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Introduction

A reinforcement learning (RL) agent learns by trial-and-
error interaction with its dynamic environment

Well-understood algorithms with good convergence and
consistency properties are available for solving the
single-agent RL task

Both when the agent knows the dynamics of the environment

and the reward function (the task model), and when it does
not

Together with the simplicity and generality of the
setting, this makes RL attractive also fro RL in multiagent
systems



Introduction: Challenges

Difficult to define a good learning goal for the multiple
RL agents

Most of the times each learning agent must keep track
of the other learning (and therefore nonstationary)
agents

Only then will it be able to coordinate its behavior with
heirs, such that a coherent joint behavior results

Nonstationarity also invalidates the convergence properties
of most single-agent RL algorithms
Scalability of algorithms to realistic problem sizes is an
even greater cause for concern in multiagent
reinforcement learning (MARL)



Background: Reinforcement Learning

1 Adam Eck has covered this in the previous seminar
topic

71 Recall: states (X), actions (U), reward functions (p)



Background: MARL

The joint action set: U= U1 X ... X Un

The state transition probability function: f: X X U X X =

[O,1]

The reward function of agent i: pi: X X U X X = Readl
Together, they form the collection of reward functions

In MARL, the state transitions are the result of the joint
action of ALL the agents

Consequently, the rewards and the returns also depend on
the joint action

The policies are: hi: X X Ui—=2> [0,1] (all = joint policy h)

The Q-function of each agent depends on the joint action
and is conditioned on the joint policy, Qn,i: X X U = Real



Background: MARL 2

If p1=... = pn, then all the agents have the same goal (to
maximize the same expected return), and the system is

fully cooperative

If n =2 and p1 =-p2, then all the two agents have
opposite goals, and the system is fully competitive

Mixed-game systems are stochastic systems that are
neither fully cooperative nor fully competitive



Benefits of MARL

A speedup of MARL can be realized (thanks to
parallel computation) when the agents exploit the
decentralized structure of the task

Experience sharing can help agents with similar task
to learn faster and better

When one or more agents fail in a MAS, the
remaining agents can take over some of their tasks;
robustness



Challenges in MARL

Curse of dimensionality

Complexity of MARL is exponential in the number of agents,
because each agent adds its own variables to the joint
state-action space

Specifying a good MARL goal in the general stochastic
setup is a difficult challenge, as the agents’ returns are
correlated and cannot be maximized independently

Non-stationarity of the multiagent learning problem
arises because all the agents in the system are learning
simultaneously

Need for coordination as actions by agents depend on
others’ actions



Challenges in MARL, 2

The exploration-exploitation tradeoff requires
online RL algorithms to strike a balance between the
exploitation of the agent’s current knowledge, and
exploratory, information-gathering actions taken to
improve that knowledge

In MARL, further complications arise due to presence of
multiple agents

Exploring agents do not just obtain info about the
environment, but also about the other agents

Too much exploration can destabilize the learning
dynamics of the other agents



MARL Goal

Specifying a good MARL goal is, in general, a
difficult problem

Especially in situations where agents are not fully
cooperative

Goals incorporate two key factors:
Stability of the learning dynamics of the agent
Convergence to a stationary policy

Adaptation to the dynamic behavior of the other
agents

Performance is maintained or improved as the other agents
are changing their policies



MARL Goal, 2

Convergence to equilibria is a basic stability
requirement

Agents’ strategies should eventually converge to a
coordinated equilibrium

Nash equilibria are most frequently used
Rationality, an adaptation criterion, to add to
stability

The requirement that the agent converges to a best
response when the other agents remain stationary



MARL Goal, 3

An alternative to rationality is the concept of no-regret

The requirement that the agent achieves a return that is at
least as good as the return of any stationary strategy

Prevents the learner from “being exploited” by the other
agents

Targeted optimality /compatibility /safety are
adaptation requirements expressed in the form of
average reward bounds

E.g., targeted optimality demands an average reward,

against a targeted set of algorithms, which is at least the
average reward of a best response



