
Online Heuristic Planning for Highly Uncertain Domains

Adam Eck and Leen-Kiat Soh
Department of Computer Science and Engineering

University of Nebraska-Lincoln
256 Avery Hall, Lincoln, NE, 68588 USA

{aeck, lksoh}@cse.unl.edu

ABSTRACT
Heuristic search algorithms for online POMDP planning have
shown great promise in creating successful policies for max-
imizing agent rewards using heuristics typically focused on
reducing the error bound in the agent’s cumulative future
reward estimations. However, error bound-based heuristics
are less informative in highly uncertain domains requiring
long sequences of information gathering, such as robotics.
In these domains, all possible plan improvements look simi-
lar under error bound-based heuristics until the agent’s be-
lief uncertainty has been resolved, leaving the agent initially
confused on how best to improve its plan under the real-
time constraints of online planning. We propose (1) a novel
heuristic guiding the agent towards policies that first reduce
the agent’s belief uncertainty, after which error bound-based
heuristics are more effective, and (2) a novel selection mech-
anism for choosing which type of heuristic (error bound or
uncertainty-based) to use during the current stage of plan-
ning to most quickly form a good plan. We evaluate our
solution in several benchmark POMDP problems, demon-
strating that our solution yields successful policies with less
planning time in highly uncertain domains and comparable
performance in simpler problems.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence – intelligent agents, multiagent systems

Keywords
POMDP; Online Planning; Heuristic Search; Uncertainty

1. INTRODUCTION
In real-world applications such as robotics (e.g., [5, 13])

and human-agent interactions (e.g., [14]) where intelligent
agents must make decisions under uncertainty, agents fre-
quently employ partially observable Markov decision pro-
cesses (POMDPs) [3] to guide their reasoning. POMDPs are
advantageous in such complex environments because they
explicitly model the environment features causing uncer-
tainty, provide a Bayesian framework for maintaining up-to-
date beliefs using observations about the environment, and

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

enable an agent to plan sequences of actions called policies
that maximize its rewards and accomplish its tasks.

Online planning algorithms for POMDPs have received
much recent attention, within which planning and execu-
tion are interleaved whilst operating in the environment [10].
Such algorithms empower the agent to plan in real-time, en-
abling it to always compute a response to its current situa-
tion. Offline planning algorithms (e.g., [4, 7]), on the other
hand, perform all planning as a pre-processing step before
deployment. As a result, although offline algorithms can af-
ford more time for planning, they must produce generalized
plans that need to fit as many (unknown in advance) situa-
tions as possible, potentially leaving the agent in a dangerous
position if it encounters an unexpected situation, which is
especially likely in complex domains such as robotics.

However, because online planning algorithms operate in
real-time, they are strictly time constrained. As a result,
the resulting policy’s quality largely depends on how well
the agent can explore the space of potential policies within
the limited time allotted for planning. That is, the quality of
a policy relies on how accurately the policy leads the agent
toward large cumulative rewards, which requires searching
through an exponentially increasing number of future beliefs
states as the agent projects its actions farther into the future.

To efficiently search, one popular approach is heuristic
search algorithms (e.g., AEMS2 [8] and FHHOP [15]), which
incorporate heuristic information to guide the agent’s plan-
ning to form the best policy as fast as possible. Previously
reported algorithms (e.g., [8, 15]) have succeeded by focus-
ing on error bounds on the agent’s cumulative rewards. That
is, by expanding plans towards regions of the policy space
ultimately tightening the bounds on the expected cumula-
tive rewards from the current belief state, the agent becomes
more certain about the actual rewards it will earn and can
better choose how to act to maximize its rewards.

Unfortunately, in environments with high uncertainty—
where long sequences of information gathering actions are
required to resolve belief uncertainty—heuristics evaluating
the error bounds on agent rewards are generally less in-
formative for improving the agent’s policy. That is, when
the agent is quite uncertain about the current environment
state, it is also uncertain about the expected rewards for its
actions, causing the error bounds on all actions to be rela-
tively large. Thus, all possible directions during search look
similar and the heuristic cannot differentiate how best to
guide search to improve the agent’s policy (especially so at
the beginning of planning), negating the advantage of heuris-
tic search. As a result, previously considered heuristics can

take a long time to find a good policy, which violates the
real-time constraints placed on online planning. Therefore,
existing heuristics might not be well suited for usage as-is in
real-world applications with high uncertainty.

To overcome this problem, we propose a novel heuris-
tic called Long Sequence Entropy Minimization (LSEM) fo-
cused on quickly resolving belief uncertainty. After resolv-
ing uncertainty, an agent is in a better position to use other
heuristics to quickly find policies earning high rewards.

To leverage both heuristic types, we also contribute a
novel Difference-based Heuristic Selection (DHS) mechanism
that chooses the best heuristic to follow according to the cur-
rent planning needs. DHS selects the heuristic that both (1)
improves it’s own value the fastest, leading planning to re-
gions of the policy space that should yield the most improve-
ment, and (2) optimistically maximizes the upper bound on
rewards, leading planning to regions hopefully closest to the
optimal policy. In this manner—unlike other heuristic search
algorithms (e.g., FHHOP [15])—DHS enables us to consider
and compare heuristics measuring different types of infor-
mation to guide planning. Importantly, DHS also retains
the theoretical guarantees of previously reported algorithms,
such as convergence to an ε-optimal policy in finite time [9].

We empirically demonstrate the advantages of our ap-
proach in comparison to state-of-the-art online planning al-
gorithms AEMS2 [8] and FHHOP [15] within several popu-
lar POMDP benchmark problems, finding that our approach
speeds up planning by over an order of magnitude to find a
successful policy in complex, highly uncertain domains and
achieves comparable performance in other types of environ-
ments not requiring rapid belief uncertainty reduction.

