
4/6/2011

1

NEUROEVOLUTION

Presenter: Vlad Chiriacescu

Contents

• Evolutionary Computation overview

• Neuroevolution overview

• Issues in standard Evolutionary Computation

• NEAT method

• Complexification in competitive coevolution

Evolutionary Computation

• Evolutionary Computation (EC) is a class of algorithms that
can be applied to open-ended learning problems in Artificial
Intelligence

• Traditionally, these algorithms evolve fixed-length genomes
under the assumption that the space of the genome is
sufficient to encode the solution

• A genome containing genes encodes a single point in an -
dimensional search space.

• In many cases, a solution is known to exist somewhere in that
space.

Neuroevolution
• Neuroevolution is a form of machine learning that uses

evolutionary algorithms to train artificial neural networks

• Useful in applications where is difficult to create correct
input-output pairs (where supervised learning algorithms are
not suitable). Notable examples: games and robot motor
control

• It is classified in the category of reinforcement learning
techniques

Types of neuro-evolution algorithms

• Some algorithms evolve only the weights of a neural network
and others evolve both the weights and the topology of the
network (Topology & Weight Evolving Artificial Neural
Networks or TWEANNs)

• Some methods evolve the structure in parallel with network
parameters such as the network’s weights

Types of neuro-evolution algorithms
• When the genotype contains descriptions of neurons and

connections inside the network, the neuro-evolution
technique uses a direct encoding scheme.

• Through evolution, a new network (genotype) is determined.
The observable trait (or phenotype) is the new network and
thus the genotype is the same with the phenotype.

• When the genotype specifies rules or other structures that
describe how to generate a network, the neuro-evolution
technique uses an indirect encoding scheme.

• Through evolution, a new set of rules/structures (genotype) is
determined. The observable trait (or phenotype) is the newly
generated network and thus the phenotype is not the same
with the genotype.

4/6/2011

2

Issues in Evolutionary Computation

• Many common structures are defined by an indefinite
number of parameters – these can contain a variable number
of parts that can be represented by any number of
parameters above some minimum.

• As an example, two neural networks with different numbers
of connections and nodes can represent the same function .

• Therefore, it is not clear what number of genes is appropriate
for solving a particular problem.

• In the case of fixed-length genotypes it is necessary to use
heuristics to estimate a priori the appropriate number of
genes to encode such structures.

Issues in Evolutionary Computation

• Unfortunately, for very complex problems, heuristically
determining the appropriate number of genes becomes
impossible

• For example, how many nodes and connections are necessary
for a neural network that controls a poker playing robot?

• Because little is known about the solutions, answers to such
questions can hardly be based on empirical experience

• One approach is to make the genome extremely large, so that
the space it encodes is extremely large and a solution is likely
to lie somewhere within -> but the larger the genome, the
higher dimensional the space that evolution needs to search

Issues in Evolutionary Computation

• Another problem appears in open-ended problems where
phenotypes are meant to improve indefinitely and there is
no known final solution.

• For example, when a good behavior of a poker playing robot is
found through evolution, the researcher doesn’t know if there
are better players out there -> therefore continual evolution
has to take place

Issues in Evolutionary Computation

• Such continual evolution is difficult with a fixed genome
because:

(1) The entire representational space of the genome is used to

 encode a good solution and improving it means to alter the

 strategy, thereby sacrificing some of the functionality

 learned over previous generations

(2) Fixing the size of the genome in such domains arbitrarily

 fixes the maximum complexity of evolved creatures,

 defeating the purpose of the experiment.

Issues in Evolutionary Computation Evolving Neural Network Topologies
(NEAT method)

• It’s a method that evolves both network topology and
synaptic weights; uses a direct encoding scheme

• Combines the usual search for appropriate network weights
with complexification of the network structure

• Generally, methods that include evolution of topologies have
a bound on the complexity of networks that can be evolved;
they also begin evolution with random topologies

• The advantage of NEAT is that it can evolve networks of
unbounded complexity from a minimal starting point

4/6/2011

3

Major NEAT goals
• Continual coevolution

 Successful competitive coevolution can use the evolution of

 topologies to continuously elaborate strategies.

