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Overview

m Implicit’s Goals

m Related work and principles
m System Design and Details

m Authors’ Analysis

m Praises

m Critiques
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Implicit

m Problem:Web Search THE WHOLE INTERNET
geared toward
“average user”

m Context: Communities
of users share a
common interest

m Solution: Multi-agent
system in which
agents recommend
websites to one
another

m Agents receive links
and agents as
recommendations
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Related Topics

m Internet Agents
m Monitor user behavior
m personalization
m Spiders, bots, ...

m Agent coalitions
m Google has this...
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Related Topics — Recommendation
Systems

Tﬁe- b;s.-i“;r:.f_u:ﬂ'f_:e.- T mn-
give you is: 'Be Youese|f

m Recommendation Systems

m Personalization

= Implicit / Explicit data

m Architectures
m Content Based

m Collaboration Based
m Hybrids

m You can see these all over
the web...
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Recommendation Systems —

Amazon.com
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Content Based Recommendation

amazoncom

Help | Close window
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Collaborative Recommendation
Systems
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Recommendation Systems ... other

examples?

m Collaborative I f
oSt-TmM

m Content Based i

= ttEn
Tﬁmat@es

?

m Hybrids

NETFLIX
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Related Topics

m Swarm Intelligence: Ant Foraging
m Implicit Spin — which paths should I pay attention to?

m Social Navigation and Community based search

m Coalition interest — where is the group interested in heading?

m Recommending Contacts

m Implicit — which agents should I pay attention to?

m Exploration vs. Exploitation
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Implicit

= Domain: small I

predefined organization
with common interests

) Searched: apartments
m Goal: improve web- ——

searching

m Agents: one agent per
user ()

m Environment: internet, (Google)
user’s browser

. (Google) mnmem aookmo'oumulow lnEuropofustmt«mvlslts Europe
m Agent actions: apartments, mmmmuwu s

® Queries

. (Google) R«xal lnRome mmm in Rome mmmdatlom lwlan vﬂla rmls, corporate, temporary, Rental In
Recommendations Rome offers a large choice of apartments, ...

|
m Rejection
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Implicit — System Design

m Problem: search results for
individual

m Goal: members help each
other find best results

m Means: share group cultural
recommendation

m Represented as logical
rules.

m exploitation

m Means: share Google
results

m exploration
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Why use culture in a team setting?

m New comers — acclimate quickly

m Shared interest

m Share knowledge (better for
group!)
m Shared goals (community

recommendations likely better for
individual!)

m Exploit group knowledge /
experience

m At the same time ... different
roles on any team
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How 1s knowledge shared?

theory Inductive rif— domain theory
+ Module

observations

Composer
Module
Cultural Action

Finder | | Observer

DB of

observations

observations

Scene actions
Producer

actions
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How 1s knowledge shared - SICS

m Systems for Implicit Culture

Support (SICS)
m Each agent has a SICS theory I ocnic teory
Module
. Observer + observations
. ) Composer DB of
m Saves information about Cmﬂ:ﬂl‘ﬂ observations
user actions Finder Obzerver dbservations
1 Scene actions

m Inductive module Sl

m Analyzes observations using

data mining

m Finds action patterns of
community (i.e. links
followed)

___________________________________________

m Composer

m Creates final
recommendations for user
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The observer
m Query —1i.e. search for used
cars

m User wants links ) ——— domain th
eory Inductive omain theory

m User wants other agents who Y Module

know about used cars Pm—— saiskon
Module

DB of

observations

| What dO useIS ].ike? Cmn;:é::ﬁcn Observer observations
m What links are followed Scene
. Producer actions
m Whose advice was taken? T

m What do users not like?
m What links weren’t followed?
m Who was ignored?

___________________________________________

m Emergent Behavior — which
links / users does agent X
trust?
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The inductive module |I

m What patterns are common? g ooy Inductive [ domsntheory
Module
. Compaied observations z
m What links are followed for Module o
. - Cultural Action
which queries? = B ooecvasious
Scene actions
m Apriori data mining D T
algorithm
m Gives weight to certain links
based on past actions of
users

___________________________________________

m Sends results with weights to
composer (confidence and

support)
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The composer

m Determines which links

and agents are the best theory Eadacive  F—— domain theory
recommendations for \ iz e
. COIIIIJ{ISEI' observations DB Df
the given agent Module
Cultural Action
Finder Observer Bbservations
m Presents them to the S
Producer actions
users I
m Two phases

m Cultural action finder
finds links that may
work

m Scene producer —
chooses actions based
on how similar they are
to the users past actions
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Finally ...

