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ABSTRACT 
Our research is based on an innovative approach that integrates 
computational thinking and creative thinking in CS1 to improve 
student learning performance.  Referencing Epstein’s Generativity 
Theory, we designed and deployed a suite of creative thinking 
exercises with linkages to concepts in computer science and 
computational thinking, with the premise that students can 
leverage their creative thinking skills to “unlock” their 
understanding of computational thinking. In this paper, we focus 
on our study on differential impacts of the exercises on different 
student populations. For all students there was a linear “dosage 
effect” where completion of each additional exercise increased 
retention of course content.  The impacts on course grades, 
however, were more nuanced.  CS majors had a consistent 
increase for each exercise, while non-majors benefited more from 
completing at least three exercises.  It was also important for 
freshmen to complete all four exercises.  We did find differences 
between women and men but cannot draw conclusions.   

Categories and Subject Descriptors 
K.3.2. [Computer and Education]: Computer and Information 
Science Education 

General Terms 
Measurement, Performance, Design, Experimentation, Human 
Factors. 

Keywords 
Computational thinking, creative thinking, CS1. 

1. INTRODUCTION 
The increased demand for computational thinking (e.g., [23][24]) 
has led to numerous articles in educational research venues.  
These articles demonstrate the increasing momentum of research 
addressing the need for effective education in computational 
thinking, both for CS and across the broader spectrum of STEM 
and non-STEM disciplines.  This research is diverse, ranging from 
course specifications to course development, from community 

building to setting policies, and from teaching and learning to 
assessment [3][4][9][12][14][24].   

Adding to the above body of research, we proposed an innovative 
approach [16] by which we aim to improve the learning of 
computational thinking by blending it with creative thinking.  
Creative thinking is thinking patterned in a way that tends to lead 
to creative results [17].  It is not limited to the arts but is an 
integral component of human intelligence that can be practiced, 
encouraged and developed within any context [13][15][22].  
Epstein’s Generativity Theory breaks creative thinking down to 
four core competencies: capturing novelty, challenging 
established thinking and behavior patterns, broadening one’s 
knowledge beyond one’s discipline, and surrounding oneself with 
new social and environmental stimuli [8].  Our premise is that by 
blending computational and creative thinking students can 
leverage their creative thinking skills to “unlock” their 
understanding of computational thinking [20].  In this way, we 
should be able to make computational thinking more generally 
applicable to STEM and non-STEM disciplines where students 
may have creative thinking skills but lack understanding of 
computing concepts.   

Towards ascertaining the feasibility and understanding the impact 
of our approach, we designed and deployed four creative thinking 
exercises during the Fall 2012 semester at the University of 
Nebraska, Lincoln.  Over 200 students in four different 
introductory CS1 courses took the exercises and the exercises 
counted as part of their final course grades.  Each course was 
tailored to a different target group (CS majors, engineering majors, 
combined CS/physical sciences majors, and humanities majors) 
and so these courses contained a mix of students with differing 
levels of both computational and creative thinking skills.  In a 
previously reported study, Miller et al. [16] found that exercise 
completion produced a linear increase in course grades and 
retention of core computational thinking principles in the four 
CS1 courses.  

Questions remain, however, about whether there are differential 
impacts on different student populations that might influence 
decisions about exercise adoption.  First, while we can educate 
students from non-CS disciplines about using computational 
thinking to support their own disciplinary creative problem 
solving, there is a potentially serious problem for expanding 
computational thinking from CS into other non-CS disciplines.  
The students in non-CS disciplines come from diverse 
backgrounds and most are likely to have limited understanding of 
computing concepts that are used as the basis for computational 
thinking.  Without a basic level of understanding, these students 
may have a very difficult time developing computational thinking 
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fluency.  We need to know whether the creative thinking exercises 
are benefiting these non-CS majors in the same way that they are 
CS majors.   

Second, the CS1 courses involved have students of different 
experience, including years in school.  Implementing and 
delivering integrated computational thinking and creative thinking 
requires understanding of what level of experience is needed to 
best benefit.  While all students in CS1 classes are novices in 
computer science and computational thinking, freshmen students 
might benefit less from the addition of creative competencies as 
they have less general knowledge and less experience in college 
coursework.  Also, the creative competencies involved in the 
exercises, such as broadening and surrounding, draw on larger 
interdisciplinary bodies of knowledge and more extensive 
academic and social experiences.  Students having more 
experience to bring to the exercises may be more able to utilize 
them effectively.  To address this, we need to know if freshmen 
students who are less widely experienced derive fewer benefits 
from the exercises than more advanced, upper class students, 
regardless of their majors. 

