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Introduction  

¨  A reinforcement learning (RL) agent learns by trial-and-
error interaction with its dynamic environment 

¨  Well-understood algorithms with good convergence and 
consistency properties are available for solving the 
single-agent RL task 
¤  Both when the agent knows the dynamics of the environment 

and the reward function (the task model), and when it does 
not 

¨  Together with the simplicity and generality of the 
setting, this makes RL attractive also fro RL in multiagent 
systems 



Introduction: Challenges 

¨  Difficult to define a good learning goal for the multiple 
RL agents 

¨  Most of the times each learning agent must keep track 
of the other learning (and therefore nonstationary) 
agents 
¤ Only then will it be able to coordinate its behavior with 

heirs, such that a coherent joint behavior results 
¤ Nonstationarity also invalidates the convergence properties 

of most single-agent RL algorithms 
¨  Scalability of algorithms to realistic problem sizes is an 

even greater cause for concern in multiagent 
reinforcement learning (MARL) 



Background: Reinforcement Learning 

¨  Adam Eck has covered this in the previous seminar 
topic 

¨  Recall: states (X), actions (U), reward functions (ρ) 



Background: MARL   

¨  The joint action set: U = U1 × … × Un 

¨  The state transition probability function: f: X × U × X à 
[0,1] 

¨  The reward function of agent i: ρi: X × U × X à Real 
¤  Together, they form the collection of reward functions 

¨  In MARL, the state transitions are the result of the joint 
action of ALL the agents 

¨  Consequently, the rewards and the returns also depend on 
the joint action 

¨  The policies are: hi: X × Ui à [0,1] (all à joint policy h) 
¨  The Q-function of each agent depends on the joint action 

and is conditioned on the joint policy, Qh,i: X × U à Real 



Background: MARL 2 

¨  If ρ1= … = ρn, then all the agents have the same goal (to 
maximize the same expected return), and the system is 
fully cooperative 

¨  If n = 2 and ρ1 = -ρ2, then all the two agents have 
opposite goals, and the system is fully competitive 

¨  Mixed-game systems are stochastic systems that are 
neither fully cooperative nor fully competitive 



Benefits of MARL 

¨  A speedup of MARL can be realized (thanks to 
parallel computation) when the agents exploit the 
decentralized structure of the task 

¨  Experience sharing can help agents with similar task 
to learn faster and better 

¨  When one or more agents fail in a MAS, the 
remaining agents can take over some of their tasks; 
robustness 



Challenges in MARL 

¨  Curse of dimensionality 
¤ Complexity of MARL is exponential in the number of agents, 

because each agent adds its own variables to the joint 
state-action space 

¨  Specifying a good MARL goal in the general stochastic 
setup is a difficult challenge, as the agents’ returns are 
correlated and cannot be maximized independently 

¨  Non-stationarity of the multiagent learning problem 
arises because all the agents in the system are learning 
simultaneously 

¨  Need for coordination as actions by agents depend on 
others’ actions 



Challenges in MARL, 2 

¨  The exploration-exploitation tradeoff requires 
online RL algorithms to strike a balance between the 
exploitation of the agent’s current knowledge, and 
exploratory, information-gathering actions taken to 
improve that knowledge 
¤  In MARL, further complications arise due to presence of 

multiple agents 
¤ Exploring agents do not just obtain info about the 

environment, but also about the other agents 
¤ Too much exploration can destabilize the learning 

dynamics of the other agents 



MARL Goal 

¨  Specifying a good MARL goal is, in general, a 
difficult problem  
¤ Especially in situations where agents are not fully 

cooperative 
¨  Goals incorporate two key factors: 

¤ Stability of the learning dynamics of the agent 
n Convergence to a stationary policy 

¤ Adaptation to the dynamic behavior of the other 
agents 
n Performance is maintained or improved as the other agents 

are changing their policies 



MARL Goal, 2 

¨  Convergence to equilibria is a basic stability 
requirement 
¤ Agents’ strategies should eventually converge to a 

coordinated equilibrium 
¤ Nash equilibria are most frequently used 

¨  Rationality, an adaptation criterion, to add to 
stability 
¤ The requirement that the agent converges to a best 

response when the other agents remain stationary 



MARL Goal, 3 

¨  An alternative to rationality is the concept of no-regret 
¤  The requirement that the agent achieves a return that is at 

least as good as the return of any stationary strategy 
¤  Prevents the learner from “being exploited” by the other 

agents 
¨  Targeted optimality/compatibility/safety are 

adaptation requirements expressed in the form of 
average reward bounds 
¤  E.g., targeted optimality demands an average reward, 

against a targeted set of algorithms, which is at least the 
average reward of a best response 

 