2. BACKGROUND

2.1 POMDPs
A POMDP [3] models both the agent’s uncertain, dy-

namic environment and the consequences of the agent’s ac-
tions. Mathematically, a POMDP is defined as the tuple
P = {S,A, T, Z,O,B, b0, R}. S = {s} represents the set
of possible (hidden) states of the environment. The agent
chooses actions from a set A = {a} to accomplish its goals.
In response to an action, the dynamic environment changes
state according to the stochastic state transition function
T : S × A × S → [0, 1] measuring the likelihood P (s′|s, a)
that action a changes the environment state from s to s′.

Since the environment state is hidden and dynamic, the
agent is continually uncertain about the current state. To
address uncertainty, an agent maintains probabilistic beliefs
from the set B comprised of belief states b : S → [0, 1] mea-
suring the probability the agent ascribes to each state being
the correct current state (with initial belief state b0 and cur-
rent belief state bc). Actions produce observations from a
set Z = {z} that reveal information about the current state.
Such observations are also stochastic, occurring according
to an observation function O : S × A × Z → [0, 1] measur-
ing the likelihood P (z|s′, a) that observation z is observed
after action a leads to state s′. After taking an action a and
receiving observation z, the agent revises its belief state:

ba,z(s′) =
1

η
O(s′, a, z)

∑
s∈S

T (s, a, s′)b(s) (1)

where 1
η

normalizes ba,z to insure a valid distribution.

To guide the agent’s decision making, R : S×A→ R mod-
els the rewards received by the agent for taking an action in
each state. To account for uncertainty in the agent’s beliefs,
agents consider the expected value of the reward function:

R(b, a) = E[R(s, a)|b] =
∑
s∈S

b(s)R(s, a) (2)

The agent builds a plan π : B → A called a policy that
dictates what action the agent should take based on its belief
state to maximize expected discounted, cumulative rewards:

π(b) = arg max
a∈A

Q(b, a) (3)

according to the recursive Bellman equations:

Q(b, a) = R(b, a)+γ
∑
s∈S

b(s)
∑
s′∈S

T (s, a, s′)
∑
z∈Z

O(s′, a, z)V (ba,z)

(4)

V (b) = max
a∈A

Q(b, a) (5)

where γ ∈ [0, 1) discounts rewards due to future uncertainty.
To plan a policy π satisfying Eq. 3, an agent must re-

cursively solve Eqs. 4-5. This entails iteratively computing
values of Q(b, a) for additional belief states ba,z that the
agent might experience in the future to accurately calcu-
late the long-term cumulative value from its current belief
state bc. The tradeoff is that the farther into the future the
agent plans, the more accurately it will account for future
rewards and thus choose better actions, but deeper planning
requires more time and the number of possible future belief
states grows exponentially with planning depth n.

2.2 Online POMDP Planning
One approach to address the complexity of POMDP plan-

ning is to reduce the number of belief states considered while
constructing π by localizing the beliefs to only those reach-
able from the agent’s current belief bc. This reduction en-
ables deeper planning and thus more accurate cumulative
reward estimations within a fixed amount of time, while not
sacrificing coverage by only excluding beliefs the agent will
not soon encounter. Online POMDP planning algo-
rithms take this approach, where localized planning enables
quick planning whilst also operating in the environment.

Due to real-time constraints, most online planning algo-
rithms perform planning for a maximum allotted amount of
time τ before taking each action. To do so, such algorithms
compute and revise π using a tree structure where nodes
represent the belief states1 ba,z reachable from the current
belief state bc (and subsequent beliefs) after the agent takes
each of the possible actions a ∈ A and receiving observa-
tions z ∈ Z. Then, each path through the tree represents
a sequence of actions (and received observations) projecting
the agent’s behavior into the future. Using each path, the
agent can revise its estimates of the discounted, long-term
cumulative reward of executing each action from its current
belief state Q(bc, a). In this manner, the agent forms more
accurate estimates about long-term reward after adding an
additional belief state along any path through the tree. We
illustrate this data structure in Fig. 1.

To construct the tree representation of π during online
planning, agents follow the generic procedure presented in

1Following tradition, we override the notation of b to indi-
cate both a belief state and its node in the tree

Figure 1: A π tree with path of depth n highlighted

PolicySearch(bc, τ)
while TimeSpent() < τ and not DoneSearching() do

1. b∗c+n = ChooseLeafNode(L)
2. Expand(b∗c+n)
3. UpdateAncestors(b∗c+n)

end
return arg maxa∈AQ(bc, a)

Algorithm 1: Generic Online Policy Search Procedure

Alg. 1. Here, as long as the agent still has time for planning,
it iteratively (1) chooses a leaf node b∗c+n ∈ L from which
to extend its plan (where L represents the set of leaf nodes
in π), (2) expands the tree from b∗c+n by considering the
possible observations and rewards produced by each action
and adds a new leaf node for each future belief immediately
reachable from b∗c+n, and finally (3) uses the new informa-
tion to revise cumulative reward estimates for the beliefs in
ancestor nodes along the path back to the root of the tree
bc using Eqs. 4-5. Each iteration of this procedure enables
the agent to consider additional further future rewards in
order to better estimate the long-term value of performing
each action at the current belief state. This procedure can
be executed as an anytime algorithm to iteratively improve
the policy until the agent runs out of allotted time.

To improve long-term estimations since rewards beyond a
leaf node are uncertain and not yet calculated during online
planning, the agent maintains upper (Q and V) and lower
(Q and V) bounds on the discounted, cumulative rewards
from each node initialized using very simple pre-computed
policies2. This information is then propagated back through
the tree using analogues of Eqs. 4-5. After planning, the
agent executes the action a maximizing the guaranteed dis-
counted, cumulative reward represented by the lower bound
Q(bc, a) from the current belief state (although this action
might not be optimal if the upper and lower bounds are far
apart). For further details, please consult [10].

