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What is Learning

An agent is said to be learning if its performance
improves with experience.



Limits of Learning

* Provided the same experience an agent will
learn the same hypotheses

* An agentis unable to use experience from
cross domains



What is Meta-Learning

“Meta-learning studies - |
how to choose the right \F
bias dynamically, as
opposed to base-learning
where the bias is fixed a
priori, or user T \RNED He
parameterized.” . DVEF




Structure

X1]
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* Features:x =] . |l € X
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 Classes:c € C
* Target function: f: X - C



Problem

Training Space: 7.,, € P(X X C)

Training Set: Trrqin = {(X;, ¢;)}
Learning algorithm: L: T - H;
Hypothesis: h € H;

Objective: h = f

m
1=1

€T,



Concepts

* Bias: assumptions restricting solution space
1. Restricts size of H;
2. Imposes preferences in H;

* Correct bias: f € H,
» Stronger bias: |7, | < |#,,]



Meta-Learning Goals

* |In base-learning H; is fixed

* Meta-learning adapts H; based on experience
1. Determine task properties that make L suitable

2. Determine properties of L contributing to its
dominance in particular tasks
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Example Improvements

* Tuning learning parameters
* Refining interpretation of states

learned value
.
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General Approaches

 Meta*-learners
* Theoretically unbiased learners

— Digital evolution
— Analogy learning



Stacked Generalization

* Tirqin = {(fi; Ci)}?;1
e Set of base-learners: {Lj}c,l
j=1

e Meta-learner: I’



Training Process

Tr = {(xi, ¢)}izk
hj = Lj(Ty)
Meta-training set:

T' = {((hjk(fk));l:f Ck)}:lzl

h=T(T")
Classification: h(x)



Observation /measurement/feature 2

Example
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Observation /measurement/feature 2

Example

Decision boundaries generated by different classifiers
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Overview

Learns from bias

Predicts what is unpredicted by individual
generalizers

Generalizes winner takes all approaches
Improves confidence

Well suited for precision distributed and agent
based systems



Conclusions

e Very effective
— Outperforms Bayesian model-averaging
— Outperforms majority voting approaches

e Used in difficult learning problems

— Won S1 million Netflix learning competition



