
Integrating Computational and Creative Thinking to
Improve Learning and Performance in CS1

L.D. Miller, Leen-Kiat Soh,
Vlad Chiriacescu

Department of Computer Science and
Engineering

University of Nebraska, Lincoln
{lmille, lksoh,

vchiriac}@cse.unl.edu

Elizabeth Ingraham
Department of Art and Art History
University of Nebraska, Lincoln

eingraham2@unl.edu

Duane F. Shell
Melissa Patterson Hazley

Department of Educational
Psychology

University of Nebraska, Lincoln
dshell2@unl.edu,

mpatterson.hazley@gmail.com

ABSTRACT
Our research is based on an innovative approach that integrates
computational thinking and creative thinking in CS1 to improve
student learning performance. Referencing Epstein’s Generativity
Theory, we designed and deployed a suite of creative thinking
exercises with linkages to concepts in computer science and
computational thinking, with the premise that students can
leverage their creative thinking skills to “unlock” their
understanding of computational thinking. In this paper, we focus
on our study on differential impacts of the exercises on different
student populations. For all students there was a linear “dosage
effect” where completion of each additional exercise increased
retention of course content. The impacts on course grades,
however, were more nuanced. CS majors had a consistent
increase for each exercise, while non-majors benefited more from
completing at least three exercises. It was also important for
freshmen to complete all four exercises. We did find differences
between women and men but cannot draw conclusions.

Categories and Subject Descriptors
K.3.2. [Computer and Education]: Computer and Information
Science Education

General Terms
Measurement, Performance, Design, Experimentation, Human
Factors.

Keywords
Computational thinking, creative thinking, CS1.

1. INTRODUCTION
The increased demand for computational thinking (e.g., [23][24])
has led to numerous articles in educational research venues.
These articles demonstrate the increasing momentum of research
addressing the need for effective education in computational
thinking, both for CS and across the broader spectrum of STEM
and non-STEM disciplines. This research is diverse, ranging from
course specifications to course development, from community

building to setting policies, and from teaching and learning to
assessment [3][4][9][12][14][24].

Adding to the above body of research, we proposed an innovative
approach [16] by which we aim to improve the learning of
computational thinking by blending it with creative thinking.
Creative thinking is thinking patterned in a way that tends to lead
to creative results [17]. It is not limited to the arts but is an
integral component of human intelligence that can be practiced,
encouraged and developed within any context [13][15][22].
Epstein’s Generativity Theory breaks creative thinking down to
four core competencies: capturing novelty, challenging
established thinking and behavior patterns, broadening one’s
knowledge beyond one’s discipline, and surrounding oneself with
new social and environmental stimuli [8]. Our premise is that by
blending computational and creative thinking students can
leverage their creative thinking skills to “unlock” their
understanding of computational thinking [20]. In this way, we
should be able to make computational thinking more generally
applicable to STEM and non-STEM disciplines where students
may have creative thinking skills but lack understanding of
computing concepts.

Towards ascertaining the feasibility and understanding the impact
of our approach, we designed and deployed four creative thinking
exercises during the Fall 2012 semester at the University of
Nebraska, Lincoln. Over 200 students in four different
introductory CS1 courses took the exercises and the exercises
counted as part of their final course grades. Each course was
tailored to a different target group (CS majors, engineering majors,
combined CS/physical sciences majors, and humanities majors)
and so these courses contained a mix of students with differing
levels of both computational and creative thinking skills. In a
previously reported study, Miller et al. [16] found that exercise
completion produced a linear increase in course grades and
retention of core computational thinking principles in the four
CS1 courses.

Questions remain, however, about whether there are differential
impacts on different student populations that might influence
decisions about exercise adoption. First, while we can educate
students from non-CS disciplines about using computational
thinking to support their own disciplinary creative problem
solving, there is a potentially serious problem for expanding
computational thinking from CS into other non-CS disciplines.
The students in non-CS disciplines come from diverse
backgrounds and most are likely to have limited understanding of
computing concepts that are used as the basis for computational
thinking. Without a basic level of understanding, these students
may have a very difficult time developing computational thinking

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
SIGCSE’14, March 5–8, 2014, Atlanta, Georgia, USA.
Copyright © 2014 ACM 978-1-4503-2605-6/14/03…$15.00.
http://dx.doi.org/10.1145/2538862.2538940

fluency. We need to know whether the creative thinking exercises
are benefiting these non-CS majors in the same way that they are
CS majors.

