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ABSTRACT 
Supervised learning (SL) systems have been used to automatically 
learn models for analysis of learning object (LO) data.  However, 
SL systems have trouble accommodating data from multiple 
distributions and “troublesome” data that contains irrelevant 
features or noise—all of which are relatively common in highly 
diverse LO data.  The solution is to break up the available data 
into separate areas and then take steps to improve models on areas 
containing troublesome data.  Unfortunately, finding these areas 
in the first place is a far from trivial task that balances finding a 
single distribution with having sufficient data to support 
meaningful analysis.  Therefore, we propose a BoU meta-
reasoning (MR) algorithm that first uses semi-supervised 
clustering to find compact clusters with multiple labels that each 
support meaningful analyses.  After clustering, our BoU MR 
algorithm learns a separate model on each such cluster.  Finally, 
our BoU MR algorithm uses feature selection (FS) and noise 
correction (NC) algorithms to improve models on clusters 
containing troublesome data.  Our experiments, using three 
datasets containing over 5000 sessions of student interactions with 
LOs, show that multiple models from BoU MR achieve more 
accurate analyses than a single model.  Further, FS and NC 
algorithms are more effective at improving multiple models than a 
single model.   
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1. INTRODUCTION 
Learning objects (LOs) are independent and self-standing units of 
learning content that are predisposed to reuse in multiple 
instructional contexts [2].  An example of an LO is a self-
contained lesson on recursion with a tutorial, interactive exercises, 
and assessment questions.  In general, the analysis of student 
interactions with LOs is important for many groups including 
students, instructors, researchers, and content developers [16].  
First, for students, such analyses can improve student study 
strategies and allow for more self-regulated learning [1].  Second, 

instructors can use such analyses to choose appropriate LOs for 
their students [8].  Third, such analyses can help researchers and 
content developers investigate which student interactions are 
associated with the different learning outcomes [6].   

One previously used approach for the analysis of student 
interactions with LOs is supervised learning (SL) systems [16].  
SL systems learn a model from previously recorded sessions of 
student interactions (features) and learning outcomes (labels) that 
can predict the learning outcome for a specific session of student 
interactions with a high degree of accuracy. 
SL systems have one main advantage over other approaches (e.g., 
statistical analysis): they learn the model automatically without 
the need for direct human intervention.  First, learning the model 
can help students and instructors.  Such a model predicts the 
learning outcome for a student in real-time based on the observed 
student interactions [15].  Such predictions can allow the LO to 
adjust the content presented to a student while he or she is taking 
the LO and provide real-time updates to instructors on student 
mastery of LO content.  Second, a model learned automatically 
without human intervention provides independent, high-level 
guidelines on which types of student interactions are associated 
with the learning outcomes [4].  Such guidelines can serve as a 
useful starting point for further investigation by researchers and 
inform content developers on which parts of the LO may need to 
be revised. 

However, SL systems have some potential problems which can 
limit the effectiveness of their models for analysis:   

First, SL systems assume that the training data from previously 
recorded sessions comes from a single underlying distribution.  
Unfortunately, such training data is likely to come from multiple 
distributions and be highly diverse due to a wide variety of factors 
including students with different backgrounds, LOs with different 
content, instructors providing varying amounts of support for the 
LO content, etc.  These factors make it difficult to learn a single 
model which can “fit” all this highly diverse training data and 
still achieve high accuracy.  

Second, SL systems assume that the training data available is 
relatively “clean” being free of student interactions unrelated to 
the learning outcomes (i.e., irrelevant features) and errors in the 
student interactions and learning outcomes provided (i.e., noise).  
Unfortunately, such training data is all too likely to contain both 
irrelevant features and noise.  Irrelevant features are relatively 
common when researchers are uncertain which student 
interactions are relevant and, thus, record as many student 
interactions as possible since they cannot retroactively record 
additional interactions.  Noise is relatively common when 
developers fail to create assessment questions appropriate for all 

 

 



students and when students are motivated to “game the system” to 
achieve a certain learning outcome (e.g., a good grade on the LO).  
These factors make it difficult for a single model to achieve high 
accuracy on areas containing large amounts of “troublesome” 
training data with irrelevant features and/or noise. 

Intuitively, we could address these problems and improve the 
effectiveness of SL systems for analysis by using an approach 
which first breaks up the training data into areas―each containing 
similar student interactions―and learns a separate model on each 
area.  We could then identify which areas consistently contain 
“troublesome” training data and take steps to improve the models 
in those areas. 

However, breaking up the training data and finding areas with 
“troublesome” training data are far from trivial tasks.  As 
previously mentioned, the training data collected is likely to be 
highly diverse.  Such diversity makes it difficult for an approach 
to find suitable areas balancing two factors.  First, each area 
should contain similar data from a single distribution.  Second, 
each area should contain sufficient training data to support 
meaningful analysis.  Further, the model learned on an area is 
likely to fit the irrelevant features and/or noise in that area which 
can make it difficult to identify the areas containing troublesome 
training data. 

