Multi-agent Negotiation Mechanisms for Statistical Target Classification in Wireless Multimedia Sensor Networks

JIHOONYUN

References

 X. Wang, D. Bi, L. Ding, and S. Wang, "Multi-agent Negotiation Mechanisms for Statistical Target Classification in Wireless Multimedia Sensor Networks", Sensors 2007, 7, 2201-2237

Outline

- Introduction
 - WSNs and WMSNs
- Target classification in WMSNs
- Hierarchical Multi-agent Architecture
- Belief-Desire-Intention(BDI) Model
- One Shot Dummy Multi-Item Auction (OSDMIA)
- Combination of Individual Decisions
- Committee Decision
- Conclusion
- Praises
- Critiques

Wireless Sensor Networks

- Tiny, low-cost and low-power
- Composed of large number of sensor nodes
- Monitors the environment
- Sensing + Processing + Communication

Wireless Multimedia Sensor Networks

- Newly Emerging type of WSNs
- Equipped with cameras, microphones, and other sensors retrieving audio, video and other scalar data
- WSNs vs. WMSNs
 - Decreasing energy consumption to extend network longevity under resource constraints -WSNs
 - Efficient delivery of application level quality of service (QoS) – WMSNs

Target classification in WMSNs

Statistical methods

- Power spectrum analysis extracted features from raw audio data
- Principal component analysis compressed features
- Gaussian process classification classification
 - Complement memory and bandwidth limitations
- Multi-agent negotiation mechanisms
 - Combine individual decisions in a committee manner
 - Extend network longevity
 - Accomplish efficient collaborative multimedia in-network processing

Hierarchical Multi-agent Architecture

- Front-end interface agent
 - Accept user requests, provide feedbacks of images, video, or audio.
- Regional agent
 - Based on geographical or similar criteria
 - Manage several regions
- Cluster agent
 - Several sub-regions
 - Reduce communication load
 - Improve in-network processing efficiency
 - Query agent
 - Audio and video information acquisition and processing

Belief-Desire-Intention(BDI) Model

Beliefs

- In WMSN, the environment is dynamic
- Past events need to be remembered
- Desires
 - Such objectives as the agent to accomplish
- Intentions
 - What the agent has chosen to do

Two Phase negotiation mechanisms

Phase 1: Task Allocation

Requirements

Efficient resource usage, Reliable classification accuracy, Real-time manner for WMSN

	Design objectives
Bounded by time	complete within a predefined time window
Fast	finish quickly
Kept short	the minimized number of iterations
Kept short the negotiation- related messages	reduce loss and improve communication speed

The auction based negotiation mechanism for collaborative target classification

Tas	k allocation problem		
Only one item (classification task)	Several agents may win the bidding simultaneously		O S D
Several rounds	Time consuming, undesirable for real-time processing	7	I A

One Shot Dummy Multi-Item Auction (OSDMIA)

- Single bidding round
- Sell several dummy duplicates of the item to several buyers

Auctioneer : supervising the auction

$$OSDMIA = \{ a_{Auc}, A \setminus \{a_{Auc}\}, \{T_1, T_2, \dots, T_{N_i}\} \}$$

Bidders : agents trying to get involved in the classification task

- Determination of N_i
 - Larger N_i -> increase accuracy
 - Smaller N_i -> decrease resource usage
 - In this paper, set N_i as 3

One Shot Dummy Multi-Item Auction (OSDMIA)

One Shot Dummy Multi-Item Auction (OSDMIA)

Bidding Price

$$Bidding = \{C_a, A_r, S_s\}$$

- C_a : priori classification accuracy
- A_r : available resources
- S_s : the strength of the observed signals

The auctioneer is obtained the price by the utility function

 $U_{Auc}(C_a, A_r, S_s) = C_r^2 A_r (S_s / S_{s max})^2$

Phase 2 : Combination of Individual Decisions

- Uncertainties related to audio signal acquisition
- The predictions the classifiers
- If decision error of the individual committee members, cancel out

$$w = C_a S_s / \hat{S}_{s max}$$

 C_a : priori classification accuracy S_s : the strength of the observed signals

$$O = \frac{\sum w_i d_i}{\sum w_i}$$

Experiment Setup

- Signals of AAV and DW observed by the sensor node N49
- Assault Amphibian Vehicle (AAV)
- Dragon Wagon (DW)

AAV

DW

80

100

Power Spectrum Analysis (PSA)

- Normalized power spectral density of the acoustic signals
- Features extracted from the PSD (distribution in the 16 frequency bandwidths)

Principal Component Analysis (PCA)

Compressed to 5 elements

Training and test of GPC

- AAV : 294 samples (98 for training, 196 for testing)
- DW : 178 samples (60 for training, 118 for testing)

Phase 1: Task Allocation (Bidding)

- N41, N42, N46, N53 : Deny -> critical energy level (0.2)
- The auctioneer calculates the utility functions
- N49, N54, N61 : Decided -> largest utility functions

Phase 2: Committee Decision

CommitteeMember DecisionMember d_i	Member Decision	Weight Component		Member	Committee
		Ca	S_s	Weight	Decision
	\mathcal{U}_i			$C_a S_s$	D
N49	0.3911	0.9204	1.0000	0.9204	
N54	0.6750	0.9746	0.9824	0.9574	0.6293
N61	0.8837	0.9440	0.7310	0.6900	

- The committee decision made by three committee members
- N49 : misclassification (below 0.5 -> DW) -> cancel out
- N54, N61 : committee decision

Phase 2: Committee Decision

N54 -87.50 %

N61-91.93%

Committee decision – 90.73%

Conclusion

- This paper proposed target classification in WMSNs
- Verified by the simulation experiments
 - Proposed statistical processing
 - PCA, PSD, GPC
 - The negotiation mechanism
 - OSDMIA, committee decision

Praises

- Robustness in terms of misclassification
- PSD, PCA, GPC reduce memory and computation capability requirements
- Reach a compromise between resource consumption and accuracy
- Reduce the uncertainty of individual classifier prediction
- Enhance the overall classification reliability

Critiques

- Simulation no real experiment
- Still need many tasks and resources Acoustic signals, Training
- Limited experiment
 - Only compared two vehicles
 - If the noise is strong?

