REINFORCEMENT LEARNING

CSCE 990: Advanced MAS

January 11, 2013

Human RL

Resource Allocation

Fundamental problem in CS applications

- Given a set of resources with limited quantities, how to apply to various tasks?
- Goal: maximize benefits and/or minimize costs
 - Reward Tradeoff

□ Applications:

- CPU load
- Memory management
- Power consumption
- Access to network connections

Internet Data Centers

- Resource Allocation Problem
 - How to assign available servers to incoming user requests?
 - Goals
 - Meet Service Level Agreements across several applications
 - Tradeoff responsiveness with power consumption savings
 - More servers = faster response time
 - Less servers = less power consumed

- Background
- Hybrid Reinforcement Learning for SLAs
- Power Savings
- □ Conclusion

Based on: (Tesauro et al., 2007; Das et al., 2008)

Background | Overview

Reinforcement Learning

Neural Networks

Multiagent Systems

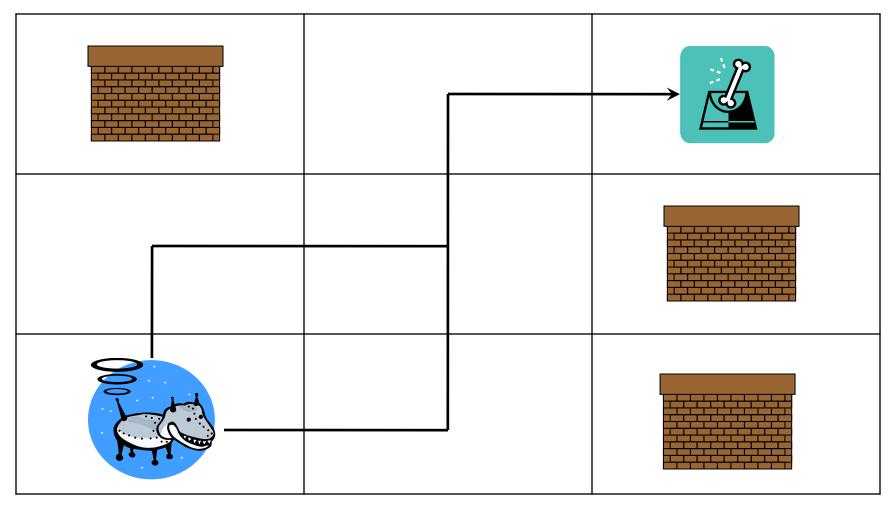
Background | Reinforcement Learning

Problem

- Learn a mapping of state/action pairs to utility values
- Use learned utilities to form policies
 - Plans of actions maximizing utility
 - Underlying MDP model
- Terms
 - States S— description of environment
 - Actions A— action taken to change environment

Reward R(s,a) – numeric result of action

Background | Reinforcement Learning



Background

Hybrid RL

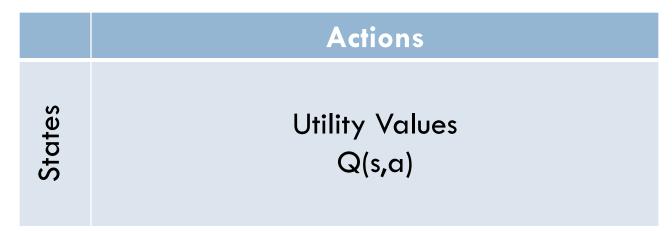
Power Savings

Conclusion

8

Background | Reinforcement Learning

Utility estimation stored as a Q-table



Utility updates (SARSA):
Q'(s,a) = (1 - α)Q(s,a) + α [R(s,a) + γQ(s',a')]

