
Meta-Reasoning Algorithm for Improving Analysis of
Student Interactions with Learning Objects using

Supervised Learning
L. Dee Miller and Leen-Kiat Soh

Department of Computer Science and Engineering
University of Nebraska, Lincoln
{lmille, lksoh}@cse.unl.edu

ABSTRACT
Supervised learning (SL) systems have been used to automatically
learn models for analysis of learning object (LO) data. However,
SL systems have trouble accommodating data from multiple
distributions and “troublesome” data that contains irrelevant
features or noise—all of which are relatively common in highly
diverse LO data. The solution is to break up the available data
into separate areas and then take steps to improve models on areas
containing troublesome data. Unfortunately, finding these areas
in the first place is a far from trivial task that balances finding a
single distribution with having sufficient data to support
meaningful analysis. Therefore, we propose a BoU meta-
reasoning (MR) algorithm that first uses semi-supervised
clustering to find compact clusters with multiple labels that each
support meaningful analyses. After clustering, our BoU MR
algorithm learns a separate model on each such cluster. Finally,
our BoU MR algorithm uses feature selection (FS) and noise
correction (NC) algorithms to improve models on clusters
containing troublesome data. Our experiments, using three
datasets containing over 5000 sessions of student interactions with
LOs, show that multiple models from BoU MR achieve more
accurate analyses than a single model. Further, FS and NC
algorithms are more effective at improving multiple models than a
single model.

Keywords

Learning Object Analysis; Supervised Learning; Clustering;
Meta-Reasoning

1. INTRODUCTION
Learning objects (LOs) are independent and self-standing units of
learning content that are predisposed to reuse in multiple
instructional contexts [2]. An example of an LO is a self-
contained lesson on recursion with a tutorial, interactive exercises,
and assessment questions. In general, the analysis of student
interactions with LOs is important for many groups including
students, instructors, researchers, and content developers [16].
First, for students, such analyses can improve student study
strategies and allow for more self-regulated learning [1]. Second,

instructors can use such analyses to choose appropriate LOs for
their students [8]. Third, such analyses can help researchers and
content developers investigate which student interactions are
associated with the different learning outcomes [6].

One previously used approach for the analysis of student
interactions with LOs is supervised learning (SL) systems [16].
SL systems learn a model from previously recorded sessions of
student interactions (features) and learning outcomes (labels) that
can predict the learning outcome for a specific session of student
interactions with a high degree of accuracy.
SL systems have one main advantage over other approaches (e.g.,
statistical analysis): they learn the model automatically without
the need for direct human intervention. First, learning the model
can help students and instructors. Such a model predicts the
learning outcome for a student in real-time based on the observed
student interactions [15]. Such predictions can allow the LO to
adjust the content presented to a student while he or she is taking
the LO and provide real-time updates to instructors on student
mastery of LO content. Second, a model learned automatically
without human intervention provides independent, high-level
guidelines on which types of student interactions are associated
with the learning outcomes [4]. Such guidelines can serve as a
useful starting point for further investigation by researchers and
inform content developers on which parts of the LO may need to
be revised.

However, SL systems have some potential problems which can
limit the effectiveness of their models for analysis:

First, SL systems assume that the training data from previously
recorded sessions comes from a single underlying distribution.
Unfortunately, such training data is likely to come from multiple
distributions and be highly diverse due to a wide variety of factors
including students with different backgrounds, LOs with different
content, instructors providing varying amounts of support for the
LO content, etc. These factors make it difficult to learn a single
model which can “fit” all this highly diverse training data and
still achieve high accuracy.

Second, SL systems assume that the training data available is
relatively “clean” being free of student interactions unrelated to
the learning outcomes (i.e., irrelevant features) and errors in the
student interactions and learning outcomes provided (i.e., noise).
Unfortunately, such training data is all too likely to contain both
irrelevant features and noise. Irrelevant features are relatively
common when researchers are uncertain which student
interactions are relevant and, thus, record as many student
interactions as possible since they cannot retroactively record
additional interactions. Noise is relatively common when
developers fail to create assessment questions appropriate for all

students and when students are motivated to “game the system” to
achieve a certain learning outcome (e.g., a good grade on the LO).
These factors make it difficult for a single model to achieve high
accuracy on areas containing large amounts of “troublesome”
training data with irrelevant features and/or noise.

Intuitively, we could address these problems and improve the
effectiveness of SL systems for analysis by using an approach
which first breaks up the training data into areas―each containing
similar student interactions―and learns a separate model on each
area. We could then identify which areas consistently contain
“troublesome” training data and take steps to improve the models
in those areas.

However, breaking up the training data and finding areas with
“troublesome” training data are far from trivial tasks. As
previously mentioned, the training data collected is likely to be
highly diverse. Such diversity makes it difficult for an approach
to find suitable areas balancing two factors. First, each area
should contain similar data from a single distribution. Second,
each area should contain sufficient training data to support
meaningful analysis. Further, the model learned on an area is
likely to fit the irrelevant features and/or noise in that area which
can make it difficult to identify the areas containing troublesome
training data.

