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 Fundamental problem in CS applications 

 Given a set of resources with limited quantities, how to 
apply to various tasks? 

 Goal: maximize benefits and/or minimize costs 

 Reward Tradeoff 

 

 Applications: 

 CPU load 

 Memory management 

 Power consumption 

 Access to network connections 
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 Resource Allocation Problem 

 How to assign available servers to incoming user 

requests? 

 Goals 

 Meet Service Level Agreements across several applications 

 Tradeoff responsiveness with power consumption savings 

 More servers = faster response time 

 Less servers = less power consumed 
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 Hybrid Reinforcement Learning for SLAs 

 

 Power Savings 

 

 Conclusion 

 

Based on: (Tesauro et al., 2007; Das et al., 2008) 
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 Reinforcement Learning 

 

 

 Neural Networks 

 

 

 Multiagent Systems 
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 Problem 

 Learn a mapping of state/action pairs to utility values 

 Use learned utilities to form policies 

 Plans of actions maximizing utility 

 Underlying MDP model 

 Terms 

 States S– description of environment 

 Actions A– action taken to change environment 

 Reward R(s,a) – numeric result of action 
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 Utility estimation stored as a Q-table 

 

 

 

 

 

 

 Utility updates (SARSA): 

 Q’(s,a) = (1 – α)Q(s,a) + α [R(s,a) + γQ(s’,a’)] 
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 Problem 

 Function approximation  

 non-linear output based on linear pieces (perceptrons) 

 Trained using examples (supervised learning) 

 

 Often used in classification in Machine Learning 

 Continuous output 

 Discrete output by thresholding 

Background Hybrid RL Power Savings Conclusion 



Background| Neural Networks 

11 

Background Hybrid RL Power Savings Conclusion 

X1 

X2 

X3 

f(X1,X2,X3) 

Inputs 

Output 

Hidden Layer 

Weights 

…

 



Background| Multiagent Systems 

12 

 Agent Characteristics 

 Intelligent 

 Autonomous 
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 Multiagent System (MAS) 

 Multiple agents in the same environment 

 Agents are aware of one another 

 Cooperative vs. Competitive 

 

Environment Characteristics 

 Dynamic 

 Uncertain/Noisy 

 Influenced by each agents 
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 Problem: how to allocate servers to various web 

applications? 

 Goal: maximize SLA revenue 

 Appropriate Response Time 

 Desired: self-managing system 

 

 Approaches 

 Queue-based models 

 Reinforcement Learning 

 Hybrid Reinforcement Learning 
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Source: (Tesauro et al., 2007) 



Hybrid RL| Resource Allocation 

16 

Background Hybrid RL Power Savings Conclusion 

 Resource Arbiter assigns resources to Application 
Managers 

 Global decision based on distributed input 

 

 Resource Arbiter’s Decision Process 

 Get utility functions from each Application Manager 

 Choose allocation that maximizes total SLA revenue 

 Possibly sub-optimal for individual apps 

 Polynomial time? 

 

 Application Managers model utility function 
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Source: (Tesauro et al., 2007) 
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 Model each application as a Queue 

 Parallel homogeneous servers 

 Parameters 
 Request rate from users 

 Response time 

 # of servers 

 # of users 

 

 Open-loop: infinite users 

 Steady incoming requests 

 Closed-loop: fixed pool of users 

 Users “think”, then submit request 
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 Model each application as a MDP 

 States = mean arrival of requests (λ) 

 Actions = number of servers n to assign 

 Reward = SLA revenue 

 

 Problems 

 State space grows exponentially with characteristics 

 Exploration during online learning costly 
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 State space problem 

 Use function approximation in place of Q-tables 

 Neural networks, regression trees, SVMs, etc. 

 Linear state space growth 

 Generalize across unseen states/actions 

 

 Cost of exploration problem 

 Offline learning using server traces 

 Initial policy based on reasonable queuing model 

 Simulated or actual runs 
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 Queue-based model 

 Simple model (few parameters, no learning) 

 Standard practice 

 Cannot handle dynamic changes 

 Requires domain expertise 

 

 Hybrid RL 

 Improves model over time through learning 

 No worse if starting with a decent initial policy 

 Can handle dynamic environment 

 Minimal domain knowledge necessary 

 Requires training 

 Expensive if no available traces 
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 Environment 

 8 servers 

 3 applications 

 2 based on Trade3, an electronic trading simulation 

 1 batch processing 

 

 Approaches 

 Random policy 

 Queue-based models 

 Hybrid RL from Queue data 
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Source: (Tesauro et al., 2007) 

 QModels: 

1. MVA with no smoothing 

2. (4) with cumulative 

reward 

3. Parallel M/M/1 

4. MVA with smoothing 
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 Dynamic Environment (not in Queuing model) 

 Impact of reassigning servers 

 

 4 Causes 

 Switching delays 

 Transient period of suboptimal performance 

 Starting processes 

 Load balancing 

 Temporary increased demand 

 Thrashing 
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Source: (Tesauro et al., 2007) 
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 Problem: can meet SLA requirements, but what 

about costs? 

 Power consumption second leading cost in 70% of IDCs 

 Power wasted by unused servers 

 Performance/power tradeoff 

 

 Approach 

 Turn off unused servers, turn on when necessary 

 Modeled as a MAS for intelligent, distributed decisions 
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Source: (Das et al., 2008) 
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 Performance Agent 

 Load balancing on servers (Apache) 

 Monitor demand from requests 
 

 Coordinating Agent 

 Get info from performance/power agent 

 Choose allocations based on master policy 
 

 Power Agent 

 Monitor power consumption (EMT) 

 Turn machines on/off 

 Can override Coordinating Agent 
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 Goal: maximize utility 

 Positive utility from satisfying requests 

 Negative utility from power consumption 

 Function of control parameters, observations 

 

 Policy 

 Mapping of observations to actions 

 Similar to POMDP solution from previous presentation 
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Utility Functions Joint Utility 

Source: (Das et al., 2008) 
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 Single application 

 Workload: LINPACK linear equations solver 

 Requests: distribution based on NASA web logs 

 

 Servers 

 3 to run workload 

 1 for performance agent (Apache) 

 Additional for power/coordination agents, workload 

generator 
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Source: (Das et al., 2008) 
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 Problem: resource allocation in IDCs 

 Servers across multiple applications 

 Performance/power tradeoff 

 

 Hybrid RL improves state-of-the-art in RA across tasks 

 Better than queue-based models 

 Better than “pure” RL approach 

 

 Initial investigation in MAS-based management fruitful 

 Extend to multiple applications? 
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