Background | Neural Networks

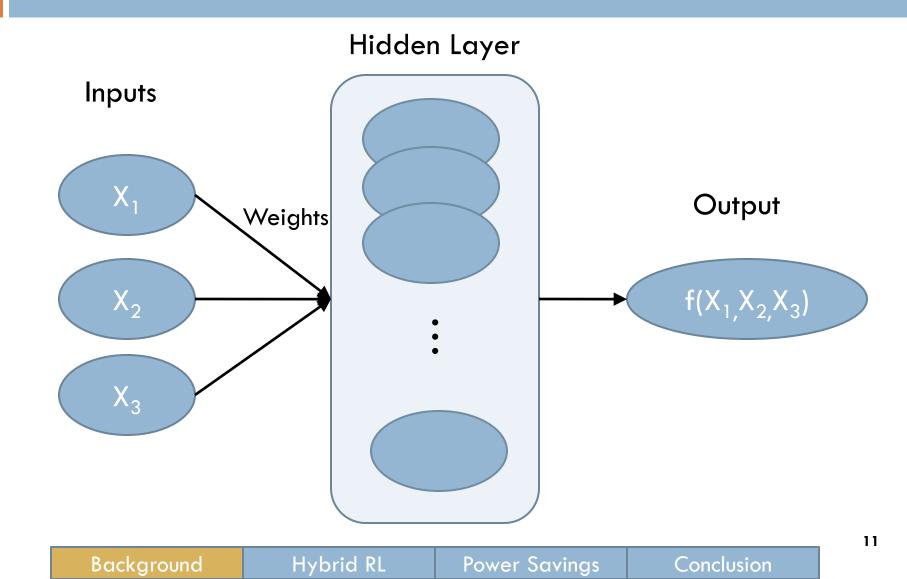
Problem

- Function approximation
 - non-linear output based on linear pieces (perceptrons)
- Trained using examples (supervised learning)

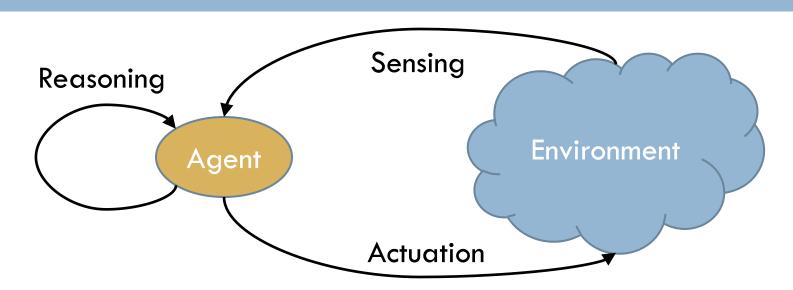
Often used in classification in Machine Learning

- Continuous output
- Discrete output by thresholding

Background | Neural Networks



Background | Multiagent Systems



- Agent Characteristics
 - Intelligent
 - Autonomous

Background | Multiagent Systems

Multiagent System (MAS)

Multiple agents in the same environment

Agents are aware of one another

Cooperative vs. Competitive

Environment Characteristics

Dynamic

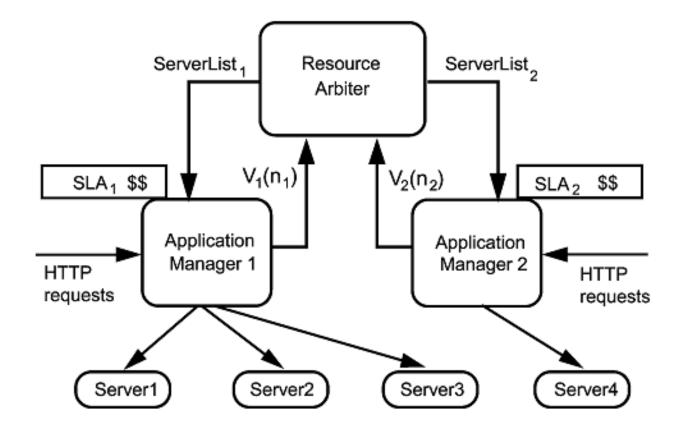
- Uncertain/Noisy
- Influenced by each agents

Hybrid RL | Overview

- Problem: how to allocate servers to various web applications?
 - Goal: maximize SLA revenue
 - Appropriate Response Time
 - Desired: self-managing system

- Approaches
 - Queue-based models
 - Reinforcement Learning
 - Hybrid Reinforcement Learning