Therefore, we propose new meta-reasoning algorithm called the 
Boundary of Use (BoU MR) to improve the effectiveness of SL 
models for analysis of student interactions with LOs.  Our 
algorithm first uses an iterative process, based on semi-supervised 
clustering, which breaks up the training data in different ways 
until suitable areas are found.  These suitable areas, which we dub 
BoU clusters, include training data with similar student 
interactions from a single distribution which, nevertheless, have 
multiple learning outcomes to support meaningful analysis.  
After clustering, the BoU MR learns a separate model for each of 
these clusters.  Then, our algorithm evaluates each of these BoU 
clusters using a localized estimate to detect troublesome training 
data (e.g., feature selection for irrelevant features).  Finally, our 
algorithm takes steps to selectively improve the models for the 
difficult BoU clusters containing troublesome training data; for 
example, removing irrelevant features and relearning the model 
on the “refined” training data. 

In the following, we will investigate the BoU MR using two 
objectives.  Objective 1 is to investigate the impact of breaking up 
the training data on LO datasets using three types of SL systems 
to learn the models:  decision trees, support vector machines, and 
artificial neural networks.  We compare the accuracy for a single 
model with that for multiple models from the BoU MR.  Objective 
2 is to investigate the effectiveness of BoU MR for improving its 
models on difficult BoU clusters.  For this objective, we consider 
both feature selection and noise correction algorithms.  We 
compare the accuracy to the BoU MR that uses these algorithms 
to help selectively relearn the models for difficult BoU clusters to 
a single model relearned after the same algorithm is applied to all 
the training data. 

The rest of the paper is organized as follows.  Section 2 provides 
background on SL systems and model improvement algorithms 
used in our study.  Section 3 describes our BoU meta-reasoning 
algorithm in more detail.  Section 4 discusses the experimental 
setup and results.  Finally, we conclude and outline future work. 

2. BACKGROUND 
Here we discuss background on the SL systems and model 
improvement algorithms.  Discussion of the LO datasets is 
deferred until Section 4. 

2.1 Supervised Learning (SL) Systems 
We consider three types of SL systems in the experiments below.  
To help demonstrate the effectiveness of our meta-reasoning 
algorithm for SL systems in general, we chose three widely used 
SL systems with very different properties.  First, artificial neural 
networks (ANNs) learn a vector of weights on features in the 
dataset to choose the labels for new data [19].  ANNs consist of 
multiple nodes connected to threshold functions or to additional 
layers of nodes.  ANNs are updated iteratively (e.g., using 
gradient descent) until they correctly predict the labels for the 
training data.  Second, decision trees (for classification) learn a 
tree data structure to generate the labels for new data [19].  The 
decision tree first selects one feature as the root node and adds an 
edge for every label value.  The decision tree continues to add 
nodes and edges recursively until all the training data has been 
sorted into groups with similar labels.  The leaves are then set to 
the common label.  Third, support vector machines (SVMs) learn 
a hyperplane to separate the training data such that data on the 
same side mostly have the same label [19].  SVMs first use a 
kernel function to transform all values for the dataset into higher 
dimensional space where they are linearly separable.  Then, the 
SVM attempts to maximize the distance (i.e., margin) between the 
training data with different labels. 

2.2 Model Improvement Algorithms 
We consider two types of algorithms for improving the models in 
the experiments below: feature selection and noise correction. 

First, feature selection (FS) algorithms find the subset of relevant 
features for the dataset using an evaluation criterion based on 
filters or wrappers.  Filters evaluate the relevant features using 
only the intrinsic properties of the data whereas wrappers use the 
accuracy of the SL system model [10].  To avoid overfitting 
common to wrapper-based feature selection, we use a state-of-the-
art filter-based FS algorithm called Lasso in the experiments 
below.  Lasso FS uses a shrinkage method for FS which maintains 
a coefficient for each of feature (Hastie et al., 2011).  Lasso 
computes these coefficients by using a pairwise coordinate 
descent approach to minimize the sum of squares subject to a 
constraint on the coefficients.  Features whose coefficients have 
shrunk to zero are considered to be irrelevant and removed 
entirely from the dataset. 

Second, noise correction (NC) algorithms are designed to identify 
noisy labels and then remove or replace them.  There are two 
general types of noise correction algorithms [13]: (1) noise 
tolerant correction modifies existing SL systems to better 
accommodate noisy labels (e.g., rule-post pruning for decision 
trees) and (2) noise filtering detects noisy labels in the training 
data before the model is learned.  We use both types of noise 
correction algorithms in the experiments below.  We use decision 
trees rule post-processing and SVMs with soft margins both 
designed to accommodate noisy labels [19] for the former and a 
state-of-the-art algorithm called LSVM [18] for the latter.  LSVM 
uses a hybrid approach for NC that starts by using a k-Nearest 
Neighbor algorithm to select the neighborhood of similar data 
around a given instance.  LSVM then learns a local SVM on that 
local neighborhood (hence the name).  Based on the maximal 
margin principle, if the LSVM incorrectly predicts the label for 
that instance, then the label is deemed noisy.  Furthermore, to 



avoid accidently injecting noise into the training data, in our 
experiments, noisy labels are removed rather than being replaced. 