Therefore, we propose new meta-reasoning algorithm called the
Boundary of Use (BoU MR) to improve the effectiveness of SL
models for analysis of student interactions with LOs. Our
algorithm first uses an iterative process, based on semi-supervised
clustering, which breaks up the training data in different ways
until suitable areas are found. These suitable areas, which we dub
BoU clusters, include training data with similar student
interactions from a single distribution which, nevertheless, have
multiple learning outcomes to support meaningful analysis.
After clustering, the BoU MR learns a separate model for each of
these clusters. Then, our algorithm evaluates each of these BoU
clusters using a localized estimate to detect troublesome training
data (e.g., feature selection for irrelevant features). Finally, our
algorithm takes steps to selectively improve the models for the
difficult BoU clusters containing troublesome training data; for
example, removing irrelevant features and relearning the model
on the “refined” training data.

In the following, we will investigate the BoU MR using two
objectives. Objective 1 is to investigate the impact of breaking up
the training data on LO datasets using three types of SL systems
to learn the models: decision trees, support vector machines, and
artificial neural networks. We compare the accuracy for a single
model with that for multiple models from the BoU MR. Objective
2 is to investigate the effectiveness of BoU MR for improving its
models on difficult BoU clusters. For this objective, we consider
both feature selection and noise correction algorithms. We
compare the accuracy to the BoU MR that uses these algorithms
to help selectively relearn the models for difficult BoU clusters to
a single model relearned after the same algorithm is applied to all
the training data.

The rest of the paper is organized as follows. Section 2 provides
background on SL systems and model improvement algorithms
used in our study. Section 3 describes our BoU meta-reasoning
algorithm in more detail. Section 4 discusses the experimental
setup and results. Finally, we conclude and outline future work.

2. BACKGROUND
Here we discuss background on the SL systems and model
improvement algorithms. Discussion of the LO datasets is
deferred until Section 4.

2.1 Supervised Learning (SL) Systems
We consider three types of SL systems in the experiments below.
To help demonstrate the effectiveness of our meta-reasoning
algorithm for SL systems in general, we chose three widely used
SL systems with very different properties. First, artificial neural
networks (ANNs) learn a vector of weights on features in the
dataset to choose the labels for new data [19]. ANNs consist of
multiple nodes connected to threshold functions or to additional
layers of nodes. ANNs are updated iteratively (e.g., using
gradient descent) until they correctly predict the labels for the
training data. Second, decision trees (for classification) learn a
tree data structure to generate the labels for new data [19]. The
decision tree first selects one feature as the root node and adds an
edge for every label value. The decision tree continues to add
nodes and edges recursively until all the training data has been
sorted into groups with similar labels. The leaves are then set to
the common label. Third, support vector machines (SVMs) learn
a hyperplane to separate the training data such that data on the
same side mostly have the same label [19]. SVMs first use a
kernel function to transform all values for the dataset into higher
dimensional space where they are linearly separable. Then, the
SVM attempts to maximize the distance (i.e., margin) between the
training data with different labels.

2.2 Model Improvement Algorithms
We consider two types of algorithms for improving the models in
the experiments below: feature selection and noise correction.

First, feature selection (FS) algorithms find the subset of relevant
features for the dataset using an evaluation criterion based on
filters or wrappers. Filters evaluate the relevant features using
only the intrinsic properties of the data whereas wrappers use the
accuracy of the SL system model [10]. To avoid overfitting
common to wrapper-based feature selection, we use a state-of-the-
art filter-based FS algorithm called Lasso in the experiments
below. Lasso FS uses a shrinkage method for FS which maintains
a coefficient for each of feature (Hastie et al., 2011). Lasso
computes these coefficients by using a pairwise coordinate
descent approach to minimize the sum of squares subject to a
constraint on the coefficients. Features whose coefficients have
shrunk to zero are considered to be irrelevant and removed
entirely from the dataset.

Second, noise correction (NC) algorithms are designed to identify
noisy labels and then remove or replace them. There are two
general types of noise correction algorithms [13]: (1) noise
tolerant correction modifies existing SL systems to better
accommodate noisy labels (e.g., rule-post pruning for decision
trees) and (2) noise filtering detects noisy labels in the training
data before the model is learned. We use both types of noise
correction algorithms in the experiments below. We use decision
trees rule post-processing and SVMs with soft margins both
designed to accommodate noisy labels [19] for the former and a
state-of-the-art algorithm called LSVM [18] for the latter. LSVM
uses a hybrid approach for NC that starts by using a k-Nearest
Neighbor algorithm to select the neighborhood of similar data
around a given instance. LSVM then learns a local SVM on that
local neighborhood (hence the name). Based on the maximal
margin principle, if the LSVM incorrectly predicts the label for
that instance, then the label is deemed noisy. Furthermore, to

avoid accidently injecting noise into the training data, in our
experiments, noisy labels are removed rather than being replaced.

3. METHODOLOGY
The central idea for the BoU meta-reasoning (MR) algorithm is to
first break up the training data into special BoU clusters
containing sessions with similar student interactions (i.e.,
instances) from a single distribution. At the same time, the cluster
should sufficient data with multiple learning outcomes (i.e.,
labels) to support a meaningful analysis in the form of a SL
model. In a very real sense, BoU clusters allow us to “zoom in”
and get a more detailed analysis on highly diverse LO data than
could be obtained using all the data together.
Next, our algorithm learns a separate model based on the training
data in each BoU cluster. By using only the data in a single
cluster, BoU MR guarantees that each model is more detailed and
expressive on member data than a single model trained on all data
together. After learning the separate models, our algorithm uses a
localized estimate of the accuracy for each model by comparing
the predicted and actual labels for the cluster members: correct
when the predicted matches the actual; otherwise, incorrect.
Based on the predominant correct/incorrect label, BoU MR thus
assigns each BoU cluster a type: correct BoU clusters where the
model is doing well and incorrect clusters where the model is
struggling on troublesome data.