Hybrid RL | System



Source: (Tesauro et al., 2007)

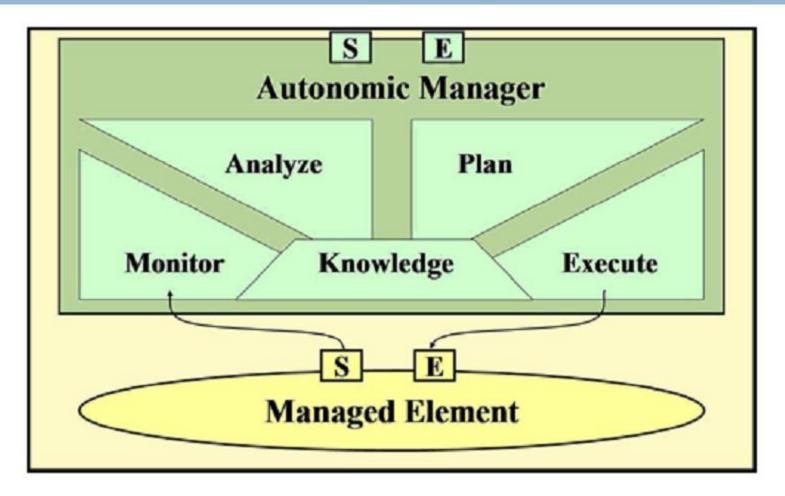
Background	Hybrid RI	Power Savings	Conclusion	10
Dackground	TIYDHU KL	rower savings	CONCIUSION	

Hybrid RL | Resource Allocation

- Resource Arbiter assigns resources to Application Managers
 - Global decision based on distributed input
- Resource Arbiter's Decision Process
 - Get utility functions from each Application Manager
 - Choose allocation that maximizes total SLA revenue
 - Possibly sub-optimal for individual apps
 - Polynomial time?

Application Managers model utility function

Hybrid RL | Application Manager



Source: (Tesauro et al., 2007)

Hybrid RL Queue-based Models

- Model each application as a Queue
 - Parallel homogeneous servers
 - Parameters
 - Request rate from users
 - Response time
 - # of servers
 - # of users
- Open-loop: infinite users
 - Steady incoming requests
- Closed-loop: fixed pool of users
 - Users "think", then submit request

Hybrid RL | Reinforcement Learning

- Model each application as a MDP
 - **States** = mean arrival of requests (λ)
 - Actions = number of servers n to assign
 - Reward = SLA revenue
- Problems
 - State space grows exponentially with characteristics
 - Exploration during online learning costly

Hybrid RL | Hybrid RL Approach

- State space problem
 - Use function approximation in place of Q-tables
 - Neural networks, regression trees, SVMs, etc.
 - Linear state space growth
 - Generalize across unseen states/actions

- Cost of exploration problem
 - Offline learning using server traces
 - Initial policy based on reasonable queuing model
 - Simulated or actual runs

Hybrid RL | Approach Comparison

Queue-based model

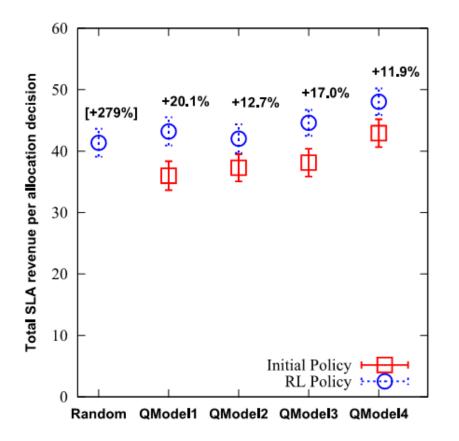
- Simple model (few parameters, no learning)
- Standard practice
- Cannot handle dynamic changes
- Requires domain expertise
- Hybrid RL
 - Improves model over time through learning
 - No worse if starting with a decent initial policy
 - Can handle dynamic environment
 - Minimal domain knowledge necessary
 - Requires training
 - Expensive if no available traces