Finally, we incorporate activities into the exercises that are 
livelier, more contextual, and more hands-on in their “sensory” 
aspects.  This can potentially help broaden participation in CS by 
engaging more underrepresented female students, and motivating 
them to study computer science; however, we need to determine 
how female students may differentially benefit from the exercises. 

Hence, we report in this paper the results of an extended study to 
examine our central contentions about the benefits of merging 
computational and creative thinking by determining if there were 
differential impacts on different student populations.  Our 
research questions were: (1) Is the effect of creative thinking 
exercises the same for CS majors and non-CS majors? (2) Is the 
effect of creative thinking exercises different for beginning 
students (freshmen) than for students with more expertise (non-
freshmen)? (3) Is the effect of creative thinking exercises different 
for women and men students? 

2. DESIGN PRINCIPLES 
Creative thinking is flexible, imaginative, innovative thinking 
which draws on all of one’s skills and experience [1], involves all 
of one’s senses [22], draws on multiple intelligences [11] and uses 
a variety of primary thinking tools (such as visualizing, imaging, 
abstracting, scaling, modeling and analogizing [19]) to produce 
new outcomes (things or processes) of value [18]. Creative 
thinking is not an innate talent but instead a process that is an 
integral component of human intelligence which can be practiced, 
encouraged and developed within any context [13][15][22].  

Based on Generativity Theory, Epstein [6][7][8] has identified the 
following four core cognitive competencies involved in creative 
thinking: (1) Broadening.  The more diverse one’s knowledge and 
skills are the more varied and interesting the possible novel new 
patterns and combinations that might emerge.  To be creative one 
must broaden one’s knowledge by acquiring information and 
skills outside one’s current domains of study and expertise.  (2) 
Challenging.  Novelty emerges from situations where existing 
strategies and behaviors are ineffective. The more difficult the 
challenge the more likely a creative, novel solution will emerge.  
(3) Surrounding.  Exposure to multiple, ambiguous situations and 
stimuli create environments where novel strategies and behaviors 
may emerge—e.g., looking at things in new ways, interacting with 
new people, and considering multiple sensory representations. (4) 
Capturing.  Novelty is occurring all the time, but most of it passes 

without recognition.  Creativity requires attention to and recording 
of novelty as it occurs.   

As made clear in Robinson [18] and Friedman [10], creative 
thinking skills are vital not only to be creative designers or artists 
but to also to work and compete effectively in our complex, 
interconnected, rapidly changing global society, we thus see 
Epstein’s core creative thinking competencies are a universally 
applicable skill set that everyone would be eager to learn and use, 
just as the case for the universality of computational thinking 
articulated by Wing [23]. 

Therefore, in our framework, both computational thinking and 
creative thinking are viewed as cognitive tools that expand the 
knowledge and skills that one can apply to a problem.  The 
blending of computational thinking with creative thinking is not 
conceived as a set of dichotomies, but rather as complementary or 
symbiotic abilities and approaches. Computational tools expand 
the knowledge and skills that one has available thereby 
broadening the array of knowledge that one may bring to a 
problem.  For example, Challenging forces computational tools to 
be used in unanticipated and unusual ways leading to the 
development of new computational approaches to both old and 
new problems, Surrounding creates new ways of looking at 
problems and attention to different stimuli and perspectives that 
may be relevant to how a problem is approached computationally, 
and Capturing forces consideration of new ways to represent and 
save data and solution procedures.   

The principles underlying the design of our creative thinking 
exercises are (1) balancing of attributes between computational 
and creative thinking and (2) mapping between computational and 
creative concepts and skills as they manifest in different 
disciplines.  Table 1 below shows the differing attributes, 
concepts, and skills that need to be balanced and mapped. 

3. EXERCISE DESIGN 
All our exercises combine hands-on collaborative problem solving 
with written analysis and reflection—with sufficient scope and 
depth such that that each requires creative thinking and teamwork.  
Each exercise has four common components.   