Figure 1 provides an example of four such BoU clusters. In this
figure, the clear circles are correct training data instances and grey
circles are incorrect instances. Clusters 1 and 2 contain only
correct instances and are thus flagged as correct. Note that
Cluster 1 contains only a single label while Cluster 2 contains
both labels—both are considered correct based on the localized
estimate. Clusters 3 and 4 are flagged as incorrect since they
contain a mix of both correct and incorrect instances.

Figure 1. Example BoU Clusters. The grey data instances are

those on which the model failed to predict the correct label.
After identifying the aforementioned clusters, BoU MR takes
steps to improve the models for incorrect clusters. This is done by
using either a feature selection or noise correction algorithm
selectively on only the incorrect clusters. In this way, the models
are left alone on correct clusters where they are already doing
well. The BoU MR then relearns each model for a previously
incorrect cluster using the refined data in that cluster.

Taken together, the combination of multiple, expressive models
learned on highly diverse LO data and selective improvement on
clusters containing troublesome data allows our BoU to improve

the overall effectiveness of SL models for analysis of student
interactions with LOs.

3.1 BoU Essential Components
Here we discuss the basic process and equations used for creating
the clusters and deciding whether they are correct or incorrect.
First, to make use of the BoU notion of clusters to find clusters
with a single distribution that support meaningful analysis, we use
a semi-supervised clustering (SSC) algorithm [9] to cluster the
training data. Briefly, SSC algorithms create clusters based on
both similarity in the training data and additional information
available on how the session instances should be clustered (e.g.,
constraint that two instance must/cannot be clustered together).
For our purpose—to find BoU clusters, the additional information
that we incorporate for each session instance is whether or not the
model predicts the label correctly or incorrectly. The actual SSC
algorithm used is based on the k-Means variant discussed in Kulis
et al. [9]. The modified objective function for BoU-style clusters
𝜋 can be expressed as:

𝑥! −𝑚!
!

!!∈!! + 𝑤!"!!,!!∈!
!.!.!!!!!

!
!!! (1)

where 𝐶 is the set of cannot-link constraints, 𝑤!" is the penalty
cost for violating a constraint involving points 𝑥! and 𝑥! and 𝑙!
refers to the model prediction for 𝑥! s.t. 𝑙! ∈ {correct, incorrect}.
The first term in Eq. 1 is the k-Means objective function that
chooses the closest centroid while the second term is a penalty
function for assigning a data instance deemed correct to a cluster
with incorrect instances (or vice-versa). The training data is
assigned to the cluster that minimizes this objective function. This
predisposes the SSC algorithm to find high similarity clusters that
have either predominately correct or incorrect instances. Note
that clusters with predominately incorrect labels are guaranteed to
contain multiple labels since a single-labeled cluster would be
trivial for the model.

Second, the BoU needs to be able to evaluate each cluster to
decide whether the model for that cluster needs improvements.
Here we propose using a localized estimate of model performance
to decide whether the model needs improvement to accommodate
troublesome data. This estimate can be expressed as:

𝑒𝑠𝑡(𝜋!) = [𝑙! = correct!!∈!!] / 𝜋! (2)

where 𝜋! is the cluster under consideration, 𝑥! is the cluster
member, and 𝑙! refers to the model prediction.

Third, we decide whether each BoU cluster is correct or incorrect.
The decision making strategy here is to make use of a specified
confidence interval to identify correct clusters where
improvement is not needed:

𝑡𝑦𝑝𝑒 𝜋! = correct 𝑖𝑓𝑒𝑠𝑡 𝜋! ≥ 1 − 𝛿
incorrect 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3)

where 𝑒𝑠𝑡 is the localized estimate (Eq. 2) and 𝛿 is the purity
threshold parameter for the confidence interval. Eq. 3 is based on
work in Dasgupta & Hsu [5] where clusters are evaluated using
confidence intervals on the correctly-labeled member data to
decide whether to request further labels for the member data.
Finally, we also create a hierarchy of BoU clusters. The BoU uses
a hierarchical, top-down approach that iteratively (1) splits the
data into clusters and identifies the correct and incorrect clusters,
and (2) selectively improves the models on incorrect clusters.
Specifically, at each layer of the cluster dendrogram, the SSC
algorithm previously described splits the data into BoU clusters