• Evolution of Adaptive Networks

 The evolution of topologies allows neuro-evolution to evolve

 adaptive networks with plastic synapses by designating which

 connections should be adaptive and in what ways.

• Combining Expert Networks

 Separate expert neural networks can be fused through the

 evolution of connecting neurons between them.

Challenges addressed by NEAT
• NEAT addresses 3 main challenges in evolving neural network

topology:

(1) What kind of genetic representation would allow disparate
topologies to crossover in a meaningful way?

(2) How can topological innovation that needs a few
generations to optimize be protected so that it does not
disappear from the population prematurely?

(3) How can topologies be minimized throughout evolution so
the most efficient solutions will be discovered?

Genetic encoding in NEAT

• Evolving structure requires a flexible genetic encoding. In
order to allow structures to complexify, their representations
must be dynamic and expandable. Each genome in NEAT
includes a list of connection genes, each of which refers to
two node genes being connected.

• Each connection gene specifies the in-node, the out-node,
the weight of the connection, whether or not the connection
gene is expressed (an enable bit), and an innovation number,
which allows finding corresponding genes during crossover.

Genetic encoding in NEAT

NEAT Mutation
• Mutation in NEAT can change both connection weights and

network structures.

• Structural mutations form the basis of complexification and
occur in two ways:

 (1) In the add connection mutation, a single new connection

 gene is added and it connects two previously unconnected

 nodes.

 (2) In the add node mutation, an existing connection is split

 and the new node placed where the old connection used to

 be. The old connection is disabled and two new connections

 are added to the genome.

• The connection between the first node in the chain and the
new node is given a weight of one, and the connection
between the new node and the last node in the chain is
given the same weight as the connection being split.

Structural mutation in NEAT

4/6/2011

4

Crossover in NEAT
• Uses historical markings to line up genes with the same origin.

• Historical origin of each gene can be used to tell us exactly
which genes match up between any individuals in the
population.

• Two genes with the same historical origin represent the same
structure (although possibly with different weights), since
they were both derived from the same ancestral gene at some
point in the past. Thus, all a system needs to do is to keep
track of the historical origin of every gene in the system.

• Whenever a new gene appears (through structural mutation),
a global innovation number is incremented and assigned to
that gene.

• The innovation numbers thus represent a chronology of every
gene in the system.

Crossover example

Crossover in NEAT

• Historical markings allow NEAT to perform crossover without
the need for expensive topological analysis.

• Thus, the problem of comparing different topologies is
essentially avoided and allows NEAT to complexify structure
while still maintaining genetic compatibility.

• However, it turns out that a population of varying
complexities cannot maintain topological innovations on its
own.

• The solution is to protect innovation by speciating the
population.

Protecting Innovation through
Speciation

 • NEAT speciates the population so that individuals compete
primarily within their own niches instead of with the
population at large. This way, topological innovations are
protected and have time to optimize their structure before
they have to compete with other niches in the population.

• Speciation also prevents bloating of genomes: Species with
smaller genomes survive as long as their fitness is
competitive, ensuring that small networks are not replaced by
larger ones unnecessarily.

• The rationale for this is that new ideas must be given time to
reach their potential before they are eliminated.

Protecting Innovation through
Speciation

• The distance between two network encodings is computed as
a linear combination of the number of excess () and disjoint ()
genes, as well as the average weight differences of matching
genes.

• The coefficients c1, c2 and c3 adjust the importance of the
three factors, and the factor N represents the number of
genes in the larger genome; it normalizes for genome size

Protecting Innovation through
Speciation

• Genomes are tested one at a time; if a genome's distance to a
randomly chosen member of the species is less than a
compatibility threshold, it is placed into this species. Each
genome is placed into the first species from the previous
generation where this condition is satisfied, so that no
genome is in more than one species.

• If a genome is not compatible with any existing species, a
new species is created. The problem of choosing the best
value for the threshold can be avoided by making it dynamic;
that is, given a target number of species, the system can raise
if there are too many species, and lower if there are too few.