First, the Objectives component, at the beginning of the exercise 
handout, lists the computational and creative thinking objectives 
for the exercise to help the student understand why they are doing 
these exercises by showing how an exercise lacking any 
programming code is related to CS concepts and how students can 
use relevant creative thinking skills (described in terms of 
Epstein’s core competencies of Surrounding, Capturing, 
Challenging and Broadening) to solve the exercises. 

Second, the majority of the content of an exercise handout is the 
Tasks component which lists all the tasks the group of students 
must complete during the two weeks of the exercise. These tasks 
require students to work collaboratively (and may require 
individual contributions as well. 

Third, the CS Light Bulbs are additional text snippets highlighting 
linkages between the exercise tasks and a set of CS topics to help 
students recognize the associated or practiced computational 
thinking skills while performing the creative thinking tasks.   

Fourth, the Questions component uses open-ended questions that 
require collaboration among students as they engage in both 
analysis and reflection.  To answer these questions, students must 
apply creative thinking to CS problems and revise the results of 
their original tasks using computational thinking. Questions thus 



build upon the CS Light Bulbs and reinforce the connections 
between the creative thinking fostered by the tasks and the 
computational thinking in the CS topics. 

Table 1.  Balancing attributes and mapping concepts and 
skills between computational and creative thinking. 

BALANCING OF ATTRIBUTES 
Computational Thinking Creative Thinking

Convergent thinking. Surrounding with new social and 
environmental stimuli.

Linear and sequential “flow” Challenging established 
solutions and algorithms. 

Rational & logical processes Broadening possible solutions 
through additional paradigms

Methodical Capturing novelty and 
spontaneous outputs 

MAPPING CONCEPTS & SKILLS 
Computational Thinking Creative Thinking

Algorithmic Thinking – 
algorithms as models of 
computational processes* 

Challenging accepted solutions 
and procedures; fostering novel 
solutions 

Programming Fundamentals: 
(i.e. data models, 
encapsulation, testing and 
debugging)* 

Broadening applications through 
new ways of framing and 
applying fundamental 
computational knowledge.

Computing Environments – 
languages & paradigms, 
tools, applications* 

Surrounding with new social and 
physical environments to 
broaden perspectives 

Data representation: (i.e. data 
types, variables)* 

Capturing new ways of 
representing/storing data & 
algorithms. 

*CC2001: IEEE/ACM Computing Curriculum, 2001 

Although developed separately, our creative thinking exercises are 
most conceptually similar to the creative thinking activities in the 
CS4HS project [2].  The two main differences are that our 
exercises are designed for students, rather than instructors, and 
cover CS content suitable for college rather than high school. 

4. EXERCISE EXAMPLES 
Here we describe one of the creative thinking exercises in more 
detail.  We developed four different exercises for the Fall 2012 
deployment: (1) Everyday Object where students identified an 
everyday object (e.g., a hammer, a nail clipper) and described its 
functionality and I/O as if the object has not been invented, (2) 
Storytelling where students work on different pieces of a story 
separately and then come together to resolve all inconsistencies to 
produce a coherent story, (3) Cipher where student teams 
developed mapping rules to encode messages and then decode 
those messages from other teams, and (4) Exploring where 
students visited a particular location on campus and documented 
what they sensed.  Due to space considerations we only highlight 
Everyday Object in the following exercise description. 

4.1 Objectives 
There are two sets of objectives: computational and creative.  
Computational: (1) Learning about the description and design 
process for modular programming by describing an everyday 
object in detail including why the object is needed and how the 
object functions; (2) Learning about abstraction and function 
characterization by identifying properties of an everyday object.  
Creative: (1) Surrounding: looking at an everyday object in new 
ways, using all of your senses to understand how it’s made and 
how it functions; (2) Capturing: using written language to 
describe all the different details and characteristics of this 
everyday object so you can work with it in new ways; (3) 
Challenging: describing the operations of an everyday object with 

words and also as a computer program; (4) Broadening: imagining 
that this object doesn’t exist and acting like its inventor who is 
trying to fulfill a need by creating something new and useful. 

