Cfs Subset 

Chi Squared* 
Classifier Subset 

InfoGain* 

GainRatio*  

Correlation-based 

Correlation-based 
Classifier Accuracy 

Entropy-based  

Entropy-based 

 Best-first 

Greedy-stepwise 
Genetic search 

Random search 

Hillclimb/ Backtrack 

Hillclimb  
Genetic Algorithm 

Random subsets 

*Denotes a standalone feature selection method that does not need to be paired with a search heuristic 

 

Association rule mining is the process of generating rules that describe the co-

occurrence of attributes in a dataset.  The algorithm used by MetaGen is Tertius [10], 

which ranks the usefulness of first-order logical rules by their degree of confirmation 

and the relative frequency of counterexamples.  For iLOG, we use LO assessment 

pass/fail as the target label, and use: ruleStrength  =  confirmation * (1 - counterExam-

pleFreq) to rank the rules according to their strength. Each rule takes the form of (a set 

of <att-val> pairs) → (<outcome> <ruleStrength>).   

After data analysis, MetaGen sends three types of metadata back to the LO wrap-

per:  (1) the list of salient features; (2) the LO lifetime metadata, and (3) the rules and 

statistics mined from the study in question.  The LO wrapper then translates these me-

tadata into the format contained in the LO and updates the LO metadata file. 

4. Implementation 

First, we created eight SCORM-compliant LOs on basic computer science (CS) con-

cepts such as conditionals, logic, arrays, looping, and functions.  Each included (1) a 

tutorial covering the topic, (2) a set of ungraded interactive exercises, and (3) a set of 

assessment questions.  These LOs were deployed to students using the LMS from the 

Blackboard Academic Suite [http://www.blackboard.com/].   

Second, the LO wrapper was designed as a simple HTML document that uses Ja-

vascript to record and timestamp student interactions with the LO (e.g., page navigation, 

clicks on a page, etc.). The wrapper also uses a modification of the Easy SCO Adapter 

[http://www.ostyn.com/standards/demos/SCORM/wraps/easyscoadapterdoc.htm#licens

e] to use the SCORM API to access student assessment results on the LMS.  Then, the 

wrapper uses JavaScript to transmit the interactions to MetaGen on a remote site.   

Finally, we implemented the three modules of MetaGen.  The data logging module 

uses PHP to store the student interactions into a MySQL database.  The data extraction 

module uses Java to query the database and process the data into the iLOG dataset.   



The data analysis module uses the Weka [11] implementations of several feature selec-

tion algorithms to generate the iLOG data-subset, and then uses the Tertius [10] predic-

tive rule mining algorithm to generate empirical usage metadata. 

5. Experiments and Results 

We deployed the iLOG system in four introductory computer science (CS) courses to 

over 200 students during the fall of 2008.  These courses included students from a wide 

variety of backgrounds (e.g. non-majors, majors, and honors students).  These students 

took an initial demographic survey and a baseline motivation/self-efficacy survey.  

iLOG then logged their interactions with the LOs, which each included a motiva-

tion/self-efficacy pre-survey, a tutorial, exercises, an assessment, and an evaluation 

post-survey.  Then the MetaGen module combined the student static data, static LO 

data, and log file data to generate the iLOG dataset.  After removing instances that 

were missing critical information (although the final dataset still had many missing 

data values), we were left with a total of 623 data instances, with 323 attributes each.  

For the purposes of this experiment, a successful student outcome is defined as a pass-

ing assessment score (70-100%), and others as unsuccessful outcomes.     

5.1. Results of Feature Selection  

When we ran the feature selection algorithms, the attributes in the iLOG dataset 

that were most often selected as associated with student outcomes varied widely across 

LOs. Two examples are shown in Table 3, but this variability was common to all cases.  

For instance, the attributes most often selected for the Searching LO (one of the more 

difficult LOs) were GPA and time spent on the LO, whereas the most common 

attributes selected for the Logic 2 LO had to do with background in Calculus, gender, 

and the student‟s opinion of the LO quality.  This seems to affirm the need for empiri-

cal metadata, as it was not obvious that these particular attributes would be strongly 

associated with learner outcomes, or that salient attributes would be varied across LOs.   

Table 3.  The selected features (only top 5 shown) salient to learner outcomes vary widely among these LOs.  