2.3 Heuristic Planning
Whereas the expansion (2) and update (3) steps of Alg. 1

are relatively straightforward according to Eqs. 1-5, an im-
portant piece of an online planning algorithm is deciding how
to choose the leaf node b∗c+n ∈ L to expand (Step 1). That
is, the quality of the policy π depends on the accuracy of the
agent’s estimate of discounted, cumulative reward from each
action in the current belief state, so the agent benefits from
expanding the most informative belief states (with respect
to its future rewards) during this step.

Two types of approaches are commonly used to choose
which nodes should be expanded during planning in order
to revise the agent’s policy. First, Monte-Carlo search algo-
rithms (e.g., POMCP [11]) exploit the stochastic probabili-

2Using algorithms such as Fast Informed Bound [2] and
Blind policy [2] for upper and lower bounds, respectively.

ties T,O in the POMDP to expand planning along the most
likely future belief states. Thus, this approach improves π
by considering the future rewards the agent is most likely
to earn, but can miss valuable rewards along less likely (but
still possible) paths of subsequent actions.

Second, heuristic search algorithms (e.g., AEMS2 [8], FH-
HOP [15]) use a heuristic function h : B → R to estimate
the value of expanding each leaf node bc+n ∈ L to improve
π. Here, the agent expands the leaf maximizing h:

b∗c+n = choose(h) = arg max
bc+n∈L

h(bc+n) (6)

Provided with a good heuristic, this approach can guide
planning to expand leaf nodes in the most informative man-
ner, best revising the agent’s policy in each iterative step of
Alg. 1. Previously proposed heuristics AEMS2 and FHHOP
favor leaves with the greatest error bound on future rewards,
measured as the difference between upper and lower bounds:

e(b) = V (b)− V (b) (7)

because these nodes have the greatest uncertainty in their
subsequent future rewards (and thus could impart great un-
certainty on the future rewards from current belief state bc).
After information from the new leaves are propagated back
through the tree, this type of heuristic generally leads the
agent to more accurate estimates of the cumulative rewards
from its current belief, and thereby better decisions.

The first such heuristic to perform competitively with of-
fline planning algorithms [10], in spite of using less time
for planning, was the Anytime Error Minimization Search 2
(AEMS2) heuristic [8], which measures leaf node value as:

hAEMS2(bc+n) = e(bc+n)

n−1∏
i=0

w(bc+i, ai)w(bc+i, ai, zi+1)

(8)
where

w(b, a) =

{
1 if a ∈ arg maxa′∈AQ(b, a′)

0 otherwise
(9)

determines whether a particular action along a path has the
highest possible reward from a given belief state, and

w(b, a, z) = γP (z|b, a) (10)

measures the discounted likelihood of a future observation.
Altogether, AEMS2 optimistically leads search towards

leaf nodes that (1) have the greatest uncertainty in their fu-
ture rewards, indicated by e(b), (2) along the path with the
greatest possible cumulative reward (extending the IE-MAX
heuristic [12]), indicated by w(b, a), and (3) that have great-
est likelihood, indicated by w(b, a, z). By focusing on paths
with the greatest possible cumulative reward, this heuristic
is guaranteed to find a policy producing an ε-optimal action
from bc within finite (albeit possible large) time [9].

Recently, the Factored Hybrid Heuristic Online Planning
(FHHOP) algorithm [15] proposed a variant of AEMS2:

hFHHOP (bc+n) = e(bc+n)w1,2(bc+n)

n−1∏
i=0

w(bc+i, ai, zi+1)

(11)
This heuristic aims to speed up how quickly the agent finds
a good policy by favoring leaf nodes that are near-optimal
with respect (instead) to the lower bound on future rewards

Q (through the w1,2 component, c.f., [15] for more details)
since these values determine the action taken after planning.

Unfortunately, since hFHHOP focuses on the lower bound
Q (instead of upper bound Q), there are no theoretical guar-
antees that a near optimal policy will be found using this
heuristic alone. Instead, search can become trapped in lo-
cal optima [15]. To avoid this problem, the complete FH-
HOP algorithm calculates both hAEMS2 and hFHHOP si-
multaneously, then carefully selects which node to expand
by comparing their weighted heuristic values to guarantee
an ε-optimal policy in finite time [15].

Furthermore, the FHHOP algorithm also exploits a newer,
special type of POMDP model called a mixed observability
Markov decision process (MOMDP) [6] that factors the state
space S = X ×Y to exploit the reality that some state vari-
ables X are commonly fully observable by the agent, whereas
only some state information Y actually suffers from partial
observability. This exploitation speeds up two of the pri-
mary calculations in heuristic search-based online planning—
belief state revision (Eq. 1) and expected observation prob-
ability (Eq. 10)—thereby further enabling the agent to per-
form more planning in a shorter amount of time [15]. How-
ever, this improvement is not specific to the FHHOP algo-
rithm and can be used with any online planning algorithm.

3. SOLUTION APPROACH

3.1 Design Rationale
Although FHHOP is an improvement over AEMS2 in its

simultaneous consideration of more than one heuristic to
improve performance, the algorithm is still limited (just like
AEMS2) to considering only a single type of heuristic in-
formation (i.e., bounds on future rewards). As discussed
in Section 1, this type of information can lead to difficul-
ties in highly uncertain domains requiring long sequences
of information gathering to resolve the hidden environment
state. In such domains, many uncertain belief states might
have similar, relatively large gaps between upper and lower
bounds on future rewards. Thus, it is difficult for heuris-
tics such as AEMS2 and FHHOP to successfully differen-
tiate leaf nodes—especially so during initial planning—and
guide search to expand the most appropriate nodes. Instead,
considering heuristics motivated to reduce uncertainty could
better inform search and lead to better policies faster.