Second, the CS1 courses involved have students of different
experience, including years in school. Implementing and
delivering integrated computational thinking and creative thinking
requires understanding of what level of experience is needed to
best benefit. While all students in CS1 classes are novices in
computer science and computational thinking, freshmen students
might benefit less from the addition of creative competencies as
they have less general knowledge and less experience in college
coursework. Also, the creative competencies involved in the
exercises, such as broadening and surrounding, draw on larger
interdisciplinary bodies of knowledge and more extensive
academic and social experiences. Students having more
experience to bring to the exercises may be more able to utilize
them effectively. To address this, we need to know if freshmen
students who are less widely experienced derive fewer benefits
from the exercises than more advanced, upper class students,
regardless of their majors.

Finally, we incorporate activities into the exercises that are
livelier, more contextual, and more hands-on in their “sensory”
aspects. This can potentially help broaden participation in CS by
engaging more underrepresented female students, and motivating
them to study computer science; however, we need to determine
how female students may differentially benefit from the exercises.

Hence, we report in this paper the results of an extended study to
examine our central contentions about the benefits of merging
computational and creative thinking by determining if there were
differential impacts on different student populations. Our
research questions were: (1) Is the effect of creative thinking
exercises the same for CS majors and non-CS majors? (2) Is the
effect of creative thinking exercises different for beginning
students (freshmen) than for students with more expertise (non-
freshmen)? (3) Is the effect of creative thinking exercises different
for women and men students?

2. DESIGN PRINCIPLES
Creative thinking is flexible, imaginative, innovative thinking
which draws on all of one’s skills and experience [1], involves all
of one’s senses [22], draws on multiple intelligences [11] and uses
a variety of primary thinking tools (such as visualizing, imaging,
abstracting, scaling, modeling and analogizing [19]) to produce
new outcomes (things or processes) of value [18]. Creative
thinking is not an innate talent but instead a process that is an
integral component of human intelligence which can be practiced,
encouraged and developed within any context [13][15][22].

Based on Generativity Theory, Epstein [6][7][8] has identified the
following four core cognitive competencies involved in creative
thinking: (1) Broadening. The more diverse one’s knowledge and
skills are the more varied and interesting the possible novel new
patterns and combinations that might emerge. To be creative one
must broaden one’s knowledge by acquiring information and
skills outside one’s current domains of study and expertise. (2)
Challenging. Novelty emerges from situations where existing
strategies and behaviors are ineffective. The more difficult the
challenge the more likely a creative, novel solution will emerge.
(3) Surrounding. Exposure to multiple, ambiguous situations and
stimuli create environments where novel strategies and behaviors
may emerge—e.g., looking at things in new ways, interacting with
new people, and considering multiple sensory representations. (4)
Capturing. Novelty is occurring all the time, but most of it passes

without recognition. Creativity requires attention to and recording
of novelty as it occurs.

As made clear in Robinson [18] and Friedman [10], creative
thinking skills are vital not only to be creative designers or artists
but to also to work and compete effectively in our complex,
interconnected, rapidly changing global society, we thus see
Epstein’s core creative thinking competencies are a universally
applicable skill set that everyone would be eager to learn and use,
just as the case for the universality of computational thinking
articulated by Wing [23].

Therefore, in our framework, both computational thinking and
creative thinking are viewed as cognitive tools that expand the
knowledge and skills that one can apply to a problem. The
blending of computational thinking with creative thinking is not
conceived as a set of dichotomies, but rather as complementary or
symbiotic abilities and approaches. Computational tools expand
the knowledge and skills that one has available thereby
broadening the array of knowledge that one may bring to a
problem. For example, Challenging forces computational tools to
be used in unanticipated and unusual ways leading to the
development of new computational approaches to both old and
new problems, Surrounding creates new ways of looking at
problems and attention to different stimuli and perspectives that
may be relevant to how a problem is approached computationally,
and Capturing forces consideration of new ways to represent and
save data and solution procedures.