4.2 Tasks 
The tasks are divided into two weeks, during which the students 
will be using language to try to clearly and thoroughly describe 
the functions of an ordinary object that they might use every day. 
The students are prompted to act like the inventor of that object, 
imagining that it does not yet exist and trying to describe what 
need would be fulfilled by their chosen (new) object and how 
(specifically) it will function.   

Each group will choose a common, everyday object from the 
list—e.g., zipper, mechanical pencil, binder clip, Ziploc bag, nail 
clipper, umbrella, can opener, sticky notes, etc. Their challenge is 
to imagine that this object does not exist and to describe in written 
language (1) the mechanical function of your object, (2) what 
need is fulfilled by this object, and (3) the physical attributes and 
characteristics of their chosen object. 

During week 1, each team must describe the object’s function, the 
need it will fulfill and its attributes in clear, non-technical 
language which any user could understand. Their description must 
be specific enough so that someone who had never seen the object 
could recognize it and understand how it works and understand 
what benefits it provides.  Week 2 activities involve analysis and 
reflection on week 1 activities. 

Figures 1 shows an example screenshot of student work where the 
chosen object to be described was a nail clipper. 

 
Figure 1.  Screenshot example of student work on the 

Everyday Object exercise: Object Description. 

4.3 CS Light Bulbs 
CS Light Bulbs are text snippets highlighting the linkages between 
the exercise and some CS concepts.  Here we provide one example 
lightbulb.  “This description process is very important for 
developing algorithms in computer science. An algorithm consists 
of the series of steps necessary to solve a given problem. By using 
algorithms, we can solve problems without having to constantly 
“reinvent the wheel” and spend the time, money, etc. to figure out 
each step ourselves. However, if one or more of these steps are 
unclear, we can have difficulty following the algorithm which can 
lead to serious repercussions as described in the following two 
examples. First, if the formulation algorithm used to mix the 
concrete for a road or bridge is unclear, workers may make a 
mistake during pouring leading to reduced service life. Second, if 
the business plan algorithm for a new company is confusing, 
venture capitalists may be reluctant to invest leading to failure of 



the business. To avoid these repercussions, the developer should 
make every effort to make the algorithm’s description as clear as 
possible for all steps. In other words, characterization of processes 
is key; it allows us to abstract a process and then convert it into a 
formal problem or solution.” 

Note: The handout also includes three other Light Bulbs on writing 
functions in CS, the diagramming process, and abstraction in 
programming languages. 

4.4 Questions 
For each exercise, there are two sets of questions: Analysis and 
Reflection.  Analysis questions are designed to help them relate to 
CS concepts as well as to re-examine or revisit the details of the 
activities.  Reflection questions are designed to prompt students to 
think about the activities at a more abstracted level, and how the 
lessons learned relate to problem solving in general.  

Analysis: (1) Consider your object as a computer program. Draw 
a diagram that shows all its functions as boxes (name them), and 
for each function, its inputs and outputs. Are there shared inputs 
and outputs among the functions? (2) Consider the list of physical 
attributes and characteristics. Organize these such that each is 
declared as a variable with its proper type. Can some of these 
attributes/characteristics be arranged into a hierarchy of related 
attributes/characteristics?   

Reflection: (1) Consider your response to Analysis 1, are there 
functions that can be combined so that the object can be 
represented with a more concise program? Are there new 
functions that should be introduced to better describe your object 
such that the functions are more modular? (2) Have you heard of 
abstraction? How does abstraction in computer science relate to 
the process of identifying the functions and characteristics as you 
have done in this exercise. 

Figures 2 shows another example screenshot of student work in 
addressing one of the analysis questions. 

 
Figure 2.  Screenshot example of student work on the 

Everyday Object exercise: Analysis Question. 

5.   DEPLOYMENT AND PLATFORM 
The exercises were deployed using the Written Agora system [5]. 
This is a wiki system designed to facilitate online collaboration 
between groups of students.  The wiki system includes a content 
page where students can work together on completing the tasks 
and an online forum where students can discuss, with group 

members, the responses to the analysis and reflection questions.  
As the wiki was always online, students could log in and work on 
the exercises whenever it was convenient.  The wiki also kept 
track of all the revisions so that we could determine which 
students were contributing to the group. 