Only two shown, but this was observed across all eight LOs. 

Logic 2 Searching 

Attribute 
Number of 

Times Selected 

Attribute Number of 

Times Selected 
highestMath 

gender 

takenCalculus 

assessStdDevSecAboveAvg? 

WasAnyPartConfusing? 

16 

13 

13 

13 

13 

GPA 

assessMinSecPageBelowAvg? 

assessmentMinScondsOnAPage 

BeliveLODifficultToUnderstand 

courseLevel 

14 

11 

10 

10 

9 

5.2. Results of Predictive Association Rule Mining  

In this section we present the preliminary results of iLOG‟s capability to automatically 

generate and rank viable contextualized metadata rules. For each LO, we mine the rules 

from the iLOG data-subset that was generated during the feature selection step outlined 

in Section 5.1.  We ran Tertius on the iLOG data-subset for all students in all courses 

with 1, 2, and 3 literals included on the left-hand side of the rule, and we observe (see 

Table 4) that as we increase the number of literals—thus increasing a rule‟s specificity, 



we see an increase in ruleStrength.  However, there is an inherent tradeoff: highly spe-

cific rules may simply capture noise in the data and overfit, these rules may be harder 

to apply, and computation is more time-intensive.  The obvious next step is to try and 

automatically determine the optimal number of attributes to include in the rules. 

 

Table 4.  Some rules with one, two, and three attribute-value pairs for the Logic 2 LO  

Logic 2 
takenCalculus? = no  fail .27 

highestMath = precalculus  fail .25 

assessmentStdDevSeconds = high fail .24 

wasAnyPartConfusing = yes  fail .23 

gender = female  fail .22 
takenCalculus? = yes AND assessmentMaxSecOnAPageAboveAvg? = yes  pass .35 

gender = female AND materialInLODifficultToUnderstand = indifferent  fail .34 

takenCalculus? = yes AND wasAnyPartConfusing? = no  pass .31 

baselineStdDevMotivation = low AND assessmentMaxSecOnAPageAboveAvg?  fail .31  

takenCalculus? = yes AND assessmentMaxSecOnAPageAboveAvg? = no AND wasAnyPartConfusing? = no  pass .40 

takenCalculus? = yes AND believeLONeedsMoreDetails = no AND wasAnyPartConfusing? = no  pass .37 

gender = male AND takenCalculus? = yes AND wasAnyPartConfusing ? = no  pass .37 

 

When we examine the basic rules and usage statistics generated on a course by 

course basis, we observe that the rules generated from an identical feature subset vary 

by course (Table 5).  For non-majors, it seems that students who fail the LO tend to 

spend an inordinately long time on at least one assessment question and have not taken 

Calculus.  For CS majors (excluding Honors), low motivation and no Calculus expe-

rience were correlated with failing scores.  Finally, for Honors CS, failing grades 

tended to be correlated with poor evaluation of the LO.  Unfortunately, in two of the 

courses, we observe that females had a higher tendency for failure.  The metadata could 

be used to avoid giving this LO to students who have not had Calculus and to note the 

possible gender bias in the LO.  From the usage statistics, we also see that the Honors 

students spent almost twice as much time completing the LO than did the non-majors, 

yet achieved only slightly better results than the non-majors. 

 

Table 5.  Some metadata and statistics generated by iLOG, Logic2 LO for each class  

Logic 2—Intro CS for non-majors 

successRate = 51% Usage Statistics 
assessmentStdDevSecondsAboveAvg? = yes  fail .35  

assessmentMaxSecondsOnAQuestion = high  fail .33 
highestMath = precalculus fail .28 

gender = female  fail .24 

successRate = 51%  

averageTime = 433 seconds 

averageStudentRating = 4.3/5.0 
 

Logic 2--Intro CS for majors 

Contextualized Metadata Usage Statistics 
baselineStdDevMotivation = low  fail .72 

takenCalculus? = no fail .52 

currentTotalMotivationAboveAvg? = no fail .52 

successRate = 38% 

averageTime = 688 seconds 

averageStudentRating = 4.16/5.0 
Logic 2—Honors Intro CS for majors 

Contextualized Metadata Usage Statistics 
OpinionOfLOUsability = negative  fail .59 