Hybrid RL | Experiment Setup

- Environment
 - 8 servers
 - 3 applications
 - 2 based on Trade3, an electronic trading simulation
 - 1 batch processing

- Approaches
 - Random policy
 - Queue-based models
 - Hybrid RL from Queue data

Hybrid RL | Closed Loop Results



QModels:

- 1. MVA with no smoothing
- 2. (4) with cumulative reward
- 3. Parallel M/M/1
- 4. MVA with smoothing

Source: (Tesauro et al., 2007)

Hybrid RL | Hysteresis

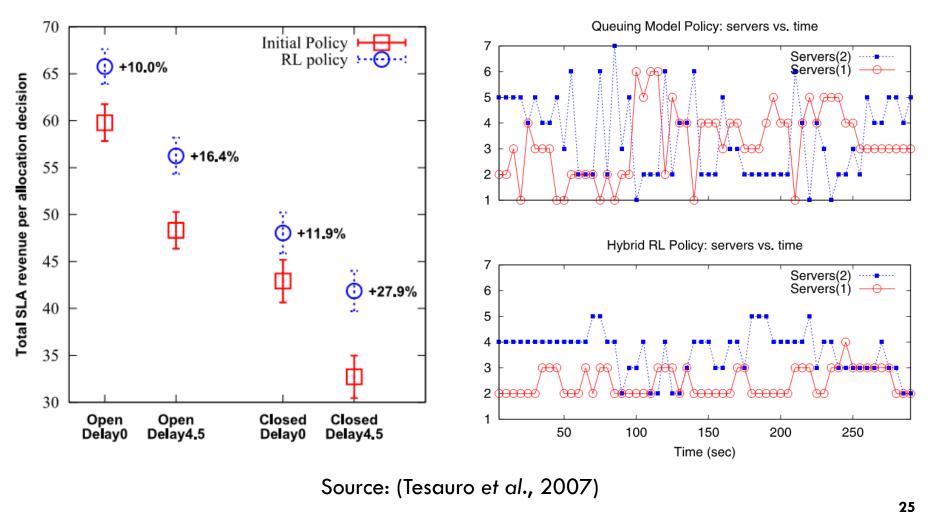
Dynamic Environment (not in Queuing model)
Impact of reassigning servers

4 Causes

- Switching delays
- Transient period of suboptimal performance
 - Starting processes
 - Load balancing
- Temporary increased demand

Thrashing

Hybrid RL | Hysteresis Results



Background Hybrid RL Power Savings Conclusion

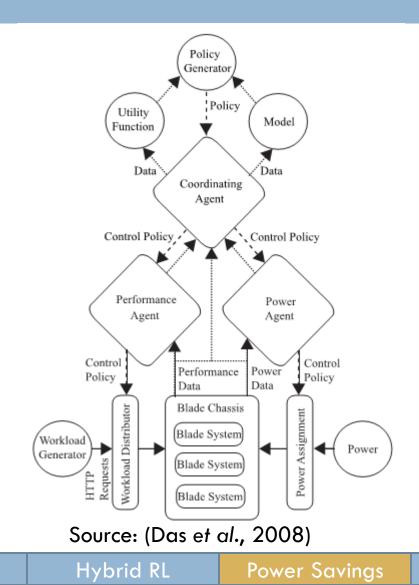
Power Savings | Overview

- Problem: can meet SLA requirements, but what about costs?
 - Power consumption second leading cost in 70% of IDCs
 - Power wasted by unused servers
 - Performance/power tradeoff

- Approach
 - Turn off unused servers, turn on when necessary
 - Modeled as a MAS for intelligent, distributed decisions

Power Savings | System

Background



Power Savings | Agents

Performance Agent

- Load balancing on servers (Apache)
- Monitor demand from requests

Coordinating Agent Get info from performance/power agent Choose allocations based on master policy

Power Agent

- Monitor power consumption (EMT)
- Turn machines on/off
- Can override Coordinating Agent