Moreover, adding additional, differently motivated heuris-
tics to FHHOP is not straightforward. Specifically, the selec-
tion mechanism choosing which heuristic to favor for node
expansion relies on the fact that the two heuristics (hAEMS2

and hFHHOP) measure the same type of information so they
are inherently normalized for comparison. Unfortunately, it
is not clear how to normalize differently motivated heuristics
(e.g., error bound-based vs. uncertainty-based), so there is
a need for a new selection mechanism that can compare and
properly select between different types of heuristics.

The big picture for our solution is the idea that for highly
uncertain domains requiring long sequences of information
gathering, we can split up agent planning and execution in
into two separate stages, illustrated in Fig. 2: first belief
uncertainty reduction, then reward maximization. In Stage
1, the agent begins with high uncertainty in its beliefs and
must perform actions that reduce its uncertainty as fast as
possible. Then, in Stage 2, once the agent is more certain
about the true state of the environment, it can exploit its

Figure 2: Stages in Highly Uncertain Domains

beliefs in order to maximize its rewards and accomplish its
tasks. Planning in each of these two stages requires forming
a policy that leads to different types of agent behavior. As
described previously, existing heuristics such as AEMS2 and
FHHOP are good at handling the second stage, but can
struggle in the first since they fail to differentiate ”good”
leaf nodes to expand in order to resolve belief uncertainty.

Therefore, we require both (1) a different type of heuristic
for guiding planning to choose the best actions during the
first stage, and (2) a mechanism for favoring one heuristic
over the other dependent on the current stage of the agent’s
planning. We have developed the novel Long Sequence En-
tropy Minimization (LSEM) heuristic to accomplish the for-
mer, as well as the novel Difference-based Heuristic Selection
(DHS) mechanism to accomplish the latter.

3.2 Long Sequence Entropy Minimization
In order to guide search towards good policies under high

belief uncertainty, several pieces of information are valuable
to the agent to differentiate different leaf nodes bc+n with
respect to quickly resolving uncertainty and leading to a
good policy. First, because each belief state b is a probability
distribution over environment states, its uncertainty can be
directly measured by the entropy in the belief state:

H(b) = −
∑
s∈S

b(s) log b(s) (12)

To reduce uncertainty, heuristics should guide planning to
beliefs with the least uncertainty, commonly3 measured by:

C(b) = logS −H(b) (13)

Although using C(b) as a heuristic would lead the agent to
expand belief states with the least uncertainty, it would not
necessarily do so along paths from bc toward large rewards.
Thus, this information alone could easily become trapped
in local optima. Instead, we combine C(b) with three other
pieces of information to better guide planning:

1. The upper bound on agent rewards from the leaf node
V (bc+n) to optimistically guide the agent towards the
optimal policy, similar to the w(b, a) component of the
AEMS2 heuristic,

2. The depth n of the leaf node from the current belief state
bc, in order to resolve uncertainty as fast as possible by
guiding the agent towards the necessary large sequences
of information gathering actions that reduce uncertainty,

3. The likelihood of reaching the belief state in the leaf node
bc+n, guiding search first towards beliefs most likely to
be encountered during execution so that anytime Alg. 1
considers the expected most informative leaves first.

3This information has previously been added to the agent’s
rewards during planning in order to guide agent behavior
towards uncertainty reduction (e.g., [1, 5]), but has never
before been considered in a heuristic for guiding search.

Altogether, we combine such information in LSEM as:

hLSEM (bc+n) = C(bc+n)V (bc+n)d(bc+n)

n−1∏
i=0

w(bc+i, ai, zi+1)

(14)
where

d(bc+n) = 1 + log(n+ 1) (15)

is a positive, increasing function that weights deeper be-
lief states higher under the heuristic to encourage expansion
during policy search along longer sequences of actions. We
multiply in Eq. 14 to avoid domain-specific normalization
across components with different ranges (upper bounds vs.
entropy).

This heuristic function has several additional desirable
properties. First, each component is non-negative, so the
product is non-negative and increasing along paths that best
reduce uncertainty, satisfying the goal of LSEM. Second,
d(bc+n) exhibits diminishing returns as n increases, allow-
ing the heuristic to avoid maximizing depth at the expense
of the other components. Otherwise, the heuristic could be
biased towards continually extending the first long sequence
chosen during expansion of π. Instead, LSEM can switch
from recommending expanding one long path to a shorter
path if the shorter path better reduces uncertainty.

Overall, LSEM guides search first towards the least un-
certain beliefs the agent is likely to encounter using C(bc+n)
and w(bc+i, ai, zi+1). If two leaf nodes have similar likeli-
hoods and amounts of low uncertainty, preference is given
to leaf nodes both (1) possibly earning higher rewards, mea-
sured by V (bc+n), and (2) lying along longer sequences of
information gathering actions necessary for resolving uncer-
tainty, measured by d(bc+n). Thus, this heuristic correctly
satisfies the requirements of planning in the first stage of
Fig. 2, enabling search in this stage to overcome the chal-
lenges of previously reported heuristics (c.f., Section 3.1) for
online POMDP planning in highly uncertain domains.

