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Overview—Schedule

o Machine Learning (ML) Introduction
o1 Semi-Supervised Learning (SSL)
o Self-Training

Mixture Models

u]

o Cluster-then-Label
o1 Co-Training
o Graph-Based SSL
o1 Semi-Supervised Support Vector Machines

o Software Implementations

ML Intro—Dataset
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(Sept. 27)

(Sept. 27)

(Sept. 27)

(Oct. 4)
(Oct. 4)

(Oct. 4)

0 Dataset consists of set of instances

01 An instance (i.e., data point) consists of D-

dimensional feature vector (x)

01 Features (i.e., attributes) can be numeric or

discrete values

0 An instance may have a desired prediction or

label (y)

o1 Assumption: instances in training sample are
sampled independently from underlying

distribution
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Overview—Citation
I

o X. Zhu and A.B. Goldberg, Infroduction to Semi-
Supervised Learning, Morgan & Claypool Publishers,

2009

0 Why use this book?

1 Provides an excellent introduction to semi-supervised
learning

= Easy to understand examples

= Numerous references

o Recently published & free to download!

ML Introduction

01 Dataset Definition
0 Unsupervised Learning

o Supervised Learning

ML Intro—Dataset
I

0 Example Dataset “Little Green Men”
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ML Intro—Unsupervised Learning ML Intro—Unsupervised Learning
[ ] [

0 Uses training sample of instances without labels 0 Hierarchical Agglomerative Clustering

. Inpat: a training sample % ; @ distance function d().
o Common Tasks: 1. Initialty, place cack own cluster (called a singleton duster)
Novelty Detection 2. wwhile (number of clusters > 1) do:
. . . . 3. Find the closest cluster pair A, B, i.c., they minimize d(A, B).
Dimensionality reduction 4. Merge A, B toform a new dluster.
3 Quepnr: a binary tree showing how clusters ave gradually merged from singletons
Clustering (book focus) 7! : & gradually merg &
to a root cluster, which contains the whole training sample.
u Partitions data points into clusters where instances in the
same cluster are more “similar” than instances in different B £ o
clusters K B 5
® Number of clusters either pre-specified or inferred from E: EZ :i:
z E -
data i i
B e e
ORI CEE T
it 105y St 155
. . . .
ML Intro—Supervised Learning ML Intro—Supervised Learning
[ -] 10 ]
0 Uses training sample of instances with labels 01 K-Nearest-Neighbor Classifier
o Input: Training data (%1, M), . .. . ( Y, distance function d();
o1 Common Tasks: number of neighbors k; test instance
Regression 1. Find the k training instances X, .. iy closest to X wnder distance d()
e . 2. Output y* as the maority class of ¥y, .. ., Yiy. Break ties randomly.
Classification (book focus)
= Train a function (i.e., classifier) to predict the correct label 10l nf
for unknown data points from the same joint probability - -‘,f!' %) J#
distribution as the training sample ol * a’ - nv
== Zag
» Function divides feature space into decision regions where iy "a‘r‘ ‘9 iy ‘9
instances share the same label a5 °w 5
40) L4 male 40f

a0 0

% 00
walght (5.}

(a) classification by gender

SSL SSL—lIntro

[ | L]
J Introduction 0 Uses training sample of instances with and without
I Inductive vs. Transductive labels

1 Self-Training 1 Common Tasks:

Constrained Clustering

® Improve clustering using label information

= Example: use must-link and cannot-link constraints
Semi-Supervised Classification (book focus)

= Improve classification using unlabeled instances

u Example: self-training discussed later “bootstraps” the
training sample by labeling the unlabeled instances
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SSL—Classification SSL—Classification

0 Motivation: 0 SSL Example:

o Understand learning in humans/machines g Pasitive labeled data
o Build better ML algorithms (book focus) Negative labeled data
= Supervised learning requires labeled instances ®  Unlabeled data
= Labels are difficult to obtain because they require human
annotators, special devices, expensive experiments, etc.
= Unlabeled instances are available in large quantity and easy to

|

|

collect ‘

Supervised decision boundary | Semi-supervised decision boundary
= Leverage unlabeled instances to improve the performance for |
supervised learning *. ®e o e . o-. oo .
o Assumption: Instances with the same label “form ‘ ' ! : ‘ ‘ : /
o -15 -1 -05 0 05 1 15 2
coherent groups” (i.e., smoothness) x

SSL—Inductive vs. Transductive SSL—Self-Training
L]

0 Two different SSL settings: 0 A self-training algorithm uses its own predictions “to
o Inductive

. - i teach itself”
m Learns a function to predict n

labels for unknown instances Self-training v o Step 1: train a function using only the labeled instances.
using |dbe|ed{ unlabeled Mixture Models 7 | 7 1 Step 2: use the function to label some of the unlabeled
training sample instances

u Similar to supervised learning Co-training v . .