(Eq. 1). Next, each cluster from the split is assigned a type (Eq. 3)
based on the localized estimate (Eq. 2). If the cluster is deemed
incorrect, the specified improvement algorithm (cf., Section 2.2)
runs using only the member data in that cluster and the model is
relearned on that refined data. Correct clusters skip both steps and
instead inherit the model from their parent cluster. After BoU
algorithm stops splitting, the clusters and relearned models at the
leaves of the dendrogram are used to make up the ensemble that
predicts the labels for new data. The leaves are used so that each
training instance belongs to only a single cluster thus avoiding
confusion on cluster membership. Ultimately, this ensemble
predicts the labels for a new instance by selecting the cluster
containing the most similar instances and then using the model
associated with that cluster to predict the label.
An example of this top-down approach is given in Figure 2 with
the type, improvement, and model for each cluster. In this
example, we use FS as the model improvement algorithm that
gives a set of relevant features (𝑓). This figure shows how the
clusters are split and the models are inherited or relearned from
one layer to the next. The original cluster starts with the model
learned on all the data. After the improvement (𝑓1) and relearn
steps (𝑚1), this cluster is split into correct and incorrect clusters.
The correct cluster uses the model from the parent, while the
incorrect cluster goes through model improvement and relearning
before being split again. As shown in the last split, one child can
retain the parent model (𝑚3) while the other goes through the
improvement and relearn steps.

Figure 2. Cluster Splits from our BoU MR along with Type,

FS Improvement (𝒇), and Model (𝒎). The double width
borders denote the final set of clusters used.

3.2 BoU MR Algorithm
Here we present the complete BoU MR algorithm, as shown in
Figure 3. Before we begin, there are two general guidelines we
adopt to decide when to stop splitting the clusters. First, to avoid
breaking up data in a single distribution, we stop splitting when a
correct cluster is found with a high purity in terms of correctly-
labeled instances (i.e., purity stop). Second, to support
meaningful analysis, we stop splitting when clusters lack
sufficient coverage (based on the percentage of the training data
they contain) to learn a detailed model (i.e., coverage stop).

Our algorithm starts with a single cluster with all the training data
and a model trained on that data. The algorithm runs recursively
to create the dendrogram of BoU clusters. First, this algorithm
uses Eq. 3 to compute the type for the BoU cluster (line 1). If the
type is incorrect, the specified improvement algorithm is used on

that BoU cluster’s member data (cf., Section 2.2) and its model is
relearned (lines 2-3). Subsequently, the cluster’s type is updated
based on the relearned model (line 4). If a cluster’s type is now
correct, then there is a purity stop and the algorithm returns the
BoU cluster and its relearned model. Otherwise, the algorithm
splits the training data into two new BoU clusters using the SSC
algorithm previously discussed (Eq. 1). If both the new clusters
meet the minimum coverage requirement (line 6), containing a
percentage of the training data above the threshold 𝜑, then the
algorithm runs recursively on the two new BoU clusters with the
parent’s model. Otherwise, there is a coverage stop due to
insufficient instances and the parent cluster/model is returned.

The BoU MR algorithm runs in polynomial time based on the
number of recorded sessions and, as such, runs fast even as the
number of LOs increases. The actual time complexity is
dependent on the clustering algorithm: O(IDF) where I is the max
iterations, D is the number of session instances, and F is the
number of features. Further, the actual BoU clusters and the SL
models can be computed offline to accommodate thousands of
LOs. The real-time analysis only consists of mapping the new
session to the BoU cluster based on current student interactions
with the LO. This can be done very quickly as the number of
clusters is much less than the total number of recorded sessions.

Some readers may argue that, by looking at the way the clusters
are identified hierarchically, we are actually introducing
overfitting on the data when creating the BoU clusters. But recall
that the BoU MR algorithm is designed to prevent the labels from
having too much influence on the BoU clusters: its clusters are
created based on both feature similarity and labels, and not just
labels alone. Additionally, the coverage stop also helps in this
regard by acting as a regularizer and rejecting small clusters.

𝐶 = 𝑆𝑖𝑛𝑔𝑙𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑤𝑖𝑡ℎ 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎
𝑚 = 𝑀𝑜𝑑𝑒𝑙 𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑜𝑛 𝐶
𝐼 = 𝑀𝑜𝑑𝑒𝑙 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
𝑆 = 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑠𝑦𝑠𝑡𝑒𝑚
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝐵𝑜𝑈𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝐶,𝑚 𝒓𝒆𝒕𝒖𝒓𝒏𝒔 𝐶′ 𝑎𝑛𝑑 𝑚′
(1) 𝒊𝒇 𝑡𝑦𝑝𝑒 𝐶 == 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 // check purity stop
(2) 𝐶! ← 𝑖𝑚𝑝𝑟𝑜𝑣𝑒(𝐶, 𝐼)
(3) 𝑚′ ← 𝑟𝑒𝑙𝑒𝑎𝑟𝑛(𝐶′, 𝑆)
(4) 𝒊𝒇 𝑡𝑦𝑝𝑒 𝐶′ == 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 // check purity stop
(5) 𝐶!,𝐶! ← 𝑆𝑆𝐶(𝐶′, 2) // split the cluster
(6) 𝒊𝒇 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝐶! > 𝜑 𝒂𝒏𝒅
 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝐶! > 𝜑 // check coverage stop
(7) 𝐵𝑜𝑈𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔(𝐶!,𝑚′)
(8) 𝐵𝑜𝑈𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔(𝐶!,𝑚′)
(9) 𝒆𝒏𝒅 𝒊𝒇
(10) 𝒆𝒏𝒅 𝒊𝒇
(11) 𝒆𝒍𝒔𝒆
(12) 𝐶′ ← 𝐶
(13) 𝑚′ ← 𝑚

Figure 3. BoU MR Algorithm.