3.3 Difference-based Heuristic Selection
Even after carefully considering multiple pieces of infor-

mation in the structure of hLSEM to avoid suboptimal search,
this heuristic is still not guaranteed to find optimal policies
once the agent’s belief uncertainty has been resolved (ending
Stage 1). That is, in Stage 2, the heuristic alone could greed-
ily continue to focus on reducing belief uncertainty along ac-
tion sequences with possible (but not certain) large rewards
and could fall into local optima. Instead, once the agent’s
uncertainty is adequately resolved, the agent should shift
its planning focus to maximizing rewards. Here, the error
bounds on future rewards from each leaf should be more
highly differentiated because belief uncertainty is low, and
thus error bounds should successfully guide planning.

Therefore, we propose employing LSEM simultaneously
with other heuristics such as AEMS2 (or FHHOP) to im-
prove agent planning. However, we face two key challenges:

Challenge 1: Determining how and when to switch be-
tween favoring (1) uncertainty reduction and (2) error bounds
to optimize agent performance (i.e., identifying which stage
the agent is in and choosing the appropriate heuristic).

Challenge 2: Producing an ε-optimal policy, as already
guaranteed within finite planning using AEMS2 alone [9].

To address Challenge 1, our solution enables the agent to
determine which stage it is currently in so that it can know
which heuristic should be used to choose the leaf to expand
in the next planning iteration. In the following, we consider
exploiting hLSEM in Stage 1 and hAEMS2 in Stage 2.

Our key insight is that in the different stages of the prob-
lem, the values of the different types of heuristics are chang-
ing at different rates, and we can leverage this to iden-
tify the agent’s current stage. Specifically, in Stage 1, the
hLSEM heuristic initially increases quickly as uncertainty is
reduced (increasing the logarithmic C(bc+n) component of
the heuristic), then as the agent approaches low belief uncer-
tainty, the heuristic values at the leaves change slower after
each expansion. Moreover, in Stage 2, the agent has already
reached low uncertainty, so the values of hLSEM continue to
change slowly. In contrast, in Stage 1, the heuristic values
for hAEMS and hFHHOP change slowly since most leaf nodes
have similar upper V (bc+n) and lower bounds V (bc+n) (and
thus similar e(bc+n) values) due to the agent’s uncertainty in
its beliefs. Then, once the agent has less belief uncertainty
in Stage 2, the bounds (and their difference) are more dis-
tinguished between the nodes and change at a faster rate as
the agent finds good policies for maximizing its rewards.

Therefore, the key to determining which stage the agent
is presently in is based on the change in the heuristic val-
ues at the leaf nodes: when the hLSEM values are changing
the most, then the agent is still in Stage 1 and should favor
uncertainty reduction, whereas when the hAEMS2 and/or
hFFHOP values are changing the most, the agent is in Stage
2 and should favor reward maximization. Exploiting this
rationale, we have developed the novel DHS selection mech-
anism for choosing which heuristic to guide expansion dur-
ing online POMDP planning. This mechanism compares
the relative changes in heuristic values to determine which
heuristic to maximize during expansion.

Let k be the number of heuristics simultaneously consid-
ered during planning. For each heuristic hj ∈ {h1, . . . , hk}
at each leaf node bc+n ∈ L, the agent calculates the relative
(undiscounted4) change in the heuristic along the path back
to the root of the tree bc before and after bc+n was added:

∆hj = [hj(bc+n)/γ − hj(bc+n−1)]/hj(bc+n−1) (16)

for monotonically increasing heuristics such as hLSEM , and

∆hj = |hj(bc+n)/γ − hj(bc+n−1)|/hj(bc+n−1) (17)

for error bound-based heuristics that decrease as the agent
plans closer to its terminal states (causing e(b) to decrease).

The higher the value of ∆hj , the more the heuristic value
is changing, indicating that the agent is likely in Stage 1 or
2, depending on hj : when ∆hLSEM > ∆hAEMS2 , the agent
is likely in Stage 1, and vice-versa for Stage 2. Additionally,
the heuristic with the greatest rate of change is the most
appropriate one for its current stage. Moreover, many com-
monly used heuristics for POMDP planing (e.g., AEMS2
[10], FHHOP [15]) and our LSEM assume that best policies
lie near continually high heuristic-value branches and rec-
ommend leaves along such branches for choice in Alg. 1, so
recommended leaves improving the most are a likely indi-
cator of the best such candidate branch. Therefore, we can

4We divide the hj(bc+n) term by γ in Eqs. 16-17 to negate
the difference caused solely by discounting, rather than the
actual change in the heuristic’s measured information.

use the heuristic maximizing the ∆ function to know how to
choose the leaf node to expand to best improve π.

However, to avoid becoming stuck with locally improv-
ing heuristics, we also consider the upper bound on the re-
ward from the best leaf node for each heuristic (using Eq.
6) to optimistically bias heuristic selection towards the opti-
mal policy (again similar to the IE-MAX heuristic for offline
planning and AEMS2 for online planning). Thus, in DHS,
the agent simply chooses the heuristic h∗ to use for selection:

h∗ = arg max
j∈{1,...,k}

∆hjV (choose(hj)) (18)

then expands the leaf node maximizing that heuristic:

b∗c+n = choose(h∗) (19)

Of note, another potential benefit of our approach is that
first reducing belief uncertainty through LSEM provides the
agent with a planning scenario very similar to that encoun-
tered when assuming full observability (i.e., where there is
full belief certainty). Given that approximations for upper
bound V are often based on policies for a (completely or
nearly) fully observable approximation of the POMDP (e.g.,
QMDP, FIB [2]), the agent can then exploit highly certain
beliefs to quickly find good policies by following the gradi-
ent of information contained in V . Thus, our solution might
also be highly beneficial in other types of domains, as well.

3.4 Theoretical Performance
To address Challenge 2 and theoretically guarantee that

our solution will produce an ε-optimal policy in finite time
(as in AEMS2 alone [9]), we advocate using a slightly mod-
ified version of DHS when hAEMS2 is used with hLSEM .