3. METHODOLOGY 
The central idea for the BoU meta-reasoning (MR) algorithm is to 
first break up the training data into special BoU clusters 
containing sessions with similar student interactions (i.e., 
instances) from a single distribution.  At the same time, the cluster 
should sufficient data with multiple learning outcomes (i.e., 
labels) to support a meaningful analysis in the form of a SL 
model.  In a very real sense, BoU clusters allow us to “zoom in” 
and get a more detailed analysis on highly diverse LO data than 
could be obtained using all the data together. 
Next, our algorithm learns a separate model based on the training 
data in each BoU cluster.  By using only the data in a single 
cluster, BoU MR guarantees that each model is more detailed and 
expressive on member data than a single model trained on all data 
together.  After learning the separate models, our algorithm uses a 
localized estimate of the accuracy for each model by comparing 
the predicted and actual labels for the cluster members:  correct 
when the predicted matches the actual; otherwise, incorrect.  
Based on the predominant correct/incorrect label, BoU MR thus 
assigns each BoU cluster a type: correct BoU clusters where the 
model is doing well and incorrect clusters where the model is 
struggling on troublesome data.   

Figure 1 provides an example of four such BoU clusters.  In this 
figure, the clear circles are correct training data instances and grey 
circles are incorrect instances.  Clusters 1 and 2 contain only 
correct instances and are thus flagged as correct.  Note that 
Cluster 1 contains only a single label while Cluster 2 contains 
both labels—both are considered correct based on the localized 
estimate.  Clusters 3 and 4 are flagged as incorrect since they 
contain a mix of both correct and incorrect instances. 

 
Figure 1. Example BoU Clusters.  The grey data instances are 

those on which the model failed to predict the correct label. 
After identifying the aforementioned clusters, BoU MR takes 
steps to improve the models for incorrect clusters.  This is done by 
using either a feature selection or noise correction algorithm 
selectively on only the incorrect clusters.  In this way, the models 
are left alone on correct clusters where they are already doing 
well.  The BoU MR then relearns each model for a previously 
incorrect cluster using the refined data in that cluster. 

Taken together, the combination of multiple, expressive models 
learned on highly diverse LO data and selective improvement on 
clusters containing troublesome data allows our BoU to improve 

the overall effectiveness of SL models for analysis of student 
interactions with LOs. 

3.1 BoU Essential Components 
Here we discuss the basic process and equations used for creating 
the clusters and deciding whether they are correct or incorrect.  
First, to make use of the BoU notion of clusters to find clusters 
with a single distribution that support meaningful analysis, we use 
a semi-supervised clustering (SSC) algorithm [9] to cluster the 
training data.  Briefly, SSC algorithms create clusters based on 
both similarity in the training data and additional information 
available on how the session instances should be clustered (e.g., 
constraint that two instance must/cannot be clustered together).  
For our purpose—to find BoU clusters, the additional information 
that we incorporate for each session instance is whether or not the 
model predicts the label correctly or incorrectly.  The actual SSC 
algorithm used is based on the k-Means variant discussed in Kulis 
et al. [9].  The modified objective function for BoU-style clusters 
𝜋 can be expressed as: 

𝑥! −𝑚!
!

!!∈!! + 𝑤!"!!,!!∈!
!.!.!!!!!

!
!!!    (1) 

where 𝐶 is the set of cannot-link constraints, 𝑤!" is the penalty 
cost for violating a constraint involving points 𝑥! and 𝑥! and 𝑙! 
refers to the model prediction for 𝑥!   s.t.  𝑙! ∈ {correct, incorrect}.  
The first term in Eq. 1 is the k-Means objective function that 
chooses the closest centroid while the second term is a penalty 
function for assigning a data instance deemed correct to a cluster 
with incorrect instances (or vice-versa).  The training data is 
assigned to the cluster that minimizes this objective function.  This 
predisposes the SSC algorithm to find high similarity clusters that 
have either predominately correct or incorrect instances.  Note 
that clusters with predominately incorrect labels are guaranteed to 
contain multiple labels since a single-labeled cluster would be 
trivial for the model. 

Second, the BoU needs to be able to evaluate each cluster to 
decide whether the model for that cluster needs improvements.  
Here we propose using a localized estimate of model performance 
to decide whether the model needs improvement to accommodate 
troublesome data.  This estimate can be expressed as: 

𝑒𝑠𝑡(𝜋!) = [𝑙! = correct!!∈!! ]  /   𝜋!   (2) 

where 𝜋! is the cluster under consideration, 𝑥! is the cluster 
member, and 𝑙! refers to the model prediction.   