BelieveLOAnAidToUnderstanding = yes  pass .49 

BelieveLONeedsMoreDetail = yes  fail .43 

gender = female  fail .36 

successRate = 55% 

averageTime = 799 seconds 

averageStudentRating = 3.43/5.0 
 

 

In addition to our contextualized metadata, we generate usage statistics for each 

study, as shown in Table 5.  We observe that for the Logic 2 LO, the rates of successful 

student outcomes are consistently low and the evaluation ratings the students gave the 

Specificity ruleStrength 



LO diminish as the students become more advanced.  This could indicate that there are 

design flaws in the underlying LO and that the content may be too basic to keep ad-

vanced students interested.  Such information could be used by course designers to 

correct design flaws and by course instructors to make intelligent LO selection choices. 

For this study of eight LOs, iLOG identified an average of 15.0 features per LO 

as highly associated with learning outcomes.  It also generated 3 sets of empirical usage 

metadata for each LO; as compared with the possible rules without iLOG, the number 

of rules with 1, 2, and 3 attribute-value pairs were reduced from ~1000, ~470,000, and 

~152,000,000 to an average of 2.1, 27.4, and 85.3 rules per LO, respectively.    

6. Conclusions and Future Work 

 

We have described an implementation of the Intelligent Learning Object Guide (iLOG) 

framework for automatic generation of empirical usage metadata—predictive associa-

tion rules that are both human- and machine-readable—and usage statistics.  We use 

standard feature selection and predictive association rule mining to automatically gen-

erate these rules and are able to gain useful insights in terms of general and unique 

usage properties of the different LOs for different types of students.  As future work, to 

provide higher-confidence metadata for search engines and educators at higher resolu-

tion, we will add clustering to the MetaGen data analysis step to split the data into natu-

ral clusters and mine rules accordingly. Additionally, we are working to extend the 

MetaGen framework to also generate contextualized metadata for other perspectives on 

the learning process, including the student, instructor, and course designer perspectives. 
 
This material is based upon work supported by the National Science Foundation under Grant No. 

0632642 and an NSF GAANN fellowship. 

References 

[1] IEEE 1484.12.1-2002 Standard for Learning Object Metadata (LOM).  Retrieved January 7, 2009, from 
http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf 

[2] N. Friesen, The International Learning Object Metadata Survey.  Retrieved August 7, 2008, from 

http://www.irrodl.org/index.php/irrodl/article/view/195/277/ 
[3] C. Brooks, J. Greer, E. Melis, C. Ullrich, Combining ITS and eLearning Technologies: Opportunities and 

Challenges, Proc. 8th Int. Conf. on Intelligent Tutoring Systems (2006), 278-287. 

[4] D. Roy, S Sarkar, S. Ghose, Automatic Extraction of Pedagogic Metadata from Learning Content, Int. J. 
of Artificial Intelligence in Education 18 (2008), 287-314. 

[5] J. Jovanovic, D. Gasevic, V. Devedzic, Ontology-Based Automatic Annotation of Learning Content, Int. 
J. on Semantic Web and Information Systems, 2(2) (2006), 91-119. 

[6] B. Jong, T. Chan, Y. Wu, Learning Log Explorer in E-Learning Diagnosis, IEEE Transactions on Educa-

tion 50(3) (2007), 216-228. 
[7] E. Garcia, C. Romero, S. Ventura, C. Castro, An architecture for making recommendations to courseware 

authors using association rule mining and collaborative filtering, User Modeling and User-Adaptive In-

teraction  (to appear). 
[8] E. Kobsa, V. Dimitrova, R. Boyle, Adaptive Feedback Generation to support teachers in web-based 

distance education, User Modeling and User-Adapted Interaction 17 (2007), 379-413. 

[9] I. Guyon, A. Elisseeff, An Introduction to Variable and Feature Selection, Journal of Machine Learning 
Research 3 (2003), 1157-1182. 

[10] P.A. Flach, N. Lachiche, Confirmation-Guided Discovery of First-Order Rules with Tertius, Machine 

Learning 42 (2001), 61-95. 
[11] Ian H. Witten and Eibe Frank "Data Mining: Practical machine learning tools and techniques",2nd 

Edition, Morgan Kaufmann, San Francisco, 2005. 