Specifically, consider a similar mechanism DHS’ using the
following selection rule, replacing Eq. 18:

h∗ =

{
hAEMS2 if N mod m = 0

h∗ selected by Eq. 18 otherwise
(20)

where N is the number of previous expansions to π, and
m ∈ N is any natural number. Then, we find that:

Theorem 1. DHS’ is guaranteed to find an ε-optimal pol-
icy in finite time, as long as hAEMS2 is one of the heuristics
considered by the selection mechanism.

Proof. Alg. 1 using hAEMS2 alone is guaranteed to find
an ε-optimal policy in finite time in at most M < ∞ ex-
pansions of the highest heuristic leaf [9] . Within mM <∞
iterations, DHS’ will also have caused Alg. 1 to select the
highest heuristic leaf according to hAEMS2 for expansion at
least M times, simulating at worst the search of hAEMS2 by
itself for those M iterations. Therefore, DHS’ also finds an
ε-optimal policy in finite time.

Selecting m for Eq. 20 can change the overall behavior of
DHS’ : a small m biases expansion in favor of AEMS2 and
has a lower upper-bound on the time guaranteed to reach an
optimal policy, but a small m also negates the advantages
of considering other heuristics, and thus in practice might
lead to longer planning time to actually find a good policy.

Intuitively, we suggest setting m = k, the number of
heuristics simultaneously considered during planning. We
use this particular setting in our experimental results to fol-
low. Alternatively, m could be automatically adapted based
on the agent’s current situation, which we intend to explore

as future work. For example increasing m proportional to
current uncertainty would encourage more uncertainty re-
duction as necessary, whereas agents facing high cost actions
could decrease m to best minimize costs.

4. EXPERIMENTAL SETUP
To empirically evaluate LSEM and DHS, we performed ex-

periments using three popular POMDP benchmarks varying
in complexity and uncertainty: (1) Tag [7], (2) RockSam-
ple(7, 8) [12], and (3) AUVNavigation [6].

In the Tag benchmark problem [7], a robotic agent and
opponent are randomly placed in a 2D grid (with 29 cells)
while playing laser tag. The agent’s own position is fully
observable, whereas the opponent’s location is unknown to
the agent and only discovered when the two are in the same
cell. On the other hand, the opponent always knows the
agent’s location and tries to move away from the agent to
avoid being tagged. The agent earns a cost for moving in
each cardinal direction (N, S, E, W) to find its prey, and a
reward for tagging the opponent, which ends the game. The
agent’s discounted rewards are maximized by finding and
tagging the opponent as fast as possible.

In the RockSample(7, 8) benchmark problem [12], a
robotic agent is tasked with collecting samples from 8 ran-
dom rocks distributed throughout an 7 × 7 2D grid. Rocks
are either of good or bad quality, and the agent’s task is to
only sample good rocks. The agent’s location is fully observ-
able, but the quality of rocks is unknown is advance and the
agent can collect noisy information about the quality of a
rock using a separate Check action for each rock. The agent
can also move in each cardinal direction to be closer to rocks
(which increases observation accuracy), or perform a Sam-
ple action to sample from the rock located in the same cell.
Once the agent exits the far right of the grid, the problem
ends. The agent earns a reward for sampling a good rock or
exiting the grid and a penalty for sampling bad rocks. The
agent’s discounted rewards are maximized by sampling all
(and only) good rocks and exiting as fast as possible.

In the AUVNavigation benchmark problem [6], a robotic
agent is randomly placed in one of several starting locations
in a 20×6×4 3D grid and tasked with navigating underwa-
ter through rock obstacles to reach one of two exit locations.
The agent can Stay in its current position, turn Left, Right,
Up, and Down to orient itself in the direction it wishes to
move, or it can incur a small cost to move Forward to try to
eventually reach the goal location. The agent’s depth and
orientation are fully observable, but its (x, y) position is un-
known. The agent can surface to learn its (x, y) coordinates,
which incurs a moderate cost, otherwise it observes nothing
(unless it hits a rock or the goal). The problem ends when
the agent either runs into a rock (incurring a large penalty)
or reaches the goal (earning an even larger reward). The
agent’s discounted rewards are maximized by reaching the
goal location as fast as possible while minimizing costs.

By considering multiple benchmarks, our goal is to de-
termine whether our approach indeed improves planning in
highly uncertain domains, as well as how it performs in other
types of environments. Comparing these three benchmarks,
they increase in order of complexity (in the sizes of the
POMDPs listed in Tables 1-3) from relatively small Tag to
moderate RockSample to difficult AUVNavigation. Consid-
ering uncertainty, they range from less uncertain RockSam-
ple (the agent always knows its own location and that of the

terminal state) to more uncertain Tag (the agent doesn’t
know where its opponent is in the small 2D grid or how
to reach it) to most uncertain AUVNavigation (the agent
doesn’t know its own starting location, nor how to build a
path to the goal through obstacles across the larger 3D grid).

For our analysis, we compare the performance of our so-
lution (with DHS simultaneously considering hLSEM and
hAEMS2) against the two state-of-the-art heuristic search
algorithms for online POMDP planning: AEMS2 [8] and
FHHOP [15]. All three approaches use the FIB and Blind
algorithms [2] to calculate upper and lower bounds, respec-
tively, from a leaf node. We measure performance as the dis-
counted (γ = 0.95), cumulative rewards earned by the agent.
To understand the impact of differing real-time constraints
common to real-world applications of online planning, we
also vary the amount of time τ allotted for planning. Fi-
nally, we also compare our results against those previously
reported for the state-of-the-art offline planning algorithms:
SARSOP [4] and a special algorithm for MOMDPs [6].

