Introduction

- A reinforcement learning (RL) agent learns by trial-and-error interaction with its dynamic environment.

- Well-understood algorithms with good convergence and consistency properties are available for solving the single-agent RL task.
 - Both when the agent knows the dynamics of the environment and the reward function (the task model), and when it does not.

- Together with the simplicity and generality of the setting, this makes RL attractive for RL in multiagent systems.
Introduction: Challenges

- Difficult to define a good learning goal for the multiple RL agents
- Most of the times each learning agent must keep track of the other learning (and therefore nonstationary) agents
 - Only then will it be able to coordinate its behavior with heirs, such that a coherent joint behavior results
 - Nonstationarity also invalidates the convergence properties of most single-agent RL algorithms
- Scalability of algorithms to realistic problem sizes is an even greater cause for concern in multiagent reinforcement learning (MARL)
Background: Reinforcement Learning

- Adam Eck has covered this in the previous seminar topic
- Recall: states (X), actions (U), reward functions (ρ)
Background: MARL

- The joint action set: $\mathbf{U} = U_1 \times \ldots \times U_n$
- The state transition probability function: $f: X \times \mathbf{U} \times X \rightarrow [0,1]$
- The reward function of agent i: $\rho_i: X \times \mathbf{U} \times X \rightarrow \text{Real}$
 - Together, they form the collection of reward functions
- In MARL, the state transitions are the result of the joint action of ALL the agents
- Consequently, the rewards and the returns also depend on the joint action
- The policies are: $h_i: X \times U_i \rightarrow [0,1]$ (all \rightarrow joint policy h)
- The Q-function of each agent depends on the joint action and is conditioned on the joint policy, $Q_{h,i}: X \times \mathbf{U} \rightarrow \text{Real}$
If $\rho_1 = \ldots = \rho_n$, then all the agents have the same goal (to maximize the same expected return), and the system is **fully cooperative**

If $n = 2$ and $\rho_1 = -\rho_2$, then all the two agents have opposite goals, and the system is **fully competitive**

Mixed-game systems are stochastic systems that are neither fully cooperative nor fully competitive
Benefits of MARL

- A speedup of MARL can be realized (thanks to parallel computation) when the agents exploit the decentralized structure of the task.
- Experience sharing can help agents with similar tasks to learn faster and better.
- When one or more agents fail in a MAS, the remaining agents can take over some of their tasks; robustness.
Challenges in MARL

- **Curse of dimensionality**
 - Complexity of MARL is exponential in the number of agents, because each agent adds its own variables to the joint state-action space

- **Specifying a good MARL goal** in the general stochastic setup is a difficult challenge, as the agents’ returns are correlated and cannot be maximized independently

- **Non-stationarity** of the multiagent learning problem arises because all the agents in the system are learning simultaneously

- **Need for coordination** as actions by agents depend on others’ actions
The exploration-exploitation tradeoff requires online RL algorithms to strike a balance between the exploitation of the agent’s current knowledge, and exploratory, information-gathering actions taken to improve that knowledge.

- In MARL, further complications arise due to presence of multiple agents.
- Exploring agents do not just obtain info about the environment, but also about the other agents.
- Too much exploration can destabilize the learning dynamics of the other agents.
Specifying a good MARL goal is, in general, a difficult problem

Especially in situations where agents are not fully cooperative

Goals incorporate two key factors:

- Stability of the learning dynamics of the agent
 - Convergence to a stationary policy
- Adaptation to the dynamic behavior of the other agents
 - Performance is maintained or improved as the other agents are changing their policies
Convergence to equilibria is a basic stability requirement
- Agents’ strategies should eventually converge to a coordinated equilibrium
- Nash equilibria are most frequently used

Rationality, an adaptation criterion, to add to stability
- The requirement that the agent converges to a best response when the other agents remain stationary
An alternative to rationality is the concept of no-regret.

- The requirement that the agent achieves a return that is at least as good as the return of any stationary strategy.
- Prevents the learner from “being exploited” by the other agents.

Targeted optimality/compatibility/safety are adaptation requirements expressed in the form of average reward bounds.

- E.g., targeted optimality demands an average reward, against a targeted set of algorithms, which is at least the average reward of a best response.
MARL Goal, 4

<table>
<thead>
<tr>
<th>Stability Property</th>
<th>Adaptation Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convergence</td>
<td>Rationality</td>
</tr>
<tr>
<td>Convergence</td>
<td>No-Regret</td>
</tr>
<tr>
<td>--</td>
<td>Targeted optimality, compatibility, safety</td>
</tr>
<tr>
<td>Opponent-independent</td>
<td>Opponent-aware</td>
</tr>
<tr>
<td>Equilibrium learning</td>
<td>Best-response learning</td>
</tr>
<tr>
<td>Prediction</td>
<td>Rationality</td>
</tr>
</tbody>
</table>
Taxonomy of MARL Algorithms