The exercises represented 3-5% of the final grades depending on 
the course.  After completing the tasks and answering the 
questions, students in each group were assigned individual grades 
based on their contributions to the group’s wiki page. 

6. METHODS 
Students voluntarily participated in evaluation data collection 
which was approved by the University of Nebraska, Lincoln 
Institutional Review Board.  The CS1 courses had 241 students 
initially enrolled and 196 students who completed the courses.  Of 
those who completed the courses, 150 students (133 male, 17 
female; 59 freshmen, 49 sophomore, 32 junior, 13 senior; 3 other) 
consented to participation in the evaluation and 129 students (114 
male; 15 female) consented to the use of their course grades and 
university grade point average.  Samples for specific analyses 
vary due to missing data and are shown in Tables.   

Course grades were used to determine impact on student 
achievement in the course. To standardize grades across courses, 
grades were converted to Z-scores within each course. Retention 
of core computational thinking knowledge and skills was assessed 
by a test developed by CSCE faculty [21]. The computational 
thinking knowledge test contained 13 conceptual and problem-
solving questions for the core computational thinking content 
common to all CS1 classes. The coefficient alpha reliability 
estimate was .76.  The computational thinking test was 
administered on a Web platform (Survey Monkey®) during the 
last week of classes as part of broader evaluation data collection.  
Students’ cumulative Grade Point Averages (GPA) were obtained 
from university records adjusted to remove the CS1 course grade. 

We used Analysis of Covariance (ANCOVA) to test whether the 
number of exercises completed was associated with higher course 
grades and computational thinking test scores. Because of low 
numbers of participants in some cells, we collapsed 0, 1, and 2 
exercises completed into a single group.  

7. RESULTS AND DISCUSSIONS 

7.1 Results 
We included students’ cumulative GPA as a covariate in all 
analyses to statistically control for differences that might be 
attributable to students’ general level of academic ability.  
Students’ cumulative GPA was a significant covariate for course 
grades in all analyses.  Students with higher GPAs earned higher 
grades indicating that that their achievement in the class generally 
reflected their overall academic achievement.  Students’ 
cumulative GPA, however, was not a significant covariate for the 
knowledge test in all analyses, indicating that general academic 
achievement was not related to retention of core computational 
thinking knowledge and skill.   

CS Majors and Non-Majors.  For course grades (Table 1), 
cumulative GPA was a significant covariate (F(1, 107) = 104.64,  
p <.0001, partial Eta2 = .494).  With GPA controlled, the number 
of exercises completed was significantly associated with course 
grade (F(2, 107) = 11.27, p < .0001, partial Eta2 = .174).  There 
was a significant linear trend in planned comparisons (p < .0001) 
from 0-2 to 4 exercises completed.  Majoring or intent to major 
was significantly associated with grades (F(1, 107) = 3.55, p = 



.002, partial Eta2 = .089). Students considering or already a CSCE 
major or minor had higher grades (M = .088) than those not 
considering a CSCE major or minor (M = .014).  The major or 
minor by exercise interaction also was significant (F(2, 107) = 
7.50, p = .001, partial Eta2 = .123).  The interaction can be seen in 
Table 1.  Students who were or were considering a CSCE major 
or minor followed the general overall linear trend.  Students who 
were not considering a CSCE major or minor had a considerable 
jump from 0-2 exercises to 3 exercises completed and a much 
smaller increase from 3 exercises to 4 exercises.  

Table 2. Course Grades by Exercises and CS Major 

Exercises 
Completed 

Major or Considering Not Considering 
M SD N M SD N 

0-2 -.462 1.11 18 -.788 .894 22
3 .043 .861 18 .393 .858 14
4 .624 .424 20 .575 .684 22

For the computational thinking knowledge test (Table 2), 
cumulative GPA was not a significant covariate (F(1, 96) = 0.84, 
p = .361, partial Eta2 = .013). With GPA controlled, the number of 
exercises completed was significantly associated with knowledge 
test scores (F(2, 96) = 4.01, p = .021, partial Eta2 = .077). Planned 
comparisons indicated a significant linear trend (p = .006) from 0-
2 to 4 exercises completed.  Majoring or intent to major in CSCE 
was not significant (F(1, 96) = 0.20, p = .652, partial Eta2 = .002).  
The intent to major or minor by exercise interaction also was not 
significant (F(2, 96) = 0.85, p = .430, partial Eta2 = .017). 