The principles underlying the design of our creative thinking
exercises are (1) balancing of attributes between computational
and creative thinking and (2) mapping between computational and
creative concepts and skills as they manifest in different
disciplines. Table 1 below shows the differing attributes,
concepts, and skills that need to be balanced and mapped.

3. EXERCISE DESIGN
All our exercises combine hands-on collaborative problem solving
with written analysis and reflection—with sufficient scope and
depth such that that each requires creative thinking and teamwork.
Each exercise has four common components.

First, the Objectives component, at the beginning of the exercise
handout, lists the computational and creative thinking objectives
for the exercise to help the student understand why they are doing
these exercises by showing how an exercise lacking any
programming code is related to CS concepts and how students can
use relevant creative thinking skills (described in terms of
Epstein’s core competencies of Surrounding, Capturing,
Challenging and Broadening) to solve the exercises.

Second, the majority of the content of an exercise handout is the
Tasks component which lists all the tasks the group of students
must complete during the two weeks of the exercise. These tasks
require students to work collaboratively (and may require
individual contributions as well.

Third, the CS Light Bulbs are additional text snippets highlighting
linkages between the exercise tasks and a set of CS topics to help
students recognize the associated or practiced computational
thinking skills while performing the creative thinking tasks.

Fourth, the Questions component uses open-ended questions that
require collaboration among students as they engage in both
analysis and reflection. To answer these questions, students must
apply creative thinking to CS problems and revise the results of
their original tasks using computational thinking. Questions thus

build upon the CS Light Bulbs and reinforce the connections
between the creative thinking fostered by the tasks and the
computational thinking in the CS topics.

Table 1. Balancing attributes and mapping concepts and
skills between computational and creative thinking.

BALANCING OF ATTRIBUTES
Computational Thinking Creative Thinking

Convergent thinking. Surrounding with new social and
environmental stimuli.

Linear and sequential “flow” Challenging established
solutions and algorithms.

Rational & logical processes Broadening possible solutions
through additional paradigms

Methodical Capturing novelty and
spontaneous outputs

MAPPING CONCEPTS & SKILLS
Computational Thinking Creative Thinking

Algorithmic Thinking –
algorithms as models of
computational processes*

Challenging accepted solutions
and procedures; fostering novel
solutions

Programming Fundamentals:
(i.e. data models,
encapsulation, testing and
debugging)*

Broadening applications through
new ways of framing and
applying fundamental
computational knowledge.

Computing Environments –
languages & paradigms,
tools, applications*

Surrounding with new social and
physical environments to
broaden perspectives

Data representation: (i.e. data
types, variables)*

Capturing new ways of
representing/storing data &
algorithms.

*CC2001: IEEE/ACM Computing Curriculum, 2001

Although developed separately, our creative thinking exercises are
most conceptually similar to the creative thinking activities in the
CS4HS project [2]. The two main differences are that our
exercises are designed for students, rather than instructors, and
cover CS content suitable for college rather than high school.

4. EXERCISE EXAMPLES
Here we describe one of the creative thinking exercises in more
detail. We developed four different exercises for the Fall 2012
deployment: (1) Everyday Object where students identified an
everyday object (e.g., a hammer, a nail clipper) and described its
functionality and I/O as if the object has not been invented, (2)
Storytelling where students work on different pieces of a story
separately and then come together to resolve all inconsistencies to
produce a coherent story, (3) Cipher where student teams
developed mapping rules to encode messages and then decode
those messages from other teams, and (4) Exploring where
students visited a particular location on campus and documented
what they sensed. Due to space considerations we only highlight
Everyday Object in the following exercise description.