4. IMPLEMENTATION AND RESULTS
Here we start by describing the experimental setup including the
learning object (LO) datasets. In Section 4.1, we provide results
demonstrating the effectiveness of using the BoU to learn multiple
models on the LO datasets (Objective 1). In Section 4.2, we
provide results for using the BoU to improve existing models with
feature selection and noise correction algorithms (Objective 2).

First, we use three widely studied SL systems in the experiments
below: artificial neural networks (ANNs), support vector
machines (SVMs), and decision trees (DTs). We use the Java

implementations for all three from the Weka library with the
parameters values suggested in Witten et al. [19]. The BoU MR
algorithm uses a Java implementation for the semi-supervised
clustering algorithm based on Kulis et al. [9]. We use of 0.1 for
the purity threshold (𝛿) and a 0.1 for the coverage threshold (𝜑)
both fine-tuned based on empirical results. Additionally, this
clustering algorithm normalizes the student interactions features
to the same range before creating the clusters. For the model
improvement algorithms, we use a Java implementation of Lasso
feature selection based on the R glmnet package [7]. We use the
C++ implementation of LSVM noise correction from the FaLKM-
lib package [17]. We use the values suggested in Segata [17] for
the numerous parameters for LSVM.

Second, the intelligent learning object guide (iLOG) LO datasets
used in the experiments are based on a three year deployment of
16 learning objects to introductory CS courses at the University of
Nebraska, Lincoln [11]. During this deployment, there were over
5000 separate sessions between students and LOs. Large amounts
of data were collected including (1) student interactions with the
LOs during the tutorial, exercise, and assessment components
(e.g., time spent on a page), (2) student demographic data (e.g.,
gender), (3) scores on the CS placement test [12], and (4) survey
responses to both MSLQ and evaluation Likert surveys. The
iLOG datasets distill the data collected into the instances, features,
and labels necessary for supervised learning. Each instance
represents a student-LO session with the features summarized in
Table 1. The label for an instance is whether or not students
passed the LO assessment component (i.e., if a student achieves ≥
70% then she passes, otherwise she fails). As shown in Table 1,
there are relatively few changes in the features collected from one
year to the next. The increase in instances is the result of
deployment to a larger number of courses.

We use the iLOG datasets in the experiments because they
exemplify the aforementioned problems with SL systems in the
following manner. First, the LOs were deployed to students in
introductory CS courses with highly diverse backgrounds (e.g.,
CS majors, nonmajors, etc.) resulting in multiple distributions in
the resulting datasets. Second, the LOs were deployed online
using the Moodle Learning Management System and students
were required to take the LOs and part of their course grades
(5%). The difficulty of writing LO content suitable for all
students and the online deployment, taken together, resulted in
both irrelevant features and noise in the data tracked. For
example, students trying to achieve high assessment scores
without spending time on the tutorial content. Thus, these
datasets are prime candidates for using FS and NC.

Table 1. Summary of the iLOG datasets in the experiments.

Features iLOG 2008 iLOG 2009 iLOG 2010
Metadata 5 5 5
Tutorial 10 10 10
Exercises 20 20 16
Assessment 10 10 10
Student Demo 9 9 9
Placement 16 16 16
MSLQ 47 45 50
Evaluation 10 9 9
Total 127 124 125
Instances iLOG 2008 iLOG 2009 iLOG 2010
Fail 426 738 1228
Pass 604 1131 2215

Total 1030 1869 3443

Finally, the experiments below compare the single model with the
multiple models from the BoU. For all experiments, we provide
both the test and F1 accuracy results based on ten-fold cross
validation. In Section 4.1, we compare a single model to the BoU
models learned using three SL systems (ANN, SVM, and DTs).
In Section 4.2, we compare a single model to the BoU models
after refining the data using FS and NC. This results in six (FS or
NC × ANN, SVM, or DT) configurations.

4.1 Multiple Model Investigation
Table 2 provides the test and F1 accuracy, on the iLOG datasets,
for single model and the BoU multiple models. The BoU multiple
models provide higher test and F1 accuracy than a single model
on all three iLOG datasets. These results are reasonable given
that the BoU can break up the iLOG dataset to better
accommodate data from multiple distributions, for example, LOs
deployed to different courses, students with different majors, etc.

To probe further into how the BoU multiple models accommodate
the iLOG data, Figure 4 provides the actual decision trees on the
iLOG 2008 dataset created using a single model and multiple
models based on three clusters. (The trees for the iLOG 2009 and
2010 datasets are similar.) As shown in Figure 4, the trees learned
on Clusters 1-2 have a very different idea of what features are the
most important for predicting the labels (i.e., at the root) than the
a single tree learned on all the data. By using these diverse
trees—i.e., models, the BoU MR can better model the separate
distributions in the iLOG datasets than forcing a single model to
accommodate all the data. At the same time, the BoU clusters
contain sufficient data to allow for fully expressive trees on the
iLOG dataset. The proof of this is that Cluster 3 actually learns
the same tree as the single model. Taken together, the capability
to find diverse trees while retaining the same tree as the single
model helps explain the BoU MR benefits to the test and F1
accuracy results. Additionally, BoU models learned on the local
data provide more specific and detailed analyses than using a
single model on all the data. These analyses can uncover very
interesting connections in the data that would otherwise be
hopelessly buried in the single model such as that between
evaluation survey questions and gender in Cluster 1. Overall,
these results help establish the effectiveness of BoU multiple
models for LO analysis.