Third, we decide whether each BoU cluster is correct or incorrect.  
The decision making strategy here is to make use of a specified 
confidence interval to identify correct clusters where 
improvement is not needed: 

𝑡𝑦𝑝𝑒 𝜋! = correct  𝑖𝑓𝑒𝑠𝑡 𝜋! ≥ 1 − 𝛿
incorrect  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3) 

where 𝑒𝑠𝑡 is the localized estimate (Eq. 2) and 𝛿 is the purity 
threshold parameter for the confidence interval.  Eq. 3 is based on 
work in Dasgupta & Hsu [5] where clusters are evaluated using 
confidence intervals on the correctly-labeled member data to 
decide whether to request further labels for the member data. 
Finally, we also create a hierarchy of BoU clusters.  The BoU uses 
a hierarchical, top-down approach that iteratively (1) splits the 
data into clusters and identifies the correct and incorrect clusters, 
and (2) selectively improves the models on incorrect clusters.  
Specifically, at each layer of the cluster dendrogram, the SSC 
algorithm previously described splits the data into BoU clusters 



(Eq. 1).  Next, each cluster from the split is assigned a type (Eq. 3) 
based on the localized estimate (Eq. 2).  If the cluster is deemed 
incorrect, the specified improvement algorithm (cf., Section 2.2) 
runs using only the member data in that cluster and the model is 
relearned on that refined data.  Correct clusters skip both steps and 
instead inherit the model from their parent cluster.  After BoU 
algorithm stops splitting, the clusters and relearned models at the 
leaves of the dendrogram are used to make up the ensemble that 
predicts the labels for new data.  The leaves are used so that each 
training instance belongs to only a single cluster thus avoiding 
confusion on cluster membership.  Ultimately, this ensemble 
predicts the labels for a new instance by selecting the cluster 
containing the most similar instances and then using the model 
associated with that cluster to predict the label. 
An example of this top-down approach is given in Figure 2 with 
the type, improvement, and model for each cluster.  In this 
example, we use FS as the model improvement algorithm that 
gives a set of relevant features (𝑓).  This figure shows how the 
clusters are split and the models are inherited or relearned from 
one layer to the next.  The original cluster starts with the model 
learned on all the data.  After the improvement (𝑓1) and relearn 
steps  (𝑚1), this cluster is split into correct and incorrect clusters.  
The correct cluster uses the model from the parent, while the 
incorrect cluster goes through model improvement and relearning 
before being split again.  As shown in the last split, one child can 
retain the parent model (𝑚3) while the other goes through the 
improvement and relearn steps. 

 
Figure 2. Cluster Splits from our BoU MR along with Type, 

FS Improvement (𝒇), and Model (𝒎).  The double width 
borders denote the final set of clusters used. 

3.2 BoU MR Algorithm 
Here we present the complete BoU MR algorithm, as shown in 
Figure 3.  Before we begin, there are two general guidelines we 
adopt to decide when to stop splitting the clusters.  First, to avoid 
breaking up data in a single distribution, we stop splitting when a 
correct cluster is found with a high purity in terms of correctly-
labeled instances (i.e., purity stop).  Second, to support 
meaningful analysis, we stop splitting when clusters lack 
sufficient coverage (based on the percentage of the training data 
they contain) to learn a detailed model (i.e., coverage stop). 

Our algorithm starts with a single cluster with all the training data 
and a model trained on that data.  The algorithm runs recursively 
to create the dendrogram of BoU clusters.  First, this algorithm 
uses Eq. 3 to compute the type for the BoU cluster (line 1).  If the 
type is incorrect, the specified improvement algorithm is used on 

that BoU cluster’s member data (cf., Section 2.2) and its model is 
relearned (lines 2-3). Subsequently, the cluster’s type is updated 
based on the relearned model (line 4).  If a cluster’s type is now 
correct, then there is a purity stop and the algorithm returns the 
BoU cluster and its relearned model.  Otherwise, the algorithm 
splits the training data into two new BoU clusters using the SSC 
algorithm previously discussed (Eq. 1).  If both the new clusters 
meet the minimum coverage requirement (line 6), containing a 
percentage of the training data above the threshold 𝜑, then the 
algorithm runs recursively on the two new BoU clusters with the 
parent’s model.  Otherwise, there is a coverage stop due to 
insufficient instances and the parent cluster/model is returned.  

The BoU MR algorithm runs in polynomial time based on the 
number of recorded sessions and, as such, runs fast even as the 
number of LOs increases.  The actual time complexity is 
dependent on the clustering algorithm: O(IDF) where I is the max 
iterations, D is the number of session instances, and F is the 
number of features.  Further, the actual BoU clusters and the SL 
models can be computed offline to accommodate thousands of 
LOs.  The real-time analysis only consists of mapping the new 
session to the BoU cluster based on current student interactions 
with the LO.  This can be done very quickly as the number of 
clusters is much less than the total number of recorded sessions. 

Some readers may argue that, by looking at the way the clusters 
are identified hierarchically, we are actually introducing 
overfitting on the data when creating the BoU clusters.  But recall 
that the BoU MR algorithm is designed to prevent the labels from 
having too much influence on the BoU clusters: its clusters are 
created based on both feature similarity and labels, and not just 
labels alone.  Additionally, the coverage stop also helps in this 
regard by acting as a regularizer and rejecting small clusters. 