4.1 Objectives
There are two sets of objectives: computational and creative.
Computational: (1) Learning about the description and design
process for modular programming by describing an everyday
object in detail including why the object is needed and how the
object functions; (2) Learning about abstraction and function
characterization by identifying properties of an everyday object.
Creative: (1) Surrounding: looking at an everyday object in new
ways, using all of your senses to understand how it’s made and
how it functions; (2) Capturing: using written language to
describe all the different details and characteristics of this
everyday object so you can work with it in new ways; (3)
Challenging: describing the operations of an everyday object with

words and also as a computer program; (4) Broadening: imagining
that this object doesn’t exist and acting like its inventor who is
trying to fulfill a need by creating something new and useful.

4.2 Tasks
The tasks are divided into two weeks, during which the students
will be using language to try to clearly and thoroughly describe
the functions of an ordinary object that they might use every day.
The students are prompted to act like the inventor of that object,
imagining that it does not yet exist and trying to describe what
need would be fulfilled by their chosen (new) object and how
(specifically) it will function.

Each group will choose a common, everyday object from the
list—e.g., zipper, mechanical pencil, binder clip, Ziploc bag, nail
clipper, umbrella, can opener, sticky notes, etc. Their challenge is
to imagine that this object does not exist and to describe in written
language (1) the mechanical function of your object, (2) what
need is fulfilled by this object, and (3) the physical attributes and
characteristics of their chosen object.

During week 1, each team must describe the object’s function, the
need it will fulfill and its attributes in clear, non-technical
language which any user could understand. Their description must
be specific enough so that someone who had never seen the object
could recognize it and understand how it works and understand
what benefits it provides. Week 2 activities involve analysis and
reflection on week 1 activities.

Figures 1 shows an example screenshot of student work where the
chosen object to be described was a nail clipper.

Figure 1. Screenshot example of student work on the

Everyday Object exercise: Object Description.

4.3 CS Light Bulbs
CS Light Bulbs are text snippets highlighting the linkages between
the exercise and some CS concepts. Here we provide one example
lightbulb. “This description process is very important for
developing algorithms in computer science. An algorithm consists
of the series of steps necessary to solve a given problem. By using
algorithms, we can solve problems without having to constantly
“reinvent the wheel” and spend the time, money, etc. to figure out
each step ourselves. However, if one or more of these steps are
unclear, we can have difficulty following the algorithm which can
lead to serious repercussions as described in the following two
examples. First, if the formulation algorithm used to mix the
concrete for a road or bridge is unclear, workers may make a
mistake during pouring leading to reduced service life. Second, if
the business plan algorithm for a new company is confusing,
venture capitalists may be reluctant to invest leading to failure of

the business. To avoid these repercussions, the developer should
make every effort to make the algorithm’s description as clear as
possible for all steps. In other words, characterization of processes
is key; it allows us to abstract a process and then convert it into a
formal problem or solution.”

Note: The handout also includes three other Light Bulbs on writing
functions in CS, the diagramming process, and abstraction in
programming languages.

4.4 Questions
For each exercise, there are two sets of questions: Analysis and
Reflection. Analysis questions are designed to help them relate to
CS concepts as well as to re-examine or revisit the details of the
activities. Reflection questions are designed to prompt students to
think about the activities at a more abstracted level, and how the
lessons learned relate to problem solving in general.

Analysis: (1) Consider your object as a computer program. Draw
a diagram that shows all its functions as boxes (name them), and
for each function, its inputs and outputs. Are there shared inputs
and outputs among the functions? (2) Consider the list of physical
attributes and characteristics. Organize these such that each is
declared as a variable with its proper type. Can some of these
attributes/characteristics be arranged into a hierarchy of related
attributes/characteristics?

Reflection: (1) Consider your response to Analysis 1, are there
functions that can be combined so that the object can be
represented with a more concise program? Are there new
functions that should be introduced to better describe your object
such that the functions are more modular? (2) Have you heard of
abstraction? How does abstraction in computer science relate to
the process of identifying the functions and characteristics as you
have done in this exercise.