For fair comparison, all experiments were conducted on
the same computer with an Intel i5 (Haswell) 3.4GHz Quad
Core processor (using only one thread) with 8GB of RAM
(3GB were allotted for planning). All solutions and prob-
lems were implemented in Java. To more accurately measure
performance, we ran each combination 1,000 times using dif-
ferent random seeds (only 100 times for the more compli-
cated and time consuming AUVNavigation) and report 95%
confidence intervals. To speed up planning, each problem
was implemented5 as a MOMDP model [6], as in [15].

5. RESULTS
Observations First, we consider the results from the Tag

benchmark, presented in Table 1. We observe that LSEM &
DHS performed quite well: very comparable to the state-of-
the-art offline algorithms and better at low time allocations
for planning (τ = 0.01 seconds) than the other online heuris-
tic algorithm relying on multiple heuristics (FHHOP). In
fact, all algorithms were able to find policies with only 0.01
seconds of planning time per action, and increasing plan-
ning time did not significantly improve performance (except
for lower FHHOP). Thus, it appears that in environments
with low complexity (recall Tag had the lowest complexity of
our three benchmarks), there is less need to divide planning
into stages and treat belief uncertainty reduction separately.
On the other hand, doing so did not adversely affect perfor-
mance as our solution achieved comparable performance.

Next, we consider the results from RockSample, presented
in Table 2. In this benchmark, we observe similar results
as Tag: our approach generally outperformed FHHOP with
the least amount of time allocated to planning (τ = 0.01
seconds), was comparable to the state-of-the-art offline ap-
proaches as time increased, and was very similar to AEMS2
for all time allocations. Again, this similarity between our
approach and AEMS2 is noteworthy, but in this instance
because RockSample does not require long sequences of in-
formation gathering to know how to operate in the envi-
ronment (instead it can start maximizing rewards with very
little information gathering). Thus, RockSample does not
require two stages of planning, yet our approach compares

5Based on the POMDPX model configuration files at
http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
index.php?n=Main.Repository

Table 1: Tag Benchmark Performance
Tag

|S| = 870 |X | = 30 |Y| = 29 |A| = 5 |Z| = 2
τ AEMS2 FHHOP LSEM & DHS

0.01 s −5.75± 0.38 −8.10± 0.41 −6.35± 0.42
0.05 s −5.52± 0.39 −6.62± 0.38 −6.04± 0.36
0.10 s −5.78± 0.38 −6.45± 0.38 −5.80± 0.38
0.50 s −5.74± 0.39 −5.86± 0.37 −5.80± 0.38

Offline Algorithms [6]
MOMDP: −6.03± 0.04 SARSOP: −6.03± 0.12

Table 2: RockSample Benchmark Performance
RockSample(7,8)

|S| = 12, 545 |X | = 50 |Y| = 256 |A| = 13 |Z| = 2
τ AEMS2 FHHOP LSEM & DHS

0.01 s 11.84± 0.34 7.36± 0.02 8.93± 0.24
0.05 s 18.22± 0.39 18.10± 0.38 18.09± 0.39
0.10 s 19.01± 0.39 18.93± 0.41 18.96± 0.41
0.50 s 19.59± 0.39 19.29± 0.38 19.20± 0.38
1.00 s 20.22± 0.42 20.38± 0.40 20.24± 0.40

Offline Algorithms [6]
MOMDP: 21.47± 0.04 SARSOP: 21.47± 0.04

very similar to error bound-based heuristics alone that are
ideal for this environment type. This demonstrates the ef-
ficacy of DHS to rely on the best type of heuristic for its
current planning, since our approach could simply favor the
hAEMS2 heuristic. Therefore, our approach appears safe to
use in different types of domains, and not just highly uncer-
tain ones requiring long sequences of information gathering.

Finally, we consider the AUVNavigation results, presented
in Table 3. Recall that this is the ideal benchmark for eval-
uating our approach because it has the highest uncertainty
and is much more complex than Tag, making it very diffi-
cult to find a good policy. Due to this complexity, we limited
the agents to only performing at most 200 actions before we
ended execution (an optimal policy requires roughly 25 ac-
tions), else the agent might have operated forever until it
accidentally ran into a rock or randomly reached the goal.
If the agent exceeded this limit for any of the 100 runs, we
considered the algorithm to have failed to solve the problem.

Here, we observe that our solution (LSEM & DHS) indeed
greatly improved the agent’s ability to find a good policy.
Specifically, it was able to find successful policies for navi-
gating through the grid with much less time for planning:
it successfully solved the problem with only 0.5 seconds of
planning per action, whereas the other heuristics could not
find an acceptable policy using an order of magnitude more
time (5 seconds). These results are the fastest known online
solution to this challenging problem ([15] reported a similar
10 seconds for error bound-based heuristics to form a good
plan). Instead, for small τ , the error bound-based heuristics
aimlessly chose actions until stopping after 200 actions.

Discussions Looking closer at planning behavior in AU-
VNavigation, our solution generally relied more on hLSEM
in the first few planning periods than for its last actions per
run. This enabled the agent to first build a plan to deter-
mine its location, after which it relied almost exclusively on
hAEMS2 as it navigated through the obstacles towards the
goal. Therefore, our approach operated exactly as intended:

Table 3: AUVNavigation Benchmark Performance.
DNF = did not finish within 200 executed actions

AUVNavigation
|S| = 13, 536 |X | = 96 |Y| = 141 |A| = 6 |Z| = 144
τ AEMS2 FHHOP LSEM & DHS

0.5 s DNF DNF 317.8± 126.5
1 s DNF DNF 507.2± 107.3
5 s DNF DNF 568.6± 97.7
10 s 928.4± 107.6 DNF 599.2± 104.6
15 s 929.5± 107.8 843.8± 111.6 882.2± 109.1
20 s 928.4± 107.6 928.4± 107.6 928.7± 107.8

Offline Algorithms [6]
MOMDP: 808.0± 3.4 SARSOP: 799.3± 2.9

first the DHS mechanism used hLSEM to reduce belief un-
certainty, then it used hAEMS2 to maximize rewards.