Table 3. Knowledge Retention by Exercises and CS Major  

Exercises 
Completed 

Major or Considering  Not Considering 
M SD N M SD N 

0-2 5.50 3.29 16 6.35 3.47 20
3 7.44 3.42 16 7.38 3.10 13
4 8.82 1.59 17 7.71 2.61 21

Class Standing.  For course grades (Table 3), cumulative GPA 
was a significant covariate (F(1, 107) = 57.70, p <.0001, partial 
Eta2 = .350).  With GPA controlled, the number of exercises 
completed was significantly associated with course grade (F(2, 
107) = 13.09, p < .0001, partial Eta2 = .197).  There was a 
significant linear trend in planned comparisons (p < .0001) from 
0-2 to 4 exercises completed.  Class standing was significantly 
associated with grades (F(1, 107) = 4.67, p = .033, partial Eta2 = 
.042).  Upper class students had higher grades (M = .238) than 
freshmen (M = -.237).  The class standing by exercise interaction 
also was significant (F(2, 107) = 3.80, p = .026, partial Eta2 = 
.066).  The interaction can be seen in Table 5.  Although there is 
an overall linear trend, freshmen students do not differ for 0-2 
exercises and 3 exercises but increase for 4 exercises and upper 
class students increase dramatically from 0-2 exercises to 3 
exercises, then increase a much smaller amount from 3 exercises 
to 4 exercises.  It appears that freshmen students only showed 
gains when all exercises were completed; whereas, upper class 
students gained from completing either three or four exercises. 

Table 4. Course Grades by Exercises and Class Standing 

Exercises 
Completed 

Freshmen Upper Classman 
M SD N M SD N 

0-2 -.474 1.043 20 -.808 .951 20
3 .-468 1.026 11 .544 .511 21
4 .282 .696 14 .757 .365 28

For the computational thinking knowledge test (Table 4), 
cumulative GPA was a not a significant covariate (F(1, 96) = 
0.68, p = .411, partial Eta2 = .007).  With GPA controlled, the 

number of exercises completed was significantly associated with 
knowledge test scores (F(2, 96) = 3.77, p = .026, partial Eta2 = 
.073).  Planned comparisons indicated a significant linear trend (p 
= .007) from 0-2 to 4 exercises completed.  Class standing was not 
significant (F(1, 96) = 2.42, p = .123, partial Eta2 = .025).  The 
class standing by exercise interaction also was not significant 
(F(2, 96) = 0.28, p = .750, partial Eta2 = .006). 

Table 5. Knowledge Retention by Exercises & Class Standing 

Exercises 
Completed 

Freshmen Upper Classman 
M SD N M SD N 

0-2 5.24 3.56 17 6.63 3.13 19
3 6.56 3.94 9 7.80 2.87 20
4 7.93 1.59 14 8.38 2.58 24

Gender.  For course grades (Table 5), cumulative GPA was a 
significant covariate (F(1, 107) = 71.49, p <.0001, partial Eta2 = 
.401).  With GPA controlled, the number of exercises completed 
was significantly associated with course grade (F(2, 107) = 11.29, 
p < .0001, partial Eta2 = .174).  There was a significant linear 
trend in planned comparisons (p < .0001) from 0-2 to 4 exercises 
completed.  Gender was not significant (F(1, 107) = 0.12, p = 
.721, partial Eta2 = .001).  The gender by exercise interaction also 
was not significant (F(2, 107) = 2.26, p = .109, Eta2 = .041). 

Table 6. Course Grades by Exercises and Gender 

Exercises 
Completed 

Men Women 
M SD N M SD N 

0-2 -.618 .967 37 -.927 1.583 3
3 .112 .805 25 .497 1.063 7
4 .570 .558 38 .868 .234 4

For the computational thinking knowledge test (Table 6), 
cumulative GPA was a not a significant covariate (F(1, 96) = 
1.28, p = .261, partial Eta2 = .013).  With GPA controlled, the 
number of exercises completed was not significantly associated 
with knowledge test scores in the overall model (F(2, 96) = 2.34, 
p = .102, partial Eta2 = .047). Planned comparisons, however, 
indicated a significant linear trend (p = .034) from 0-2 to 4 
exercises completed.  Gender was not significant (F(1, 96) = 0.84, 
p = .361, partial Eta2 = .009).  The gender by exercise interaction 
also was not significant (F(2, 96) = 0.61, p = .548, Eta2 = .012). 