Figures 2 shows another example screenshot of student work in
addressing one of the analysis questions.

Figure 2. Screenshot example of student work on the

Everyday Object exercise: Analysis Question.

5. DEPLOYMENT AND PLATFORM
The exercises were deployed using the Written Agora system [5].
This is a wiki system designed to facilitate online collaboration
between groups of students. The wiki system includes a content
page where students can work together on completing the tasks
and an online forum where students can discuss, with group

members, the responses to the analysis and reflection questions.
As the wiki was always online, students could log in and work on
the exercises whenever it was convenient. The wiki also kept
track of all the revisions so that we could determine which
students were contributing to the group.

The exercises represented 3-5% of the final grades depending on
the course. After completing the tasks and answering the
questions, students in each group were assigned individual grades
based on their contributions to the group’s wiki page.

6. METHODS
Students voluntarily participated in evaluation data collection
which was approved by the University of Nebraska, Lincoln
Institutional Review Board. The CS1 courses had 241 students
initially enrolled and 196 students who completed the courses. Of
those who completed the courses, 150 students (133 male, 17
female; 59 freshmen, 49 sophomore, 32 junior, 13 senior; 3 other)
consented to participation in the evaluation and 129 students (114
male; 15 female) consented to the use of their course grades and
university grade point average. Samples for specific analyses
vary due to missing data and are shown in Tables.

Course grades were used to determine impact on student
achievement in the course. To standardize grades across courses,
grades were converted to Z-scores within each course. Retention
of core computational thinking knowledge and skills was assessed
by a test developed by CSCE faculty [21]. The computational
thinking knowledge test contained 13 conceptual and problem-
solving questions for the core computational thinking content
common to all CS1 classes. The coefficient alpha reliability
estimate was .76. The computational thinking test was
administered on a Web platform (Survey Monkey®) during the
last week of classes as part of broader evaluation data collection.
Students’ cumulative Grade Point Averages (GPA) were obtained
from university records adjusted to remove the CS1 course grade.

We used Analysis of Covariance (ANCOVA) to test whether the
number of exercises completed was associated with higher course
grades and computational thinking test scores. Because of low
numbers of participants in some cells, we collapsed 0, 1, and 2
exercises completed into a single group.

7. RESULTS AND DISCUSSIONS

7.1 Results
We included students’ cumulative GPA as a covariate in all
analyses to statistically control for differences that might be
attributable to students’ general level of academic ability.
Students’ cumulative GPA was a significant covariate for course
grades in all analyses. Students with higher GPAs earned higher
grades indicating that that their achievement in the class generally
reflected their overall academic achievement. Students’
cumulative GPA, however, was not a significant covariate for the
knowledge test in all analyses, indicating that general academic
achievement was not related to retention of core computational
thinking knowledge and skill.

CS Majors and Non-Majors. For course grades (Table 1),
cumulative GPA was a significant covariate (F(1, 107) = 104.64,
p <.0001, partial Eta2 = .494). With GPA controlled, the number
of exercises completed was significantly associated with course
grade (F(2, 107) = 11.27, p < .0001, partial Eta2 = .174). There
was a significant linear trend in planned comparisons (p < .0001)
from 0-2 to 4 exercises completed. Majoring or intent to major
was significantly associated with grades (F(1, 107) = 3.55, p =

.002, partial Eta2 = .089). Students considering or already a CSCE
major or minor had higher grades (M = .088) than those not
considering a CSCE major or minor (M = .014). The major or
minor by exercise interaction also was significant (F(2, 107) =
7.50, p = .001, partial Eta2 = .123). The interaction can be seen in
Table 1. Students who were or were considering a CSCE major
or minor followed the general overall linear trend. Students who
were not considering a CSCE major or minor had a considerable
jump from 0-2 exercises to 3 exercises completed and a much
smaller increase from 3 exercises to 4 exercises.