Table 2. Test and F1 accuracy for a single model and BoU
multiple models. Grey cells indicate higher test accuracy

while (*) indicates significantly higher accuracy (t-test, p <=
0.05). The average number of BoU clusters is also given.

Dataset Test Accuracy F1 Accuracy Ave. #
iLOG 2008 Single BoU Single BoU Clusters
ANN 0.69 0.74* 0.63 0.67 1.90
SVM 0.68 0.73* 0.64 0.69* 2.10
DT 0.72 0.73 0.68 0.68 4.60
iLOG 2009 Single BoU Single BoU Clusters
ANN 0.69 0.74* 0.60 0.67* 1.90
SVM 0.67 0.69* 0.58 0.61* 2.00
DT 0.62 0.65 0.52 0.56 2.00
iLOG 2010 Single BoU Single BoU Clusters
ANN 0.70 0.72* 0.56 0.61 3.20
SVM 0.69 0.71 0.57 0.62* 3.60
DT 0.65 0.67* 0.50 0.51 2.30

Figure 4. Decision trees on the iLOG 2008 dataset created using a single model and multiple models based on BoU clusters.

On the other hand, as shown in Table 2, the accuracy (even for
BoU multiple models) is relatively low on all three iLOG datasets
(e.g., test accuracy in the 60s for DTs). As alluded to earlier,
these datasets contain both irrelevant features and noise both of
which are problematic for SL systems in general. In the next
section, we show how the BoU MR can use feature selection and
noise correction algorithms to break through this ceiling and
improve both test and F1 accuracy.

4.2 Model Improvement Investigation
4.2.1 Lasso Feature Selection
Table 3 provides the test and F1 accuracy for the single model and
the BoU multiple models both improved using the Lasso feature
selection on the iLOG datasets.

Table 3. Test and F1 accuracy for a single model and BoU
multiple models both using Lasso feature Selection (FS). Grey

cells indicate higher test accuracy while (*) indicates
significantly higher accuracy (t-test, p <= 0.05). The average

number of BoU clusters is also given.

Dataset Test Accuracy F1 Accuracy Ave. #
iLOG 2008 Single BoU Single BoU Clusters
ANN+FS 0.72 0.75* 0.65 0.69* 2.00
SVM+FS 0.72 0.74* 0.66 0.70* 2.00
DT+FS 0.74 0.75 0.70 0.71 2.43
iLOG 2009 Single BoU Single BoU Clusters
ANN+FS 0.71 0.76* 0.63 0.68* 2.00
SVM+FS 0.71 0.70 0.63 0.62 2.00
DT+FS 0.66 0.69* 0.55 0.60* 2.00
iLOG 2010 Single BoU Single BoU Clusters
ANN+FS 0.73 0.74 0.58 0.60 2.80
SVM+FS 0.72 0.72 0.61 0.61 3.30
DT+FS 0.67 0.70* 0.52 0.55 2.30

First, we observe that using Lasso on the training data allows
nearly across-the-board increases in test and F1 accuracy for both

single and BoU multiple models. Additionally, the increases in
accuracy reported between Tables 2 and 3 are generally
statistically significant (t-test, p <= 0.05).

To explain, the Lasso feature selection identifies and removes
irrelevant features from the training data. Since these features are
unimportant to the actual label, had they been incorporated into
the model by the SL system, they would tend to confuse and
distort the model lowering predictive accuracy and making the
model less useful for analysis of student learning outcomes.

Second, using Lasso, we observe that the BoU multiple models
still provide generally higher test and F1 accuracy than does a
single model on all three iLOG datasets. As previously discussed
the BoU retains the capability to break up the iLOG datasets and
learn a separate model on each distribution. The BoU also has the
capability to further improve and “fine-tune” these models using
Lasso selectively only on the clusters that are deemed to contain
troublesome data.

To probe further into how the BoU uses Lasso selectively to
improve the models, Table 4 provides an example on the iLOG
2009 dataset of the number of relevant features used for the single
model and separately for the models in BoU clusters. (The results
for the iLOG 2008 and 2010 datasets are similar). As shown in
Table 4, for a single model, Lasso removes almost half the
features belonging to the exercise and MSLQ categories while
mostly retaining features in the other categories. Lasso on BoU
clusters gives more diverse results on the features removed.
Lasso on cluster 1 removes additional features from the tutorial
and assessment categories compared to that for the single model.
Next, Lasso on cluster 2 removes a similar number of features as
Lasso for the single model. Lastly, the BoU MR does not use
Lasso at all on cluster 3 as this cluster is deemed free of
troublesome data. Our algorithm prevents Lasso from removing
locally relevant features just because they are irrelevant on the rest
of the training data. This, in turn, prevents the model from being
distorted by removing relevant features necessary for predicting
the learning outcome for this cluster. Taken together, the

capability to use Lasso selectively—thus allowing the relevant
features to be customized for each cluster—helps explain the BoU
benefits to the test and F1 accuracy results. Additionally, Lasso
used separately for models provides additional insights that do not
show up when Lasso is used for a single model; for example,
suggesting that the students with sessions in cluster 1 are getting
less out of the LO tutorial and assessment. Overall, these results
help establish that BoU can further improve the multiple models
for LO analysis using Lasso.