m Action taken by user
m More observations...
m More data for the inductive module

m Better recommendations from the
composer ...

m Similar to learning

|

Learning Agent
Internal State

nee Perceptions Acuonkem'ommem (+1-)

(s)

(a) R(s.a)

Environment
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Agents duties and utility

m Duties
m Google search ¥

agent
m SICS < |l I8 s
e e 8 — E . g [
®m Respond to requests 2288|3828
: ) e |s2||82||8E
m Examine own actions g3|58| 58|58
. : : S |2 || |
m Individualize user interest $ |
m Find like-minded users Behavior scheduler
m (emergent sub-cultures)
resources
. . . . Inb
m Constant interaction with environment i SICS
and other users Observations
GoogleAPFI
m Agents share instead of the actual users
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How does a search happen?
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How does a search happen?
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Authors’ Analysis

m User Study
m Very small

m Results hard to glean much information from
m Usefulness of study?

Table 2 The number of requests

to the system Period Number of requests
Weeks 1 and 2 10
Weeks 3 and 4 18
Weeks 5 and 6 60
;[:;31;3 The number of accepted Number of accepted results Number of requests
1 32
2 16
3
4
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Authors’ Analysis

m Simulated Study

m Largely proof of concept

m Compared recommendations vs. Google results
m Preset the reliability of links

m Value of interest:

m precision — what % of links presented by recommendations are
useful?

m Recall - of useful links, what % are presented?
m Precision is better than Google
m Recall is worse, but improves with more agents
m Question: How useful is this study?

m Obvious issues — preset “usefulness”, links limited to small set
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Authors’ Analysis

m Scalability

m System slow with 9+ simultaneous users
m Quadratic response time

m As number of searches grows, response time slows
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Author’s Analysis

m Appropriateness of Cultural Theory

m Again issues with design — very restricted domain
= Small number of queries

m Small number of results
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Fig. 11 Pearson correlation between the initial user model and rules learned after 25, 50 and 100 searches
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Future Work

m Use random database management system

m User finds “accepted” link is actually not useful
m Inconsistent user behavior

m More rigorous evaluation

m Predict acceptability using Machine Learning
m Address privacy concerns

m Analyze emergent networks

m Study how to scale the system up
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+ .
Praises

m Good illustration of agent coalition
m Common goal ... for a time
m Agents subtly reform coalitions within the larger organization
= Emergent behaviors

m Very interesting idea
m Tailor web search to common interests
m Research teams
m Companies
m Students

m Recommendation systems are becoming ubiquitous
m YouTube, social networking, shopping, Amazon

m In many ways we implicitly shuffle search agents and search communities
based on our current goals already

m Amazon shopping, Googling news, searching for new movies on Netflix,
finding people in our social circles ...

m Imagine amalgamating those recommender systems into one interface — so
that this choice is hidden from the user

m Perhaps the big search engines are doing this?
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Critiques

m System evaluation
m More rigorous assessment would be interesting

m System efficiency and scalability
m Why not incorporate voluntary explicit feedback?

m System design seems to pessimistic about “rejections’ and
optimistic about “acceptances”

m System could attempt more aggressive inference
mechanisms

m System could toggle base search engine
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Summary

m Users receive search
results

m Based on group advice

m From the world at large

m System refines group
cultures and coalitions
Overtime THE WHOLE INTERNET
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Other Thoughts?

m Praises / Comparisons / Critiques / Questions?

m Birukou, A., Blanzieri, E., & Giorgini, P. (2012). Implicit: a
multi-agent recommendation system for web search.
Autonomous Agents and Multi-Agent Systems, 24(1), 141.
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Class Project

m User Modeling with interest in preventing user error
m During survey

m Between surveys
m Domain: Web surveys
m Data: Demographic, Sequential
m Response time: real time

m Tactics?

m SVM, HMM, Bayesian Networks, Multi-criteria decision analysis,
RL ...
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Paper relationship to error
detection

m Similarities
m User modeling problem — what information is most relevant about
users? How are some respondents similar to others?
m Activities drive decisions

m Potential to share

m Differences
m Sequential vs. descriptive data
m Individuals vs. stereotypes

m Relevant information: sequential actions, demographic
information
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