Table 2. Course Grades by Exercises and CS Major

Exercises
Completed

Major or Considering Not Considering
M SD N M SD N

0-2 -.462 1.11 18 -.788 .894 22
3 .043 .861 18 .393 .858 14
4 .624 .424 20 .575 .684 22

For the computational thinking knowledge test (Table 2),
cumulative GPA was not a significant covariate (F(1, 96) = 0.84,
p = .361, partial Eta2 = .013). With GPA controlled, the number of
exercises completed was significantly associated with knowledge
test scores (F(2, 96) = 4.01, p = .021, partial Eta2 = .077). Planned
comparisons indicated a significant linear trend (p = .006) from 0-
2 to 4 exercises completed. Majoring or intent to major in CSCE
was not significant (F(1, 96) = 0.20, p = .652, partial Eta2 = .002).
The intent to major or minor by exercise interaction also was not
significant (F(2, 96) = 0.85, p = .430, partial Eta2 = .017).

Table 3. Knowledge Retention by Exercises and CS Major

Exercises
Completed

Major or Considering Not Considering
M SD N M SD N

0-2 5.50 3.29 16 6.35 3.47 20
3 7.44 3.42 16 7.38 3.10 13
4 8.82 1.59 17 7.71 2.61 21

Class Standing. For course grades (Table 3), cumulative GPA
was a significant covariate (F(1, 107) = 57.70, p <.0001, partial
Eta2 = .350). With GPA controlled, the number of exercises
completed was significantly associated with course grade (F(2,
107) = 13.09, p < .0001, partial Eta2 = .197). There was a
significant linear trend in planned comparisons (p < .0001) from
0-2 to 4 exercises completed. Class standing was significantly
associated with grades (F(1, 107) = 4.67, p = .033, partial Eta2 =
.042). Upper class students had higher grades (M = .238) than
freshmen (M = -.237). The class standing by exercise interaction
also was significant (F(2, 107) = 3.80, p = .026, partial Eta2 =
.066). The interaction can be seen in Table 5. Although there is
an overall linear trend, freshmen students do not differ for 0-2
exercises and 3 exercises but increase for 4 exercises and upper
class students increase dramatically from 0-2 exercises to 3
exercises, then increase a much smaller amount from 3 exercises
to 4 exercises. It appears that freshmen students only showed
gains when all exercises were completed; whereas, upper class
students gained from completing either three or four exercises.

Table 4. Course Grades by Exercises and Class Standing

Exercises
Completed

Freshmen Upper Classman
M SD N M SD N

0-2 -.474 1.043 20 -.808 .951 20
3 .-468 1.026 11 .544 .511 21
4 .282 .696 14 .757 .365 28

For the computational thinking knowledge test (Table 4),
cumulative GPA was a not a significant covariate (F(1, 96) =
0.68, p = .411, partial Eta2 = .007). With GPA controlled, the

number of exercises completed was significantly associated with
knowledge test scores (F(2, 96) = 3.77, p = .026, partial Eta2 =
.073). Planned comparisons indicated a significant linear trend (p
= .007) from 0-2 to 4 exercises completed. Class standing was not
significant (F(1, 96) = 2.42, p = .123, partial Eta2 = .025). The
class standing by exercise interaction also was not significant
(F(2, 96) = 0.28, p = .750, partial Eta2 = .006).

Table 5. Knowledge Retention by Exercises & Class Standing

Exercises
Completed

Freshmen Upper Classman
M SD N M SD N

0-2 5.24 3.56 17 6.63 3.13 19
3 6.56 3.94 9 7.80 2.87 20
4 7.93 1.59 14 8.38 2.58 24

Gender. For course grades (Table 5), cumulative GPA was a
significant covariate (F(1, 107) = 71.49, p <.0001, partial Eta2 =
.401). With GPA controlled, the number of exercises completed
was significantly associated with course grade (F(2, 107) = 11.29,
p < .0001, partial Eta2 = .174). There was a significant linear
trend in planned comparisons (p < .0001) from 0-2 to 4 exercises
completed. Gender was not significant (F(1, 107) = 0.12, p =
.721, partial Eta2 = .001). The gender by exercise interaction also
was not significant (F(2, 107) = 2.26, p = .109, Eta2 = .041).