Power Savings | Policy

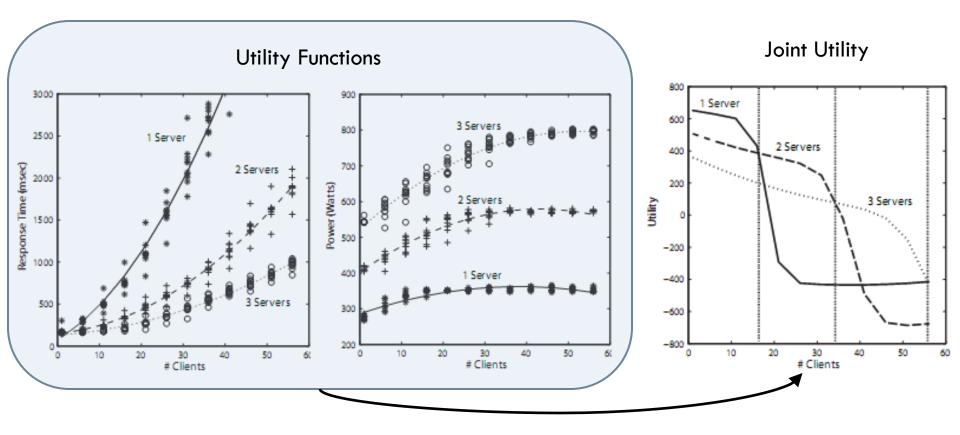
Goal: maximize utility

- Positive utility from satisfying requests
- Negative utility from power consumption
- Function of control parameters, observations

Policy

- Mapping of observations to actions
- Similar to POMDP solution from previous presentation

Power Savings | Policy



Source: (Das et al., 2008)

Background	Hybrid RL	Power Savings	Conclusion	

30

Power Savings | Experiment Setup

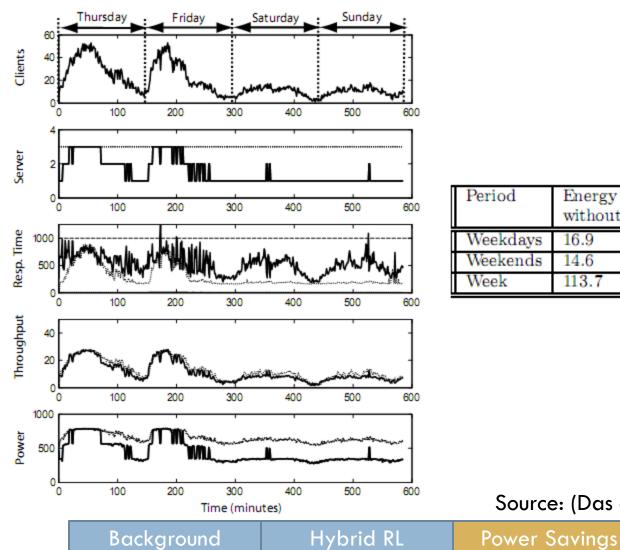
Single application

- Workload: LINPACK linear equations solver
- Requests: distribution based on NASA web logs

Servers

- 3 to run workload
- 1 for performance agent (Apache)
- Additional for power/coordination agents, workload generator

Power Savings Results



Period	Energy (kWh) without Policy	Energy (kWh) with Policy	Energy Saved
Weekdays	16.9	13.5	20.1%
Weekends	14.6	8.5	41.8%
Week	113.7	84.5	25.7%

Conclusion

Source: (Das et al., 2008)

32

Conclusion | Summary

Problem: resource allocation in IDCs

- Servers across multiple applications
- Performance/power tradeoff

Hybrid RL improves state-of-the-art in RA across tasks

- Better than queue-based models
- Better than "pure" RL approach

Initial investigation in MAS-based management fruitful

Extend to multiple applications?

References

- Tesauro et. al., "On the user of hybrid reinforcement learning for autonomic resource allocation", Cluster Computing, vol. 10, pp. 287-299, 2007.
- Das et. al., "Autonomic multi-agent management of power and performance in data centers", Proc. of AAMAS'08, pp. 107-114, 2008.