Note that the capability to use Lasso feature selection to improve
models is important for educational data mining (EDM) in general
since EDM datasets often contain numerous irrelevant features.
However, these datasets are also often highly diverse forcing
Lasso to make difficult decisions to retain features as relevant that
are irrelevant in many areas or remove features because they are
only relevant to a minority of the training data. The advantage of
using BoU is that its clusters allow for multiple, expressive
models. Recall the discussion for Table 4 where Lasso found very
different feature vectors when used on different clusters.
Combined with the identical decision trees previously discussed
(cf., Figure 4), this supports our claim that BoU clusters contain
sufficient data to allow for more effective utilization of Lasso
separately on the data in each cluster.

Table 4. Number of relevant features selected by Lasso feature
run on all the training data (Single) and run separately on the
three BoU clusters (C1-C3). The total number of features is

also included for reference (2009).

Features 2009 Single C1 C2 C3
LO Data 5 5 5 4 5
Tutorial 10 7 3 8 10
Exercises 20 11 9 11 20
Assessment 10 7 6 9 10
Student Demo 9 9 6 6 9
Placement 16 13 9 10 16
MSLQ 45 22 19 24 45
Evaluation 9 9 6 6 9
Total 124 83 63 78 124

4.2.2 LSVM Noise Correction
Table 5 provides the test and F1 accuracy results, on the iLOG
datasets, for the single model and the BoU multiple models both
using the LSVM noise correction.

Table 5. Test and F1 accuracy for a single model and BoU
multiple models both using LSVM noise correction (NC).
Grey cells indicate higher test accuracy while (*) indicates

significantly higher accuracy (t-test, p <= 0.05). The average
number of BoU clusters is also given.

Dataset Test Accuracy F1 Accuracy Ave. #
iLOG 2008 Single BoU Single BoU Clusters
ANN+NC 0.73 0.75* 0.65 0.69 2.00
SVM+NC 0.72 0.74 0.68 0.70* 4.10
DT+NC 0.73 0.75* 0.68 0.71 4.00
iLOG 2009 Single BoU Single BoU Clusters
ANN+NC 0.72 0.75* 0.56 0.67* 2.00
SVM+NC 0.70 0.70 0.50 0.62* 2.00
DT+NC 0.64 0.69* 0.36 0.59* 2.00
iLOG 2010 Single BoU Single BoU Clusters
ANN+NC 0.71 0.75* 0.52 0.61* 4.10
SVM+NC 0.72 0.70 0.49 0.60 3.50
DT+NC 0.67 0.70* 0.36 0.54* 2.50

First, as with Lasso, using LSVM noise correction allows nearly
across-the-board improvements in accuracy. To explain, LSVM
improves the model by flagging potentially noisy instances whose
labels (i.e., pass/fail) do not match those in nearby instances with
similar features. These noisy instances would otherwise distort
the model since they provide contradictory labels and, thus, lower
predictive accuracy.

Second, using LSVM, on all three datasets the BoU multiple
models provide generally higher test and F1 accuracy than a
single model. Again, the BoU can “fine-tune” these models using
LSVM selectively only on the clusters with troublesome data.
Now, as a whole, the total number of instances flagged as noisy
by LSVM was comparable when used on the all training data and
selectively on the BoU clusters. However, LSVM for multiple
models had two advantages. First, by breaking up the training
data, the BoU MR simplified the task of distinguishing between
instances that actually have noisy labels and those in close
proximity to instances with truly different labels. Second, by
using LSVM selectively, our algorithm was able to use LSVM
aggressively on clusters where the model was struggling, such as
clusters containing sessions where students tried to game the
system, without worrying about damaging clusters where the
model was already doing well by removing training data
mistakenly deemed noisy. Overall, these results help establish that
BoU MR can further improve the multiple models for LO analysis
using LSVM.
Once again, using LSVM to improve models is important on
EDM datasets that contain relatively large amounts of noise.
However, LSVM used only once on a highly diverse datasets may
struggle to find concentrations of label noise and could end up—
in its pursuit of noise to correct—flagging data near the decision
boundary as noisy. Again, BoU MR helps in this regard by
allowing for more effective LSVM focusing on the clusters
containing large amounts of noise.

5. CONCLUSIONS AND FUTURE WORK
Supervised learning (SL) systems have been used for the analysis
of student interactions with learning objects (LOs). SL systems
learn a model from previously collected training data that can
accurately predict the labels for new data assuming that the
training data comes from a single distribution and is relatively
clean. Unfortunately, LO data is highly diverse from multiple
distributions and likely to contain noise which can limit the
effectiveness of single models. Learning multiple models and
improving models on troublesome training data is intuitively a
good solution. However, identifying areas that capture only data
from a single distribution without fitting the noise is far from
trivial. We propose a new BoU meta-reasoning (MR) algorithm
that starts by breaking up the data into clusters designed to
separate troublesome data (incorrect cluster) from data where the
model is doing well (correct cluster). Our algorithm then uses a
separate model for each cluster. On the incorrect clusters, our
algorithm takes steps to improve the model by using feature
selection or noise correction on the training data before relearning
the model. We have shown empirically on three LO datasets that
the BoU multiple models allow for higher predictive accuracy
than single models. Furthermore, we have shown that the BoU
MR can further improve the models for LO analysis using feature
selection and noise correction algorithms. Our results also
suggest that BoU MR may also be able improve feature selection
and noise correction algorithms―both important for educational
data mining. Feature selection used separately on the BoU
clusters makes it easier to identify features that are relevant only

on certain areas. Further, noise correction focused on the clusters
makes it easier to remove noise instead of accidently disrupting
the decision boundary.