Table 6. Course Grades by Exercises and Gender

Exercises
Completed

Men Women
M SD N M SD N

0-2 -.618 .967 37 -.927 1.583 3
3 .112 .805 25 .497 1.063 7
4 .570 .558 38 .868 .234 4

For the computational thinking knowledge test (Table 6),
cumulative GPA was a not a significant covariate (F(1, 96) =
1.28, p = .261, partial Eta2 = .013). With GPA controlled, the
number of exercises completed was not significantly associated
with knowledge test scores in the overall model (F(2, 96) = 2.34,
p = .102, partial Eta2 = .047). Planned comparisons, however,
indicated a significant linear trend (p = .034) from 0-2 to 4
exercises completed. Gender was not significant (F(1, 96) = 0.84,
p = .361, partial Eta2 = .009). The gender by exercise interaction
also was not significant (F(2, 96) = 0.61, p = .548, Eta2 = .012).

Table 7. Knowledge Retention by Exercises and Gender

Men Women
Exercises

Completed M SD N M SD N

0-2 6.06 3.28 33 5.00 5.00 3
3 7.78 3.30 23 6.00 2.68 6
4 8.17 2.29 35 8.67 2.08 3

7.2 Discussions and Implications
Research Question 1. The creative thinking exercises appeared
to affect the achievement of non-CS majors more than CS majors.
Non-CS majors who completed two or fewer exercises received
grades well below those of CS majors who completed a similar
number of exercises and well below the average for non-CS
majors. However, non-CS majors completing three or four
exercises received grades well above the average for even CS
majors and grades equivalent to or even above CS majors
completing a similar number of exercises. The exercises
appeared to affect the retention of core course content equally for
both CS majors and non-majors. These findings support our
contention that the creative thinking exercises can bring CS

computational concepts to non-CS disciplines and improve non-
CS students’ understanding of computational thinking.

Research Question 2. The creative thinking exercises appeared
to affect freshmen and upper class students differently. Upper
class students doing either three or four exercises had higher
grades. Freshmen students, however, only had higher grades
when doing all four exercises. Although upper class students had
higher grades overall, freshmen doing four exercises had grades
above the average for all upper class students. The exercises
appeared to affect the retention of core course content in similar
ways for both freshmen and upper class students, although upper
class students scored higher at all exercise completion levels.
These findings suggest that while more advanced students may
perform better overall and may derive somewhat more benefit
from the creative thinking exercises, beginning freshmen students
also see improvements in their course achievement and knowledge
retention. Nevertheless, it appears to be important for freshmen
students to complete all exercises.

Research Question 3. There were no differential effects for
women and men. Our analysis of gender was limited by the low
number of women students. This makes any findings very
tentative. In relation to our contention that the addition of
creativity may be especially appealing and beneficial to women,
there is some indication in Table 5 that the exercises may have
been associated with higher course achievement for women. This,
however, was not statistically significant.

8. CONCLUSIONS
The findings support our central contention that the incorporation
of creative thinking exercises based on Epstein’s [8] creative
competencies can improve learning of computational thinking.
Results expand on the Miller et al. [16] findings of a linear
“dosage effect” for exercise completion by examining whether
there were differences in this effect for CS majors and non-majors
and freshmen and upper class students. In relation to retention of
core computational thinking knowledge from the courses, there
were no differential effects of the exercises. For all students the
linear “dosage effect” was present with student completion of
each additional exercise increasing retention. For grades, the
effects were more nuanced. CS majors had a consistent linear
increase for each exercise completed, while non-majors had grade
increases only for completing at least three exercises. Upper class
students had increases for completing at least three exercises,
while freshmen students needed to complete all four exercises
before there were grade increases. These results suggest that the
“dosage effect” is less strong for grades among some sub-
populations. We did not find differences between women and
men but cannot draw conclusions because of sample size.

