Part 2

A Perspective View and Survey of Meta-Learning

By Ricardo Vilalta and Youssef Drissi Presented by Rasheed Ali R.

Discussion Type Approach

- Stacked Generalization is simple
- Interrupt with comments and questions
- No man behind

Base-Learning

Universe of all tasks \mathcal{S}

Base-Learning

Solutions to Base-Learning Limits

- Direct application of Meta-Learning
 - Stacked Generalization
- Unbounded adaptive bias learners
 - Evolution Based Learners
 - Analogy Based Learners

Stacked Generalization by Example

- L↓A,L↓B,Γ
- x = (x / 1, x / 2, x / 3, x / 4)
- $x \in \{0,1,2,3\}$
- *c*∈{*X*,*O*}
- $T \downarrow Train = \{(x \downarrow i, c \downarrow i)\} \downarrow i = 1 \uparrow m$

Example Training Set

	T↓train	Samples	Class	
	$(x \downarrow 1, c \downarrow 1)$	(1,2,1,0)	X	
	$(x \downarrow 2, c \downarrow 2)$	(0,1,2,1)	0	
	$(x \downarrow 3, $ $c \downarrow 3)$	(3,0,0,2)	X	
$T \downarrow 1 = \{(x \downarrow 2, c \downarrow $	(x ↓4 , c↓4)	(1,2,3,1)	X	<i>c↓</i> 5)}
$T \downarrow 2 = \{(x \downarrow 1, c \downarrow)\}$ $T \downarrow 3 = \{(x \downarrow 1, c \downarrow)\}$	$(x \downarrow 5,$	(2,1,0,2)	0	c\$5)} c\$5)}
$T \downarrow 4 = \{(x \downarrow 1, c \downarrow 1)\}$ $T \downarrow 5 = \{(x \downarrow 1, c \downarrow 1)\}$, ,	, ,	•	

Creating Meta-Training Set

 $h \downarrow A1 = L \downarrow A (T \downarrow 1), h \downarrow B1 = L \downarrow B (T \downarrow 1)$

 $x \downarrow 1 \uparrow' = (h \downarrow A1 (x \downarrow 1), h \downarrow B1 (x \downarrow 1))$

<i>T↓train</i>	Samples	Class		<i>T↓train</i> ↑	Samples	Class
$(x \downarrow 1, c \downarrow 1)$	(1,2,1,0)	X	$(x i, c i) \times (x)$	$(x \downarrow 1 \uparrow', c \downarrow 1)$	(X,X)	X
$(x \downarrow 2, c \downarrow 2)$	(0,1,2,1)	0	$(x \downarrow i, c \downarrow i) \rightarrow (x$ $\downarrow i \uparrow', c \downarrow i)$	$(x \downarrow 2 \uparrow', c \downarrow 2)$	(0,0)	0
$(x \downarrow 3, c \downarrow 3)$	(3,0,0,2)	X		$(x \downarrow 3 \uparrow', c \downarrow 3)$	(X,O)	X
(x \ld , c\ld)	(1,2,3,1)	X		(x \lambda 1', c\lambda 1)	(O,X)	X
$(x \downarrow 5, c \downarrow 5)$	(2,1,0,2)	0		(x ↓5↑', c↓5)	(0,0)	0

Meta-Learning

 $h=\Gamma(T\downarrow train \uparrow')$

 $h(h \downarrow A(x), h \downarrow B(x)) = c$

Example

Example

Discussion

- How would you do it? What is wrong?
- What if all classifiers are correct
- What if all classifiers are wrong

T↓train	Samples	Class		<i>T↓train</i> ↑′	Samples	Class
$(x \downarrow 1, c \downarrow 1)$	(1,2,1,0)	X	$(x \downarrow i, c \downarrow i) \rightarrow (x$	$(x \downarrow 1 \uparrow', c \downarrow 1)$	(X,X)	X
$(x \downarrow 2, c \downarrow 2)$	(0,1,2,1)	0	$ \begin{array}{c} (x \lor i, c \lor i) \to (x \\ \downarrow i \uparrow', c \downarrow i) \end{array} $	$(x \downarrow 2 \uparrow', c \downarrow 2)$	(0,0)	0
$(x \downarrow 3, c \downarrow 3)$	(3,0,0,2)	X		$(x \downarrow 3 \uparrow', c \downarrow 3)$	(X,O)	X
(x ↓4 , c↓4)	(1,2,3,1)	X		(x \ldash41', c\ldash4)	(O,X)	X

Overview

- Learns from bias
- Predicts what is unpredicted by individual generalizers
- Generalizes winner takes all approaches
- Improves confidence
- Well suited for precision distributed and agent based systems

Meta-Learning Agents

- An Agent: a↓i
 - Utility functions: $u \downarrow j$ (s)
 - Decision function: d(u)
- Groups of Agents: $A = \{a \downarrow i\}$
 - diversity
 - $-a \downarrow i (s) \rightarrow r$

Evolution Theory

1. Natural Selection:

An entity exists unless it parishes (Duh!)

$$C: E \rightarrow E + \emptyset$$

2. Reproduction:

Existing increases odds of replication

$$R: E \rightarrow \{E, E\}$$

3. Mutation:

An entity may transform into another entity

$$T(E) \rightarrow E \uparrow'$$

Intelligence Agents & Evolution

- The pool of human thoughts:
 - -C: A thought is forgotten unless it is minimally:
 - amusing
 - simple
 - useful
 - − *R*: A thought gets replicated:
 - communication
 - T: A thought is modified
 - Accident: Misinterpretation/misrepresentation
 - Deliberate: Scientific or artistic process

Simple Evolutionary Learning

Agent Makeup

- General memory: 2040 Int64 cells
- Observation memory: 8 Int64 cells
 - Cell 0: remaining energy
 - Cell 1,2: x,y-coordinate of self
 - Cell 3,4: x,y-direction of self
 - Cell 5,6: x,y-coordinate of target

Agent Makeup

Instruction Set:

Move: 100 energy

– Turn: 5 energy

Copy: 1 energy

– Think: 1 energy

Agent Makeup

- Think instruction representation:
 - Instruction ID
 - Address of next instruction
 - Address of input start
 - Address of output start

Agent Thinking

- Agents are Turing complete
- Thinking operation:
 - Think(n,m)→ π ↓n (m) where π ↓n ∈ S↓k (N,∘)
- Thinking simulates any TM DFA δ
- Memory simulates TM tape/DFA states
- Copy action simulate all TM tape actions

Results

- 100,000 generations created
- Each generation evaluated 10,000 times
- Each evaluation determined agent survival
- Best agent survival probability: 0.0742

Best Static Strategy

Computations

- Number of possible steps/total leniarized space = 20/256 = 0.078125
- Any better results must be by thinking
- Out of the 10,000 generation some were thinking
- What are their traits

Improved Results

- Using a generation filtering tree
- On the order of 1077 million generations produced agents able to find 0.0803
- They must be doing better

Information Theory

Descriptive Complexity Theory

Analogy Learner Theory

Short Message Length Example