Interestingly, AEMS2 alone was able to find a great policy
faster than our approach (earning greater rewards at τ = 10
seconds). It appears that using hLSEM too often early can
trap the agent near suboptimal policies and requires greater
uses of hAEMS2 later to find a global optima. This issue
could be addressed by tweaking the DHS selection mecha-
nism, which we intend to explore as future work. However,
even as-is, our approach is still very beneficial. Extrapo-
lating to other environments in highly uncertain real-world
domains such as robotics, it is better for the agent to have
some acceptable policy than none at all under commonly
strict real-time constraints for planning and reasoning. It is
also reassuring that given more time, our approach eventu-
ally yields a solution closer to optimality.

Finally, note that in our results, AEMS2 performs much
more favorably against FHHOP when compared to the ini-
tially reported results for FHHOP [15]. We believe this is
due to our use of a MOMDP representation for all algo-
rithms, whereas Zhang and Chen demonstrated the benefits
of using a (new at the time) MOMDP representation only
as part of their algorithm. Nothing about AEMS2 precludes
the use of this more advanced POMDP model to speed up
performance, so we used the same model for all algorithms in
our comparison. If we had not, AEMS2 would have required
much more time for planning, as reported in [15].

6. CONCLUSIONS
In conclusion, we have presented (1) a novel LSEM heuris-

tic and (2) DHS selection mechanism for choosing between
heuristics. Together, these advancements improve the qual-
ity of heuristic search for online POMDP planning in highly
uncertain domains requiring long sequences of information
gathering actions common to many real-world applications
of intelligent agents, including robotics. Prior heuristics gen-
erally rely on information such as error bounds in the agent’s
cumulative reward estimations, which are less informative in
such domains. Our solution relies on splitting planning into
two separate stages: belief uncertainty reduction, followed
by reward maximization. Our LSEM heuristic improves
planning in the first stage, whereas DHS automatically de-
tects when to switch from the first stage to the second and
chooses the best heuristic to guide planning. Using three
popular POMDP benchmark problems differing in complex-
ity and uncertainty, we demonstrated that our approach (1)
is very beneficial in highly uncertain domains, enabling the

agent to find acceptable policies more than an order of mag-
nitude faster than the state-of-the-art heuristics, and (2) can
be applied to other types of domains without deteriorating
performance and thus is generally safe to use.

We plan to extend this research by considering additional
environments with even greater uncertainty to see how much
uncertainty our solution can handle, including actual deploy-
ments to real-world systems, as well as improving DHS to
yield near optimal solutions faster.

7. ACKNOWLEDGMENTS
This material is based upon work partially supported by the
National Science Foundation under Grant No. SES-1132015.

8. REFERENCES
[1] M. Araya-Lopez, O. Buffet, V. Thomas, and

F. Charpillet. A POMDP extension with
belief-dependent rewards. In Proc. of NIPS’10, 2010.

[2] M. Hauskrecht. Value-function approximations for
partially observable Markov decision processes. J. of
Artificial Intelligence Research, 13:33–94, 2000.

[3] L. Kaelbling, M. Littman, and A. Cassandra. Planning
and acting in partially observable stochastic domains.
Artificial Intelligence, 101:99–134, 1998.

[4] H. Kurniawati, D. Hsu, and W. Lee. SARSOP:
Efficient point-based POMDP planning by
approximating optimally reachable belief spaces. In
Proc. of Robotics: Science & Systems, 2008.

[5] L. Mihaylova et al. Active sensing for robotics – a
survey. In Proc. of NM&A’02, 2002.

[6] S. C. W. Ong, S. W. Png, D. Hsu, and W. S. Lee.
Planning under uncertainty for robotic tasks with
mixed observability. Int. J. Rob. Res.,
29(8):1053–1068, 2010.

[7] J. Pineau, G. Gordon, and S. Thrun. Point-based
value iteration: An anytime algorithm for POMDPs.
In Proc. of IJCAI’03, pages 1025–1032, 2003.

[8] S. Ross and B. Chaib-draa. AEMS: An anytime online
search algorithm for approximate policy refinement in
large POMDPs. In Proc. of IJCAI’07, pages
2592–2598, 2007.

[9] S. Ross, J. Pineau, and B. Chaib-draa. Theoretical
analysis of heuristic search methods for online
POMDPs. In Proc. of NIPS’08, pgs. 1233–1240, 2008.

[10] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa.
Online planning algorithms for POMDPs. J. of
Artificial Intelligence Research, 32:663–704, 2008.

[11] D. Silver and J. Veness. Monte-carlo planning in large
POMDPs. In Proc. of NIPS’10, pgs. 2164–2172, 2010.

[12] T. Smith and R. Simmons. Heuristic search value
iteration for POMDPs. In Proc. of UAI’04, pages
520–527, 2004.

[13] M. Spaan, T. Veiga, and P. Lima. Active cooperative
perception in networked robotic systems using
POMDPs. In Proc. of IROS’10, pgs. 4800–4805, 2010.

[14] J. Williams and S. Young. Partially observable
Markov decision processes for spoken dialog systems.
Computer Speech and Language, 21:393–422, 2007.

[15] Z. Zhang. and X. Chen. FHHOP: A factored heuristic
online planning algorithm for POMDPs. In Proc. of
UAI’12, 2012.