MARL Goal, 4 

Stability Property Adaptation Property 

Convergence Rationality 
Convergence No-Regret 
-- Targeted optimality, 

compatibility, safety 
Opponent-independent Opponent-aware 
Equilibrium learning Best-response learning 
Prediction Rationality 



Taxonomy of MARL Algorithms 

 

Cooperative Competitive Mixed 

Independent Coordination-free Opponent-
independent 

Agent-independent 

Tracking Coordination-based --- Agent-tracking 

Aware Indirect coordination Opponent-aware Agent-aware 

Breakdown of MARL Algorithms by Task Type and Degree of Agent Awareness 
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Taxonomy of MARL Algorithms, 2 

 
Task Type Static or 

Dynamic? 
Algorithms 

Fully 
Cooperative 

Static Joint Action Learners (JAL), Frequency Maximum Q-value 
(FMQ) 

Dynamic Team-Q, Distributed-Q, Optimal Adaptive Learning (OAL) 

Fully 
Competitive 

NA Minimax-Q 

Mixed Static Fictitious Play, MetaStrategy, Infinitesial Gradient Ascent 
(IGA), Win-or-Learn-Fast-IGA (WoLF-IGA), Generalized 
IGA (GIGA), GIGA-WoLF, AWESOME, Hyper-Q 

Dynamic Single-agent RL, Nash-Q, Correlated Equilibrium Q-
learning (CE-Q), Asymmetric-Q, Non-Stationary 
Converging Policies (NSCP), WoLF-Policy Hill Climbing 
(WoLF-PHC), PD-WoLF, EXORL 



Taxonomy of MARL Algorithms, 3 

 
Task Type Open Issues 

Fully 
Cooperative 

•  Rely on exact measurements of the state 
•  Many also require exact measurements of the other agents’ 

actions 
•  Communication might help relax these strict requirements 
•  Most suffer from the curse of dimensionality 

Mixed •  Static, repeated games represented a limited set of 
applications 

•  Most static game algorithms assume the availability of an 
exact task model, which is rarely the case in practice 

•  Many suffer from the curse of dimensionality 
•  Many are sensitive to imperfect observations 



Application Domains 

¨  Mostly in simulation but also to some real-life tasks 
¨  Simulation domains dominate because: 

¤ Results in simpler domains are easier to understand and 
to use for gaining insight 

¤  In real life, scalability and robustness to imperfect 
observations are necessary, and few MARL algorithms 
exhibit these properties 
n  In real-life applications, more direct derivations of single-

agent RL are preferred 



Application Domains, 2 

¨  Distributed Control 
¤ A set of autonomous, interacting controllers act in 

parallel on the same process 
¤ Cooperative in nature 
¤ E.g., process control, control of traffic signals, control of 

electrical power networks 



Application Domains, 3 

¨  Robotic Teams 
¤ Most popular application domain 
¤ Many MARL researchers are active in the robotics field 
¤ Real and simulation 
¤ E.g., navigation, area sweeping (object recovery), 

search-and-rescue, exploration and target tracking, 
predator-and-prey games, object transportation, 
Robocup (soccer, disaster response, …) 

¤ Cooperative, competitive 



Application Domains, 4 

¨  Automated Trading 
¤ Software trading agents exchange goods on e-markets 

on behalf of a company or a person, using mechanisms 
such as auctions and negotiations 

¤ Trading Agent Competition (TAC): plane tickets, goods, 
and hotel bookings 

¤ Cooperative, self-interested 



Application Domains, 5 

¨  Resource Management 
¤ Agents form a cooperative team, and they can be one 

of: 
n Managers of resources 
n Clients of resources 

¤ Network routing, elevator scheduling, load balancing 
¤ Performance measures include average job processing 

times, minimum waiting time for resources, resource 
usage, and fairness in serving clients 



Outlook 

¨  Scalability is the central concern for MARL as it 
stands today 
¤ Approximate solutions are sought 

¨  Providing domain knowledge to the agents can 
greatly help them in learning solutions to realistic 
tasks 
¤ Approximations, informative reward functions, human 

teaching agents, pre-programed reflex behaviors, 
hierarchical RL, task-model-based initialization of Q-
functions 



Outlook, 2 

¨  MARL goals are typically formulated in terms of 
static games; their extension to dynamic tasks is not 
always clear or even possible 
¤ Stability and adaptation are needed 
¤ MARL algorithms should neither be totally independent 

of the other agents, nor just track their behavior without 
concerns for convergence 



Outlook, 3 

¨  The stagewise application of game-theoretic 
techniques to solve dynamic multiagent tasks is a 
popular approach 
¤ May not be the most suitable, given that both the 

environment and the behavior of learning agents are 
generally dynamic processes 

¤ So far, game-theory-based analysis has only been 
applied to the learning dynamics of the agents, while 
the dynamics of the environment have not been explicitly 
considered 