𝐶 = 𝑆𝑖𝑛𝑔𝑙𝑒  𝑐𝑙𝑢𝑠𝑡𝑒𝑟  𝑤𝑖𝑡ℎ  𝑎𝑙𝑙  𝑡ℎ𝑒  𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔  𝑑𝑎𝑡𝑎 
𝑚 = 𝑀𝑜𝑑𝑒𝑙  𝑡𝑟𝑎𝑖𝑛𝑒𝑑  𝑜𝑛  𝐶 
𝐼 = 𝑀𝑜𝑑𝑒𝑙  𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡  𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 
𝑆 = 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑  𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔  𝑠𝑦𝑠𝑡𝑒𝑚 
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏  𝐵𝑜𝑈𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝐶,𝑚   𝒓𝒆𝒕𝒖𝒓𝒏𝒔  𝐶′  𝑎𝑛𝑑  𝑚′ 
(1)   𝒊𝒇  𝑡𝑦𝑝𝑒 𝐶 == 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 // check purity stop 
(2)        𝐶! ← 𝑖𝑚𝑝𝑟𝑜𝑣𝑒(𝐶, 𝐼) 
(3)        𝑚′ ← 𝑟𝑒𝑙𝑒𝑎𝑟𝑛(𝐶′, 𝑆) 
(4)                𝒊𝒇  𝑡𝑦𝑝𝑒 𝐶′   == 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 // check purity stop 
(5)                          𝐶!,𝐶! ← 𝑆𝑆𝐶(𝐶′, 2) // split the cluster 
(6)                          𝒊𝒇  𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝐶! > 𝜑  𝒂𝒏𝒅    
        𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝐶! > 𝜑 // check coverage stop 
(7)                                𝐵𝑜𝑈𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔(𝐶!,𝑚′  ) 
(8)                                𝐵𝑜𝑈𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔(𝐶!,𝑚′  ) 
(9)             𝒆𝒏𝒅  𝒊𝒇 
(10)      𝒆𝒏𝒅  𝒊𝒇 
(11) 𝒆𝒍𝒔𝒆 
(12)      𝐶′ ← 𝐶 
(13)      𝑚′ ← 𝑚 

Figure 3. BoU MR Algorithm. 

4. IMPLEMENTATION AND RESULTS 
Here we start by describing the experimental setup including the 
learning object (LO) datasets.  In Section 4.1, we provide results 
demonstrating the effectiveness of using the BoU to learn multiple 
models on the LO datasets (Objective 1).  In Section 4.2, we 
provide results for using the BoU to improve existing models with 
feature selection and noise correction algorithms (Objective 2). 

First, we use three widely studied SL systems in the experiments 
below: artificial neural networks (ANNs), support vector 
machines (SVMs), and decision trees (DTs).  We use the Java 



implementations for all three from the Weka library with the 
parameters values suggested in Witten et al. [19].  The BoU MR 
algorithm uses a Java implementation for the semi-supervised 
clustering algorithm based on Kulis et al. [9].  We use of 0.1 for 
the purity threshold (𝛿) and a 0.1 for the coverage threshold (𝜑) 
both fine-tuned based on empirical results.  Additionally, this 
clustering algorithm normalizes the student interactions features 
to the same range before creating the clusters.  For the model 
improvement algorithms, we use a Java implementation of Lasso 
feature selection based on the R glmnet package [7].  We use the 
C++ implementation of LSVM noise correction from the FaLKM-
lib package [17].  We use the values suggested in Segata [17] for 
the numerous parameters for LSVM.    

Second, the intelligent learning object guide (iLOG) LO datasets 
used in the experiments are based on a three year deployment of 
16 learning objects to introductory CS courses at the University of 
Nebraska, Lincoln [11].  During this deployment, there were over 
5000 separate sessions between students and LOs.  Large amounts 
of data were collected including (1) student interactions with the 
LOs during the tutorial, exercise, and assessment components 
(e.g., time spent on a page), (2) student demographic data (e.g., 
gender), (3) scores on the CS placement test [12], and (4) survey 
responses to both MSLQ and evaluation Likert surveys.  The 
iLOG datasets distill the data collected into the instances, features, 
and labels necessary for supervised learning.  Each instance 
represents a student-LO session with the features summarized in 
Table 1.  The label for an instance is whether or not students 
passed the LO assessment component (i.e., if a student achieves ≥ 
70% then she passes, otherwise she fails).  As shown in Table 1, 
there are relatively few changes in the features collected from one 
year to the next.  The increase in instances is the result of 
deployment to a larger number of courses.   

We use the iLOG datasets in the experiments because they 
exemplify the aforementioned problems with SL systems in the 
following manner.  First, the LOs were deployed to students in 
introductory CS courses with highly diverse backgrounds (e.g., 
CS majors, nonmajors, etc.) resulting in multiple distributions in 
the resulting datasets.  Second, the LOs were deployed online 
using the Moodle Learning Management System and students 
were required to take the LOs and part of their course grades 
(5%).  The difficulty of writing LO content suitable for all 
students and the online deployment, taken together, resulted in 
both irrelevant features and noise in the data tracked.  For 
example, students trying to achieve high assessment scores 
without spending time on the tutorial content.  Thus, these 
datasets are prime candidates for using FS and NC. 

Table 1. Summary of the iLOG datasets in the experiments. 