We believe that the exercises impact student achievement and
learning because they make students deal with computational
principles and skills abstracted from coding. This enhances their
ability to connect the computational thinking knowledge to more
diverse applications consistent with the Unified Learning Model
(ULM) [20]. Also consistent with the ULM, completing exercises
provides more retrieval and repetition of course creative thinking
content, which will strengthen knowledge connections as
indicated in the “dosage effect”.

Findings are limited by the implementation in only one semester
and four courses. Sample sizes in all analyses preclude broad
generalization without follow-up studies, which we currently have
in progress. However, our results are encouraging. The merger of
computational and creative thinking can be realized in exercises

that can be successfully implemented in introductory CS1 courses.
Furthermore, these exercises can help students improve their
course achievement and learning of computational thinking.

9. ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under grant no. 1122956. Additional support
was provided by a UNL Phase II Pathways to Interdisciplinary
Research Centers grant.

10. REFERENCES
[1] Andreasen, N. C. 2005. The Creating Brain: The

Neuroscience of Genius. Dana Press.
[2] Blum, L. and Cortina, T. 2007. CS4HS: An Outreach

Program for High School CS Teachers. SIGCSE 39, 19-23.
[3] Denning, P. J. 2007. Computing is a Natural Science. CACM

49, 33-35.
[4] Denning, P. J. 2009. The Profession of IT beyond

Computational Thinking. CACM 52, 28-30.
[5] Eck, A. Soh, L-K., and Brassil, C. 2013. Supporting active

wiki-based collaboration. In Proc. of CSCL, 176-183.
[6] Epstein, R. 1996. Cognition, creativity, and behavior:

Selected essays. Praeger.
[7] Epstein, R. 2005. Generativity theory and creativity.

Theories of creativity. Hampton Press.	
[8] Epstein, R., Schmidt, S., Warfel, R. 2008. Measuring and

Training Creativity Comptencies: Validation of a New Test.
Creativity Research Journal 20, 7-12.

[9] Fletcher, G. H. L. 2009. Human Computing Skills:
Rethinking the K-12 Experience. CACM 52, 23-25.

[10] Friedman, T. L. 2006. The World is Flat: A Brief History of
the Twenty-First Century. Farrar, Straus and Giroux.

[11] Gardner, H. 2007. Five Minds for the Future. Harvard
Business School Press.

[12] Guzdial, M. 2008. Paving the Way for Computational
Thinking. CACM 51, 25-27.

[13] Kraft, U. 2005. Unleashing Creativitity. Scientific American
Mind 16, 19-12.

[14] Lewis, C., Jackson M. H., and Waite, W. M. 2010. Student
and Faculty Attitudes and Beliefs about Computer Science.
CACM 53, 78-85.

[15] Michalko, M. 2001. Cracking Creativity. Ten Speed Press.
[16] Miller et al. 2013. Improving Learning of Computational

Thinking using Creative Thinking Exercises in CS-1
Computer Science Courses. Frontiers in Education 43, 1426-
1432.

[17] Perkins, D. N. 1984. Creativity by Design. Educational
Leadership 42, 18-25.

[18] Robinson, K. 2001. Out of Our Minds: Learning to be
Creative. Capstone.

[19] Root-Bernstein, R. S. and Root-Bernstein, M. M. 2001.
Sparks of Genius: The Thirteen Thinking Tools of the
World's Most Creative People. Mariner Books.

[20] Shell, D. F., Brooks, D. W., Trainin, G., Wilson, K.,
Kauffman, D. F., and Herr, L. 2010. The Unified Learning
Model: How Motivational, Cognitive, And Neurobiological
Sciences Inform Best Teaching Practices. Springer.

[21] Shell, D. F., Soh, L-K. 2013. Profiles of motivated self-
regulation in college computer science courses: Differences
in major versus required non-major courses. J. Sci. Edu.
Tech. Technology. DOI 10.1007/s10956-013-9437-9.

[22] Tharp, T. 2005. The Creative Habit: Learn it and Use it for
Life. Simon & Schuster.

[23] Wing, J. 2006. Computational Thinking. CACM 49, 33-35.
[24] Wing, J. 2010. Computational Thinking: What and Why.

Link Magazine