Breakdown of MARL Algorithms by Task Type and Degree of Agent Awareness

<table>
<thead>
<tr>
<th>Agent Awareness</th>
<th>Task Type</th>
<th>Cooperative</th>
<th>Competitive</th>
<th>Mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent</td>
<td>Cooperative</td>
<td>Coordination-free</td>
<td>Opponent-independent</td>
<td>Agent-independent</td>
</tr>
<tr>
<td>Tracking</td>
<td>Cooperative</td>
<td>Coordination-based</td>
<td>---</td>
<td>Agent-tracking</td>
</tr>
<tr>
<td>Aware</td>
<td>Cooperative</td>
<td>Indirect coordination</td>
<td>Opponent-aware</td>
<td>Agent-aware</td>
</tr>
</tbody>
</table>
Taxonomy of MARL Algorithms, 2

<table>
<thead>
<tr>
<th>Task Type</th>
<th>Static or Dynamic?</th>
<th>Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully Cooperative</td>
<td>Static</td>
<td>Joint Action Learners (JAL), Frequency Maximum Q-value (FMQ)</td>
</tr>
<tr>
<td></td>
<td>Dynamic</td>
<td>Team-Q, Distributed-Q, Optimal Adaptive Learning (OAL)</td>
</tr>
<tr>
<td>Fully Competitive</td>
<td>NA</td>
<td>Minimax-Q</td>
</tr>
<tr>
<td>Mixed</td>
<td>Static</td>
<td>Fictitious Play, MetaStrategy, Infinitesimal Gradient Ascent (IGA), Win-or-Learn-Fast-IGA (WoLF-IGA), Generalized IGA (GIGA), GIGA-WoLF, AWESOME, Hyper-Q</td>
</tr>
<tr>
<td></td>
<td>Dynamic</td>
<td>Single-agent RL, Nash-Q, Correlated Equilibrium Q-learning (CE-Q), Asymmetric-Q, Non-Stationary Converging Policies (NSCP), WoLF-Policy Hill Climbing (WoLF-PHC), PD-WoLF, EXORL</td>
</tr>
<tr>
<td>Task Type</td>
<td>Open Issues</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
| Fully Cooperative | • Rely on exact measurements of the state
| | • Many also require exact measurements of the other agents’ actions
| | • Communication might help relax these strict requirements
| | • Most suffer from the curse of dimensionality |
| Mixed | • Static, repeated games represented a limited set of applications
| | • Most static game algorithms assume the availability of an exact task model, which is rarely the case in practice
| | • Many suffer from the curse of dimensionality
| | • Many are sensitive to imperfect observations |
Application Domains

- Mostly in simulation but also to some real-life tasks
- Simulation domains dominate because:
 - Results in simpler domains are easier to understand and to use for gaining insight
 - In real life, *scalability* and *robustness* to imperfect observations are necessary, and few MARL algorithms exhibit these properties
 - In real-life applications, more direct derivations of single-agent RL are preferred
Application Domains, 2

- Distributed Control
 - A set of autonomous, interacting controllers act in parallel on the same process
 - Cooperative in nature
 - E.g., process control, control of traffic signals, control of electrical power networks
Robotic Teams

- Most popular application domain
- Many MARL researchers are active in the robotics field
- Real and simulation
- E.g., navigation, area sweeping (object recovery), search-and-rescue, exploration and target tracking, predator-and-prey games, object transportation, Robocup (soccer, disaster response, …)
- Cooperative, competitive
Automated Trading

- Software trading agents exchange goods on e-markets on behalf of a company or a person, using mechanisms such as auctions and negotiations
- Trading Agent Competition (TAC): plane tickets, goods, and hotel bookings
- Cooperative, self-interested
Resource Management

Agents form a cooperative team, and they can be one of:
- Managers of resources
- Clients of resources

Network routing, elevator scheduling, load balancing

Performance measures include average job processing times, minimum waiting time for resources, resource usage, and fairness in serving clients
Outlook

- Scalability is the central concern for MARL as it stands today
 - Approximate solutions are sought
- Providing domain knowledge to the agents can greatly help them in learning solutions to realistic tasks
 - Approximations, informative reward functions, human teaching agents, pre-programmed reflex behaviors, hierarchical RL, task-model-based initialization of Q-functions
MARL goals are typically formulated in terms of static games; their extension to dynamic tasks is not always clear or even possible.

- Stability and adaptation are needed.
- MARL algorithms should neither be totally independent of the other agents, nor just track their behavior without concerns for convergence.
The stagewise application of game-theoretic techniques to solve dynamic multiagent tasks is a popular approach.

May not be the most suitable, given that both the environment and the behavior of learning agents are generally dynamic processes.

So far, game-theory-based analysis has only been applied to the learning dynamics of the agents, while the dynamics of the environment have not been explicitly considered.