Features iLOG 2008 iLOG 2009 iLOG 2010 
Metadata 5 5 5 
Tutorial 10 10 10 
Exercises 20 20 16 
Assessment 10 10 10 
Student Demo 9 9 9 
Placement 16 16 16 
MSLQ 47 45 50 
Evaluation 10 9 9 
Total 127 124 125 
Instances iLOG 2008 iLOG 2009 iLOG 2010 
Fail 426 738 1228 
Pass 604 1131 2215 

Total 1030 1869 3443 

Finally, the experiments below compare the single model with the 
multiple models from the BoU.  For all experiments, we provide 
both the test and F1 accuracy results based on ten-fold cross 
validation.  In Section 4.1, we compare a single model to the BoU 
models learned using three SL systems (ANN, SVM, and DTs).  
In Section 4.2, we compare a single model to the BoU models 
after refining the data using FS and NC.  This results in six (FS or 
NC × ANN, SVM, or DT) configurations. 

4.1 Multiple Model Investigation 
Table 2 provides the test and F1 accuracy, on the iLOG datasets, 
for single model and the BoU multiple models.  The BoU multiple 
models provide higher test and F1 accuracy than a single model 
on all three iLOG datasets.  These results are reasonable given 
that the BoU can break up the iLOG dataset to better 
accommodate data from multiple distributions, for example, LOs 
deployed to different courses, students with different majors, etc.   

To probe further into how the BoU multiple models accommodate 
the iLOG data, Figure 4 provides the actual decision trees on the 
iLOG 2008 dataset created using a single model and multiple 
models based on three clusters.  (The trees for the iLOG 2009 and 
2010 datasets are similar.)  As shown in Figure 4, the trees learned 
on Clusters 1-2 have a very different idea of what features are the 
most important for predicting the labels (i.e., at the root) than the 
a single tree learned on all the data.  By using these diverse 
trees—i.e., models, the BoU MR can better model the separate 
distributions in the iLOG datasets than forcing a single model to 
accommodate all the data.  At the same time, the BoU clusters 
contain sufficient data to allow for fully expressive trees on the 
iLOG dataset.  The proof of this is that Cluster 3 actually learns 
the same tree as the single model.  Taken together, the capability 
to find diverse trees while retaining the same tree as the single 
model helps explain the BoU MR benefits to the test and F1 
accuracy results.  Additionally, BoU models learned on the local 
data provide more specific and detailed analyses than using a 
single model on all the data.  These analyses can uncover very 
interesting connections in the data that would otherwise be 
hopelessly buried in the single model such as that between 
evaluation survey questions and gender in Cluster 1.  Overall, 
these results help establish the effectiveness of BoU multiple 
models for LO analysis.   

Table 2. Test and F1 accuracy for a single model and BoU 
multiple models.  Grey cells indicate higher test accuracy 

while (*) indicates significantly higher accuracy (t-test, p <= 
0.05).  The average number of BoU clusters is also given. 

Dataset Test Accuracy F1 Accuracy Ave. #  
iLOG 2008 Single BoU Single BoU Clusters 
ANN 0.69 0.74* 0.63 0.67 1.90 
SVM 0.68 0.73* 0.64 0.69* 2.10 
DT 0.72 0.73 0.68 0.68 4.60 
iLOG 2009 Single BoU Single BoU Clusters 
ANN 0.69 0.74* 0.60 0.67* 1.90 
SVM 0.67 0.69* 0.58 0.61* 2.00 
DT 0.62 0.65 0.52 0.56 2.00 
iLOG 2010 Single BoU Single BoU Clusters 
ANN 0.70 0.72* 0.56 0.61 3.20 
SVM 0.69 0.71 0.57 0.62* 3.60 
DT 0.65 0.67* 0.50 0.51 2.30 



 
Figure 4. Decision trees on the iLOG 2008 dataset created using a single model and multiple models based on BoU clusters. 

On the other hand, as shown in Table 2, the accuracy (even for 
BoU multiple models) is relatively low on all three iLOG datasets 
(e.g., test accuracy in the 60s for DTs).  As alluded to earlier, 
these datasets contain both irrelevant features and noise both of 
which are problematic for SL systems in general.  In the next 
section, we show how the BoU MR can use feature selection and 
noise correction algorithms to break through this ceiling and 
improve both test and F1 accuracy. 

4.2 Model Improvement Investigation 
4.2.1 Lasso Feature Selection 
Table 3 provides the test and F1 accuracy for the single model and 
the BoU multiple models both improved using the Lasso feature 
selection on the iLOG datasets. 

Table 3. Test and F1 accuracy for a single model and BoU 
multiple models both using Lasso feature Selection (FS).  Grey 

cells indicate higher test accuracy while (*) indicates 
significantly higher accuracy (t-test, p <= 0.05).  The average 

number of BoU clusters is also given. 

