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Introduction

» Particle

» Social network

» Objective

b

e


http://vimeo.com/20761107

Introduction

sed on what | think is the bes

and what others think is the best, so:




Particle Swarm Optimization

» An iterative computation technique developed
by Dr. Eberhart and Dr. Kennedy in 1995
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» Inspired by social behavior of animals e.qg.
bird flocking and fish schooling




Particle Swarm Optimization:

» Particles positions: candidate solution
» Environment: problem search space

» Solution evaluation: fitness function

» Own best solution

» Other’s best solution

» Movement of particles:
exploration vs. exploitation




Particle Swarm Optimization:

» Exploration vs. Exploitation
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» Exploration:
> Global minimum
- Adaptability

» Exploitation:

- Stability




Particle Swarm Optimization
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» Particle’s position update
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Particle Swarm Optimization
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» Particle’s velocity update

v; (k+1) =? V; (K) +GIBX, ppest (K) — X (k)

ngest(k) — X (k))

Inertia constant

Random numbers
Acceleration in U{0,1}

constant



Extensions of PSO

» Optimization of PSO parameters
» Different topologies of swarm

» Conjunction of PSO with Evolutionary
Algorithms; e.g. GA

» Multi-swarm PSO
» Master-Slave PSO
» Attractive/Repulsive PSO




Particle Swarm Evolver (PSE)

» Hybrid PSO-GA method

GA population




Particle Swarm Evolver (PSE)

» Each chromosome = independent PSO

» Method:

- Perform Pnumber of iterations for each PSO

> Choose the best PSOs based on their X, as
parents

- Perform cross over by randomly mixing their
particles

- Perform mutation by replacing a random particle in
PSO with a completely random particle

- Repeat the process for the convergence
» Crossover probability=0.95
» Mutation probability=0.01



Repulsive PSE (RPSE)

» A repulsive component is added to PSE
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Repulsive PSE (RPSE)

» Particle of each swarm is attracted by the
ocal/global best of its own swarm

» Particle of each swarm is repul/sed by the
global best of all other swarms

Vi (k +1) — Vi,PSO (k +1) T C3¢3 f (Xforeign—gbest(k)’ ngest(k)’ Xi (k))




Multi-swarm PSO (MPSO)

» An alternative to the PSE algorithm

Best particles Best particles
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Multi-swarm PSO (MPSO)

» A set of independent swarms

» Communicate using a ring topology
» Method:

(0]

Run PSO for a number of iterations
Have an interaction

k best particles in the sender swarm is sent to the
receiver swarm

The new particles replace the worst k ones in the
receiver swarm
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Multi-swarm Repulsive PSO (MRPSO)

» A repulsive components is added to MPSO for
half of the swarms

» The exchange of particles is between one PSO
with repulsive component and one without

» Migrated particles from the sender are very
different from those in the receiver due to
repulsive effect




Case studies and Results

» Parameters:

> 100 total number of particles in all PSO methods
- 200 independent run for each PSO method

» Evaluation metrics:
> Number of successful runs
- Average best fitness




Case studies and Results

» Test function:
cosff (x) = 1Z filri, M) /m
i=1

£z, M) = cos(K # (x —M))» (10— (M —x)), ifr<M
ST ) cos(K # (x— M) # (1.0 — (x — M))), otherwise

» N . dimension of the problem

{M,,M,,,...M }. coordinates of maximum value of
the function

» K :ruggedness constant of the environment




Case studies and Results

» Example of a 2-dimension cosff(x):

cosff (x) = () _ fi(ws, Mi)) /n
i=1




Case studies and Results

» Results for a 20-dimension cosff(x):

n=20 K=10
Number of successful runs:
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Case studies and Results

» Results for a 20-dimension cosff(x):

n=20 K=10
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Case studies and Results

» Results for a 20-dimension cosff(x):
> CPU times in milliseconds

| Mlethodd - ave.time st dev,
S0 17894 30
PSE 2'075 29
RPSE | 107724 S
MEPS(O | 1838 !

MERPSOY 27503 21

[ Cosfl )




Case studies and Results

» Prediction of Pharmacokinetic Parameters :

- %F: the percentage of the initial orally submitted
drug dose that effectively reaches the systemic
blood circulation after the passage from the liver

> Prediction of %F for different molecular structures
identifying the drugs

- 70% of the molecules as the training set and 30% as
the test set

- Use PSO to obtain the coefficients with a linear
regression analysis

> Fitness = root mean squared error (RMSE) between

outputs and targets




Case studies and Results

» Prediction of Pharmacokinetic Parameters :

Results on the training set: Results on the test set:
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Case studies and Results

» Prediction of Pharmacokinetic Parameters :
> CPU times in milliseconds
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Conclusion

» Comparison of four parallel and distributed
particle swarm optimization methods

» variants of multi-swarm and
attractive/repulsive PSO.

» MRPSO outperforms the other considered PSO
methods.

> Probably because it maintains a higher diversity
degree in the whole system

» Poor performances of PSE and RPSE

> Probably because individuals of the GA are swarms
and the complicated structure limits the exploration




Praises

» Distributed PSO methods applicable to MAS

» Several case studies and a number of
sensitivity analysis

» Simplicity of the methods

» Applicable to a variety of problems




Critiques

» Not enough reasoning over the parameters
selected for the proposed methods.

» The PSO methods may not be comparable as
changing the parameters and environment
can alter the performance of the methods.

» Static environment
» No scalability evaluation

» Weak justification and implication of the
results based on the characteristics of the

methods




PSO Methods for Dynamic
Environments

» Multi-Swarm Accelerating PSO (MSA- PSO)

- Small neighborhood
- Small-sized swarms

> Randomized regrouping every R iterations

- Accelerating operation  Exploitation
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PSO Methods for Dynamic
Environments

» Distributed Adaptive PSO (DAPSO)

- Particle’s memory of fitness value will gradually
evaporate at a constant rate O0< 7 <1.

- Same evaporation constant for all particles.
- Particles’ updating frequency may be different.

> Similar to the human’s knowledge/experience
learning and updating

T-F (Xi,pbest(k)) If F (Xi (k +1)) <T-F (Xi,pbest(k))
F(x(k+1)) it FOGR+D)>T - F(X ppesi (K))

F (Xi,pbest(k +1)) — {




Proposed PSO Application in a
Smart Grid

» Negotiation between the self-interested
customer agents
> To join coalitions for buying/selling electricity.

> To invest in community-based distributed
generation/storage systems. (team formation)

Electric
Utility

<. Residential
N

Y Electricity Flow






http://www.youtube.com/watch?v=WP6SM0tivok