5 o Step 3: retrain the function on the expanded, labeled
o Tr(I:-nsduc'nve.f . ot th Graph Based v instances
[]
earns a function to predict the savm 7 | 7

labels for the unlabeled

o1 Assumption: Own predictions tend to be correct
instances in the training sample

*Emphasized in this book

SSL—Self-Training Mixture Models

T I m—— O
o Propagating 1-Nearest Neighbor o Gaussian Mixture Models (GMM)
Input: labeled data |(xi, ¥iW_,, andabeled data (le')":;H.ﬁsmnwﬁmﬁant’f!. 1 Cluster-then-Label
1. Initiaily, &et L = {0, Y)Y =y and U = {11,

2. Repeat until U is empty:

3. Selectx = argming, mingep dix, X'
4. Set f(x) to the label of x5 nearest instance in L. Break ties randomfy.
5. RemoveX from U; add (X, f(X)) o L.
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Mixture Models—GMM
m

' Motivation:
Unlabeled data points contain a mixed distribution from
all the labels
If we could decompose this mixed distribution into
separate distributions for each label then we could
predict labels for unlabeled data points using these
distributions
= Similar to unsupervised clustering!

o Assumption: Data comes from a mixture model with

Gaussian distributions for the labels

Mixture Models—GMM
=m

1 One commonly used criterion for solving mixture models is
maximum likelihood estimate (MLE).
] )
log pPI) = log [ | pixi, wi16) = ¥ log plyil@)ps]yi, 0),
-t =
0 MLE gives the estimated set of parameters for each
distribution (mean and covariance matrix)
1 Does not use unlabeled training data

o1 For SSL use MLE with marginal probability for generating
the unlabeled instances
: 1
log pDIB) = F log plyildpixilye 03+ 3 log pixil).
par et

Mixture Models—CTL
==

01 Clusters found by unsupervised clustering are similar to the
distributions found by GMM

The Cluster-then-Label algorithm uses such clusters for semi-
supervised classification

The addition of EM style approach to CTL (GACS) compensates

for sensitivity in the clustering algorithms
Partialy labeled data single inkage clustenng Prected labeling

o
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Mixture Models—GMM

o Separate Distributions for the Labels

== =negative distribution

- - - positive distribution

—— optimal decision boundary
. Y ’ Y ® unlabeled instance

x negative instance

;
2= e weales -1 e smesafes 1 () positive instance

Mixture Models—GMM

o1 Cannot solve new MLE analytically because labels are unknown
so use Expectation Maximization (EM) to find parameters that
(locally) maximize the probability distributions

In E we assign soft labels to unlabeled data using current
parameters

In M we compute new parameters using MLE on labeled data
and soft assignments

M) = p(HID. 6"y

ind 94051 that maximizes ¥ gy q'" (H) log pUD, H|9H1)

Outpat; 61

Co-Training

o Motivation:

An instance can contain two distinct feature sets or “views”
= Name and context (from named entity classification)
= Words in webpage and links to webpage

= Etc.
If we train a separate classifier on each view they could teach
each other!

instance  x(V x? y

1. Washington State  headquartered in - Location

2. Mr. Washington  vice president Person

3. Kazakhstan headquartered in 7

4. Kazakhstan flew to ?

5. Mr. Smith partner at 7
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Co-Training Graph-Based SSL

[ 25 ] En
o Co-Training Algorithm 0 Introduction
I el a5, Y il G5 loming sk o Edge Weight Heuristics (EWH)
Fach insiance has oo viewsx, =[x, x17).
1. nitally et the raining sample be Ly = L = (61, 31) ., (0, )} © SSL Algorithms

2. Repeat until unlabeted data is used up:
3. Twainaview-1 dassifer f from Ly, and classifier f@ fiom La.
4. Classify the remaining unlabeled data with epararely.
5. Add fO% top k most-confident predictions (x, £ (x)) #0 L.

Add £ top k most=confident predictions (x, £ x)) r0 L1.