Dataset Test Accuracy F1 Accuracy Ave. #   
iLOG 2008 Single BoU Single BoU Clusters 
ANN+FS 0.72 0.75* 0.65 0.69* 2.00 
SVM+FS 0.72 0.74* 0.66 0.70* 2.00 
DT+FS 0.74 0.75 0.70 0.71 2.43 
iLOG 2009 Single BoU Single BoU Clusters 
ANN+FS 0.71 0.76* 0.63 0.68* 2.00 
SVM+FS 0.71 0.70 0.63 0.62 2.00 
DT+FS 0.66 0.69* 0.55 0.60* 2.00 
iLOG 2010 Single BoU Single BoU Clusters 
ANN+FS 0.73 0.74 0.58 0.60 2.80 
SVM+FS 0.72 0.72 0.61 0.61 3.30 
DT+FS 0.67 0.70* 0.52 0.55 2.30 

First, we observe that using Lasso on the training data allows 
nearly across-the-board increases in test and F1 accuracy for both 

single and BoU multiple models.  Additionally, the increases in 
accuracy reported between Tables 2 and 3 are generally 
statistically significant (t-test, p <= 0.05).    

To explain, the Lasso feature selection identifies and removes 
irrelevant features from the training data.  Since these features are 
unimportant to the actual label, had they been incorporated into 
the model by the SL system, they would tend to confuse and 
distort the model lowering predictive accuracy and making the 
model less useful for analysis of student learning outcomes. 

Second, using Lasso, we observe that the BoU multiple models 
still provide generally higher test and F1 accuracy than does a 
single model on all three iLOG datasets.  As previously discussed 
the BoU retains the capability to break up the iLOG datasets and 
learn a separate model on each distribution.  The BoU also has the 
capability to further improve and “fine-tune” these models using 
Lasso selectively only on the clusters that are deemed to contain 
troublesome data.   

To probe further into how the BoU uses Lasso selectively to 
improve the models, Table 4 provides an example on the iLOG 
2009 dataset of the number of relevant features used for the single 
model and separately for the models in BoU clusters.  (The results 
for the iLOG 2008 and 2010 datasets are similar).  As shown in 
Table 4, for a single model, Lasso removes almost half the 
features belonging to the exercise and MSLQ categories while 
mostly retaining features in the other categories.  Lasso on BoU 
clusters gives more diverse results on the features removed.  
Lasso on cluster 1 removes additional features from the tutorial 
and assessment categories compared to that for the single model.  
Next, Lasso on cluster 2 removes a similar number of features as 
Lasso for the single model. Lastly, the BoU MR does not use 
Lasso at all on cluster 3 as this cluster is deemed free of 
troublesome data.  Our algorithm prevents Lasso from removing 
locally relevant features just because they are irrelevant on the rest 
of the training data.  This, in turn, prevents the model from being 
distorted by removing relevant features necessary for predicting 
the learning outcome for this cluster.  Taken together, the 



capability to use Lasso selectively—thus allowing the relevant 
features to be customized for each cluster—helps explain the BoU 
benefits to the test and F1 accuracy results.  Additionally, Lasso 
used separately for models provides additional insights that do not 
show up when Lasso is used for a single model; for example, 
suggesting that the students with sessions in cluster 1 are getting 
less out of the LO tutorial and assessment.  Overall, these results 
help establish that BoU can further improve the multiple models 
for LO analysis using Lasso. 

Note that the capability to use Lasso feature selection to improve 
models is important for educational data mining (EDM) in general 
since EDM datasets often contain numerous irrelevant features.  
However, these datasets are also often highly diverse forcing 
Lasso to make difficult decisions to retain features as relevant that 
are irrelevant in many areas or remove features because they are 
only relevant to a minority of the training data.  The advantage of 
using BoU is that its clusters allow for multiple, expressive 
models.  Recall the discussion for Table 4 where Lasso found very 
different feature vectors when used on different clusters.  
Combined with the identical decision trees previously discussed 
(cf., Figure 4), this supports our claim that BoU clusters contain 
sufficient data to allow for more effective utilization of Lasso 
separately on the data in each cluster.  

Table 4. Number of relevant features selected by Lasso feature 
run on all the training data (Single) and run separately on the 
three BoU clusters (C1-C3).  The total number of features is 

also included for reference (2009). 

Features 2009 Single C1 C2 C3 
LO Data 5 5 5 4 5 
Tutorial 10 7 3 8 10 
Exercises 20 11 9 11 20 
Assessment 10 7 6 9 10 
Student Demo 9 9 6 6 9 
Placement 16 13 9 10 16 
MSLQ 45 22 19 24 45 
Evaluation 9 9 6 6 9 
Total 124 83 63 78 124 

4.2.2 LSVM Noise Correction 
Table 5 provides the test and F1 accuracy results, on the iLOG 
datasets, for the single model and the BoU multiple models both 
using the LSVM noise correction. 

Table 5. Test and F1 accuracy for a single model and BoU 
multiple models both using LSVM noise correction (NC).  
Grey cells indicate higher test accuracy while (*) indicates 

significantly higher accuracy (t-test, p <= 0.05).  The average 
number of BoU clusters is also given. 