MARL Goal, 4

Convergence

Convergence

Opponent-independent
Equilibrium learning

Prediction

Rationality
No-Regret

Targeted optimality,
compatibility, safety

Opponent-aware
Best-response learning

Rationality



Agent Awareness

Taxonomy of MARL Algorithms

Task Type
Independent Coordination-free Opponent- Agent-independent
independent
Tracking Coordination-based  --- Agent-tracking
Aware Indirect coordination Opponent-aware Agent-aware

Breakdown of MARL Algorithms by Task Type and Degree of Agent Awareness



Taxonomy of MARL Algorithms, 2

Fully
Cooperative

Fully
Competitive

Mixed

Static

Dynamic

NA

Static

Dynamic

Joint Action Learners (JAL), Frequency Maximum Q-value

(FMQ)
Team-Q), Distributed-Q, Optimal Adaptive Learning (OAL)

Minimax-Q

Fictitious Play, MetaStrategy, Infinitesial Gradient Ascent
(IGA), Win-or-Learn-Fast-IGA (WolLF-IGA), Generalized

IGA (GIGA), GIGA-WolF, AWESOME, Hyper-Q

Single-agent RL, Nash-Q, Correlated Equilibrium Q-
learning (CE-Q), Asymmetric-Q, Non-Stationary
Converging Policies (NSCP), WolLF-Policy Hill Climbing
(WolLF-PHC), PD-WolF, EXORL



Taxonomy of MARL Algorithms, 3

Fully
Cooperative

Mixed

Rely on exact measurements of the state

Many also require exact measurements of the other agents’
actions

Communication might help relax these strict requirements

Most suffer from the curse of dimensionality

Static, repeated games represented a limited set of
applications

Most static game algorithms assume the availability of an
exact task model, which is rarely the case in practice
Many suffer from the curse of dimensionality

Many are sensitive to imperfect observations



Application Domains

Mostly in simulation but also to some real-life tasks

Simulation domains dominate because:

Results in simpler domains are easier to understand and
to use for gaining insight

In real life, and to imperfect
observations are necessary, and few MARL algorithms
exhibit these properties

In real-life applications, more direct derivations of single-
agent RL are preferred



Application Domains, 2

Distributed Control

A set of autonomous, interacting controllers act in
parallel on the same process

Cooperative in nature

E.g., process control, control of traffic signals, control of
electrical power networks



Application Domains, 3

Robotic Teams
Most popular application domain
Many MARL researchers are active in the robotics field

Real and simulation

E.g., navigation, area sweeping (object recovery),
search-and-rescue, exploration and target tracking,
predator-and-prey games, object transportation,
Robocup (soccer, disaster response, ...)

Cooperative, competitive



Application Domains, 4

Automated Trading

Software trading agents exchange goods on e-markets
on behalf of a company or a person, using mechanisms
such as auctions and negotiations

Trading Agent Competition (TAC): plane tickets, goods,
and hotel bookings

Cooperative, self-interested



Application Domains, 5

Resource Management
Agents form a cooperative team, and they can be one
of:
Managers of resources
Clients of resources

Network routing, elevator scheduling, load balancing

Performance measures include average job processing
times, minimum waiting time for resources, resource
usage, and fairness in serving clients



Outlook

Scalability is the central concern for MARL as it
stands today
Approximate solutions are sought

Providing domain knowledge to the agents can
greatly help them in learning solutions to realistic
tasks
Approximations, informative reward functions, human
teaching agents, pre-programed reflex behaviors,
hierarchical RL, task-model-based initialization of Q-
functions



Outlook, 2

MARL goals are typically formulated in terms of
static games; their extension to dynamic tasks is not
always clear or even possible

Stability and adaptation are needed

MARL algorithms should neither be totally independent
of the other agents, nor just track their behavior without
concerns for convergence



Outlook, 3

The stagewise application of game-theoretic
techniques to solve dynamic multiagent tasks is a
popular approach

May not be the most suitable, given that both the
environment and the behavior of learning agents are
generally dynamic processes

So far, game-theory-based analysis has only been
applied to the learning dynamics of the agents, while
the dynamics of the environment have not been explicitly
considered