Remove these from the unlabeted data.

o Weakness

o Assumption: Views are conditionally independent
given the class label

o1 Assumption often violated but results are generally
good even with feature splits on single “view” dataset
(Ling et al., 2009)

Graph-Based SSL—Intro Graph-Based SSL—Intro
=

L I P tion E |
O Mofivation: o Label Propagation Example

Model the relationship between instances by constructing
a graph from all the training data

= Vertices are instances

m Edges are similarity between instances

Propagate labels from the labeled vertices through the
edges to nearby unlabeled vertices

01 Assumption: Labels are “smooth” with respect to
graph such that two instances connected by the strong
edge should have same label

Graph-Based SSL—EWH Graph-Based SSL—EWH

En Ex
Fully connected o eNN
For each x;, x; create edge with weight that decreases as Euclidean
distance increases For each xi, xj, create edge iff distance  |lx; —x;|| < €
One popular variant is Radial Basis Function because weight is .
normalized between 0 and 1 Easier to construct than kNN graphs

= Bandwidth (o) controls how auickly weiaht decreases

| ”ﬂ o Which should | use?

X; Xi|l”

wij =P (’ zalf ) No definitive answer

“Best” graph requires knowledge of the problem

k Nearest Neighbor (kNN) domain

For each x;, find k most similar instances using Euclidean distance
Create edge for x; x; iff x;is in kNN (not symmetric!) RBF and kNN seem the most populur
Automatically adapts to density of feature space



Graph-Based SSL—Algorithms
]
1 Mincut

o Treat positive labeled instances (i.e., vertices) as fluid
“source” and negative as “sink”

o Find minimum set of edges (i.e., cut) whose removal
blocks flow from sources to sink

o Solve integer programming problem or use Edmond-
Karp

! 4

i . 2 ; e’
f:.’u!i‘z'il—l.noogt‘” fix)y +'§]u.,(fm) i)

Graph-Based SSL—Algorithms
T I —
1 Performance Sensitive

o Treat positive labeled instances (i.e., vertices) as fluid
“source” and negative as “sink”

o Find minimum set of edges (i.e., cut) whose removal
blocks flow from sources to sink

o1 Solve integer programming problem or use Edmond-
Karp

! 4

i . 2 ; e’
f:.’u!i‘z'il—l.noogt‘” fix)y +'§]u.,(fm) i)

S3VM

0 Support Vector Machines (SVM)
0 Semi-Supervised Support Vector Machines (S3VM)

Source: http://www.payroll-bureau-int.com/
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Graph-Based SSL—Algorithms

o Harmonic Function

o Similar to Mincut except f can produce real values
o Interesting Interpretations:
= Electrical network where edges are resistors
= Random walk on a graph
o lterative procedure to solve where we update unlabeled

vertices with weight average of neighbors (see book for
proof of convergence)

' tu
i On = Fon® + (s = Fx0.
/:?ﬂ?:nwg" fix ”Z::]uu.fx fixy

Graph-Based SSL—Weakness

01 Performance Sensitive to Graph Structure!

(b) Harmonic function predictions

S3VM—SVM

o Linear decision boundary in 2-space

1 w=(], H‘

07

1 Decision boundary cuts feature space into two halves
o Labels depend on which side instance is on

o Measure distance_between instance and boundary to find the margin
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S3VM—SVM S3VM—S3VM

o1 Training sample is linearly separable when decision

1 Also called Transductive Support Vector Machines
boundary separates instances with different labels

11 Solve using quadratic programming 0 Uses a hat loss function to tentatively label the
1 What happens when training sample is not linearly unlabeled instances
separable? 1 Does not require real label
o Rc.elclx constraints with slack variables (this book) and solve using o Similar to unsupervised clustering
hinge loss
1 Remap into higher dimensional space using kernel trick (Cristianini 0 Motivation:

& Shawe-Taylor, 2000)

o Find decision boundary that maximizes the margin for
0 Motivation:

entire training sample
o Find decision boundary that maximizes the margin for labeled

training sample

S3VM—S3VM S3VM—S3VM
I

1 Difference between SVM and S3VM

@
@ | I

I
0 Assumption: Decision boundary falls in a low
density region of the feature space
1 Does not cut through dense labeled data

— '3 v < Y 1]

I IR I I L B I R R ;
vl fix) . PN o e .k oA s

(s the bige Loss ) e (3) S3VM in local minimum (b) S3VM in “wrong” low density region

Software Implementations Conclusions

11 SSL algorithms discussed use instances with and without
labels to train classifier

o All five categories rely on strong assumptions
o Self-Training: Own predictions tend to be correct

o Gaussian Mixture Models: Data comes from a mixture model
with Gaussian distributions for the labels

o Co-Training: Views are conditionally independent given the
class label

o Graph-Based: Labels are “smooth” with respect to graph

1 S3VM: Decision boundary falls in a low density region of the
feature space

1 When assumptions are violated accuracy is reduced!
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For More Information... Questions?
=

0 Machine Learning Textbook

o T.M. Mitchell, Machine Learning, McGraw-Hill
Science/Engineering/Math, 1997

1 Department Faculty ? ? ?
7N | e e ¢
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