Dataset Test Accuracy F1 Accuracy Ave. #   
iLOG 2008 Single BoU Single BoU Clusters 
ANN+NC 0.73 0.75* 0.65 0.69 2.00 
SVM+NC 0.72 0.74 0.68 0.70* 4.10 
DT+NC 0.73 0.75* 0.68 0.71 4.00 
iLOG 2009 Single BoU Single BoU Clusters 
ANN+NC 0.72 0.75* 0.56 0.67* 2.00 
SVM+NC 0.70 0.70 0.50 0.62* 2.00 
DT+NC 0.64 0.69* 0.36 0.59* 2.00 
iLOG 2010 Single BoU Single BoU Clusters 
ANN+NC 0.71 0.75* 0.52 0.61* 4.10 
SVM+NC 0.72 0.70 0.49 0.60 3.50 
DT+NC 0.67 0.70* 0.36 0.54* 2.50 

First, as with Lasso, using LSVM noise correction allows nearly 
across-the-board improvements in accuracy.  To explain, LSVM 
improves the model by flagging potentially noisy instances whose 
labels (i.e., pass/fail) do not match those in nearby instances with 
similar features.  These noisy instances would otherwise distort 
the model since they provide contradictory labels and, thus, lower 
predictive accuracy. 

Second, using LSVM, on all three datasets the BoU multiple 
models provide generally higher test and F1 accuracy than a 
single model.  Again, the BoU can “fine-tune” these models using 
LSVM selectively only on the clusters with troublesome data.  
Now, as a whole, the total number of instances flagged as noisy 
by LSVM was comparable when used on the all training data and 
selectively on the BoU clusters.  However, LSVM for multiple 
models had two advantages. First, by breaking up the training 
data, the BoU MR simplified the task of distinguishing between 
instances that actually have noisy labels and those in close 
proximity to instances with truly different labels.  Second, by 
using LSVM selectively, our algorithm was able to use LSVM 
aggressively on clusters where the model was struggling, such as 
clusters containing sessions where students tried to game the 
system, without worrying about damaging clusters where the 
model was already doing well by removing training data 
mistakenly deemed noisy.  Overall, these results help establish that 
BoU MR can further improve the multiple models for LO analysis 
using LSVM. 
Once again, using LSVM to improve models is important on 
EDM datasets that contain relatively large amounts of noise.  
However, LSVM used only once on a highly diverse datasets may 
struggle to find concentrations of label noise and could end up—
in its pursuit of noise to correct—flagging data near the decision 
boundary as noisy.  Again, BoU MR helps in this regard by 
allowing for more effective LSVM focusing on the clusters 
containing large amounts of noise. 

5. CONCLUSIONS AND FUTURE WORK 
Supervised learning (SL) systems have been used for the analysis 
of student interactions with learning objects (LOs).  SL systems 
learn a model from previously collected training data that can 
accurately predict the labels for new data assuming that the 
training data comes from a single distribution and is relatively 
clean.  Unfortunately, LO data is highly diverse from multiple 
distributions and likely to contain noise which can limit the 
effectiveness of single models.  Learning multiple models and 
improving models on troublesome training data is intuitively a 
good solution.  However, identifying areas that capture only data 
from a single distribution without fitting the noise is far from 
trivial.  We propose a new BoU meta-reasoning (MR) algorithm 
that starts by breaking up the data into clusters designed to 
separate troublesome data (incorrect cluster) from data where the 
model is doing well (correct cluster).  Our algorithm then uses a 
separate model for each cluster.  On the incorrect clusters, our 
algorithm takes steps to improve the model by using feature 
selection or noise correction on the training data before relearning 
the model.  We have shown empirically on three LO datasets that 
the BoU multiple models allow for higher predictive accuracy 
than single models.  Furthermore, we have shown that the BoU 
MR can further improve the models for LO analysis using feature 
selection and noise correction algorithms.  Our results also 
suggest that BoU MR may also be able improve feature selection 
and noise correction algorithms―both important for educational 
data mining.  Feature selection used separately on the BoU 
clusters makes it easier to identify features that are relevant only 



on certain areas.  Further, noise correction focused on the clusters 
makes it easier to remove noise instead of accidently disrupting 
the decision boundary. 

In this paper, we have established effectiveness of using the BoU 
multiple models.  In the future, we intend to advance our BoU MR 
down two different lines of research.  First, we intend to further 
investigate how the BoU multiple models can provide 
independent, high-level guidelines on which type of student 
interactions are associated with the learning outcomes.  We have 
already taken the first step by showing that multiple models allow 
for diverse decision trees.  The next step is the analysis of the 
ANN and SVM models using rules extraction, sensitivity analysis, 
or inverse classification techniques [3].  This research has strong 
pedagogical implications for students.  Such analysis could, in 
real-time, inform students about the probable success/failure of 
their study strategies, for example, warning a student during the 
LO that she may not be spending enough time on the tutorial 
section.  Second, we intend to expand the use of BoU models to 
other educational data mining (EDM) areas such as intelligent 
tutoring systems (ITS) and virtual learning platforms (VLP). 
These areas share some of the same properties that BoU is 
designed to address (e.g., noise) but have additional properties not 
found in LOs (e.g., “bags” of instances in VLP).  To this end, we 
intend to evaluate how the BoU models stack up against previous 
work on learning accurate models in these areas (e.g., 
Rajibussalim [14] for ITS; Zafra & Ventura [20] for VLP). 
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