In this paper, we have established effectiveness of using the BoU
multiple models. In the future, we intend to advance our BoU MR
down two different lines of research. First, we intend to further
investigate how the BoU multiple models can provide
independent, high-level guidelines on which type of student
interactions are associated with the learning outcomes. We have
already taken the first step by showing that multiple models allow
for diverse decision trees. The next step is the analysis of the
ANN and SVM models using rules extraction, sensitivity analysis,
or inverse classification techniques [3]. This research has strong
pedagogical implications for students. Such analysis could, in
real-time, inform students about the probable success/failure of
their study strategies, for example, warning a student during the
LO that she may not be spending enough time on the tutorial
section. Second, we intend to expand the use of BoU models to
other educational data mining (EDM) areas such as intelligent
tutoring systems (ITS) and virtual learning platforms (VLP).
These areas share some of the same properties that BoU is
designed to address (e.g., noise) but have additional properties not
found in LOs (e.g., “bags” of instances in VLP). To this end, we
intend to evaluate how the BoU models stack up against previous
work on learning accurate models in these areas (e.g.,
Rajibussalim [14] for ITS; Zafra & Ventura [20] for VLP).

6. REFERENCES
[1] Alharbi, A., et al. 2011. An Investigation into the Learning

Styles and Self-Regulated Strategies for Computer Science
Students. ASCILITE, 36-46.

[2] Balatsouka, P., Morris, A., O’Brien, A. 2008. Learning
Objects Update: Review and Critical Approach to Content
Aggregation. Educational Technology & Society, 11 (2),
119-130.

[3] Barbella, D., et al. 2009. Understanding Support Vector
Machine Classifications via a Recommender System-Like
Approach. DMIN, 305-311.

[4] Bernardini, A., Conati, C. 2010. Discovering and
Recognizing Student Interaction patterns in Exploratory
Learning Environments. ITS, 125-134.

[5] Dasgupta, S., Hsu, D. 2008. Hierarchical Sampling for
Active Learning. ICML, 208-215, 2008.

[6] de Raadt, M., Simon. 2011. My Students Don’t Learn the
Way I Do. ACE, 114. 105-112.

[7] Freidman, J., Hastie, T., Tibshirani, R. 2010. Regularization
Paths for Generalized Linear Models via Coordinate Descent.
Journal of Statistical Software, 33 (1), 1-22.

[8] Kiu, C-C. Lee, C-S. 2007. Learning Object Reusability and
Retrieval through Ontological Sharing: A Hybrid
Unsupervised Data Mining Approach. ICALT, 548-550.

[9] Kulis, B., Basu, S., Dhillon, I., Mooney, R. 2009. Semi-
Supervised Graph Clustering: A Kernel Approach. Machine
Learning, 74 (1), 1-22.

[10] Liu, H., Yu, L. 2005. Towards Integrating Feature Selection
Algorithms for Classification and Clustering. IEEE Trans.
On Knowledge and Data Engineering, 17 (4), 491-502.

[11] Miller, L. et al. 2011. Evaluating the Use of Learning Objects
in CS1. SIGCSE, 57-62.

[12] Nugent, G., Soh, L-K., Samal, A., Lang, J. 2006. A
Placement Test for Computer Science: Design,
Implementation, and Analysis. Computer Science Education,
16 (1), 19-36.

[13] Pechenizkiy, M., et al. 2006. Class Noise and Supervised
Learning in Medical Domains: The effect of feature
extraction, IEEE CBMS, 708-113.

[14] Rajibussalim. 2010. Mining Students’ Interaction Data from
a System that Support Learning by Reflection. EDM, 249-
256.

[15] Romero, C., Ventura, S., Espejo, P., Hervas, C. 2008. Data
Mining Algorithms to Classify Students. EDM, 187-191.

[16] Romero, C., Ventura, S. 2010. Educational Data Mining; A
Review of the State of the Art. IEEE Trans. On Systems,
Man, and Cybernetics, 40 (6), 601-618.

[17] Segata, N. 2009. FaLKM-lib v1.0: A Library for Fast Local
Kernel Machines. University of Trento, Italy.

[18] Segata, N., Blanzieri, E. Fast and Scalable Local Kernel
Machines. 2010. JMLR, 1883-1926.

[19] Witten, I., Frank, E., Hall, M. 2011. Data Mining: Practical
Machine Learning Tools and Techniques. Elsevier.

[20] Zafra, A., Ventura, S. 2009. Predicting Student Grades in
Learning Management Systems with Multiple Instance
Genetic Programming. EDM, 309-318.