Table 7. Knowledge Retention by Exercises and Gender 

Men Women 
Exercises 

Completed M SD N M SD N 

0-2 6.06 3.28 33 5.00 5.00 3
3 7.78 3.30 23 6.00 2.68 6
4 8.17 2.29 35 8.67 2.08 3

7.2 Discussions and Implications 
Research Question 1. The creative thinking exercises appeared 
to affect the achievement of non-CS majors more than CS majors.  
Non-CS majors who completed two or fewer exercises received 
grades well below those of CS majors who completed a similar 
number of exercises and well below the average for non-CS 
majors.  However, non-CS majors completing three or four 
exercises received grades well above the average for even CS 
majors and grades equivalent to or even above CS majors 
completing a similar number of exercises.  The exercises 
appeared to affect the retention of core course content equally for 
both CS majors and non-majors.  These findings support our 
contention that the creative thinking exercises can bring CS 



computational concepts to non-CS disciplines and improve non-
CS students’ understanding of computational thinking.   

Research Question 2.  The creative thinking exercises appeared 
to affect freshmen and upper class students differently.  Upper 
class students doing either three or four exercises had higher 
grades.  Freshmen students, however, only had higher grades 
when doing all four exercises. Although upper class students had 
higher grades overall, freshmen doing four exercises had grades 
above the average for all upper class students.  The exercises 
appeared to affect the retention of core course content in similar 
ways for both freshmen and upper class students, although upper 
class students scored higher at all exercise completion levels.  
These findings suggest that while more advanced students may 
perform better overall and may derive somewhat more benefit 
from the creative thinking exercises, beginning freshmen students 
also see improvements in their course achievement and knowledge 
retention.  Nevertheless, it appears to be important for freshmen 
students to complete all exercises.  

Research Question 3.  There were no differential effects for 
women and men.  Our analysis of gender was limited by the low 
number of women students.  This makes any findings very 
tentative.  In relation to our contention that the addition of 
creativity may be especially appealing and beneficial to women, 
there is some indication in Table 5 that the exercises may have 
been associated with higher course achievement for women.  This, 
however, was not statistically significant.  

8. CONCLUSIONS  
The findings support our central contention that the incorporation 
of creative thinking exercises based on Epstein’s [8] creative 
competencies can improve learning of computational thinking.  
Results expand on the Miller et al. [16] findings of a linear 
“dosage effect” for exercise completion by examining whether 
there were differences in this effect for CS majors and non-majors 
and freshmen and upper class students.  In relation to retention of 
core computational thinking knowledge from the courses, there 
were no differential effects of the exercises.  For all students the 
linear “dosage effect” was present with student completion of 
each additional exercise increasing retention. For grades, the 
effects were more nuanced.  CS majors had a consistent linear 
increase for each exercise completed, while non-majors had grade 
increases only for completing at least three exercises.  Upper class 
students had increases for completing at least three exercises, 
while freshmen students needed to complete all four exercises 
before there were grade increases.  These results suggest that the 
“dosage effect” is less strong for grades among some sub-
populations.  We did not find differences between women and 
men but cannot draw conclusions because of sample size.   

We believe that the exercises impact student achievement and 
learning because they make students deal with computational 
principles and skills abstracted from coding.  This enhances their 
ability to connect the computational thinking knowledge to more 
diverse applications consistent with the Unified Learning Model 
(ULM) [20].  Also consistent with the ULM, completing exercises 
provides more retrieval and repetition of course creative thinking 
content, which will strengthen knowledge connections as 
indicated in the “dosage effect”.   

Findings are limited by the implementation in only one semester 
and four courses.  Sample sizes in all analyses preclude broad 
generalization without follow-up studies, which we currently have 
in progress.  However, our results are encouraging.  The merger of 
computational and creative thinking can be realized in exercises 

that can be successfully implemented in introductory CS1 courses.  
Furthermore, these exercises can help students improve their 
course achievement and learning of computational thinking. 
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