4/6/2011

5

Protecting Innovation through
Speciation

• As a reproduction mechanism, NEAT uses explicit fitness
sharing, where organisms in the same species must share the
fitness of their niche. Thus, a species cannot afford to become
too big even if many of its organisms perform well.

• Therefore, any one species is unlikely to take over the entire
population, which is crucial for speciated evolution to
maintain topological diversity. The adjusted fitness for the
organism is calculated according to its distance from every
other organism in the population:

• The sharing function sh is set to 0 when distance is above the
threshold ; otherwise, is set to 1. Thus, the denominator is
reduced to the number of organisms in the same species as
organism.

Protecting Innovation through
Speciation

• Every species is assigned a potentially different number of
offspring in proportion to the sum of adjusted fitnesses of its
member organisms.

• Species reproduce by first eliminating the lowest performing
members from the population. The entire population is then
replaced by the offspring of the remaining organisms in each
species.

• The net effect of speciating the population is that structural
innovation is protected.

Minimizing Dimensionality through
Complexification

 • NEAT begins with a uniform population of simple networks
with no hidden nodes, differing only in their initial random
weights.

• Speciation protects new innovations, allowing topological
diversity to be gradually introduced over evolution. Because
of this preservation, NEAT can start minimally, and grow new
structure over generations.

• New structure is introduced incrementally as structural
mutations occur, and only those structures survive that are
found to be useful through fitness evaluations. This way,
NEAT searches through a minimal number of weight
dimensions, and ensures that networks become no more
complex than necessary. This gradual production of
increasingly complex structures constitutes complexification.

Coevolution

• Coevolution: In natural ecosystems, organisms of one species
compete and/or cooperate with many other different species
in their struggle for resources and survival. The fitness of each
individual changes over time because it is coupled to that of
other individuals inhabiting the environment. As species
evolve they specialize and co-adapt their survival strategies to
those of other species.

• Competitive coevolution: Coevolution system in which the
emphasis is on competition between species. The idea
consists in establishing an ‘arms race’ where each species
produces stronger and stronger strategies in order to defeat
the other. This is a natural approach for problems such as
game-playing where often an optimal opponent is not
available.

Coevolution

• A very different kind of coevolutionary model emphasizes
cooperation. Cooperative coevolution is motivated, in part, by
the recognition that the complexity of difficult problems can
be reduced through modularization.

• In cooperative coevolutionary algorithms the species
represent solution components. Each individual forms a part
of a complete solution but need not represent anything
meaningful on its own. The components are evolved by
measuring their contribution to complete solutions and
recombining those that are most beneficial to solving the task.

Complexification in competitive
coevolution

• NEAT hypothesis: the complexification process allows
discovering more sophisticated strategies, i.e. strategies that
are more effective, flexible, and general, and include more
components and variations than do strategies obtained
through search in a fixed space

• To demonstrate this hypothesis, it is required a domain
where it is possible to develop a wide range of increasingly
sophisticated strategies, and where sophistication can be
readily measured.

• Solution: A competitive coevolution domain is particularly
appropriate because a sustained ‘arms race’ should lead to
increased sophistication.

4/6/2011

6

The Robot Duel Domain
 • The domain used to show the effects of

complexification consists of two simulated
robots that try to overpower each other

The Robot Duel Domain

• The robot duel task supports a broad range of sophisticated
strategies that are easy to observe and interpret.

• The competitors must become proficient at foraging, prey
capture, and escaping predators. In addition, they must be
able to quickly switch from one behavior to another.

• The task is well-suited to competitive coevolution because
naive strategies such as forage-then-attack can be
complexified into more sophisticated strategies such as luring
the opponent to waste its energy before attacking.

The Robot Duel Domain The Robot Duel Domain

• Each has two wheels controlled by separate motors. Five
rangefinder sensors can sense food and another five can
sense the other robot. Finally, each robot has an energy-
difference sensor, and a single wall sensor.

• The robots are controlled with neural networks evolved
with NEAT. The networks receive all of the robot sensors
as inputs, as well as a constant bias that NEAT can use to
change the activation thresholds of neurons.

• They produce three motor outputs: Two to encode
rotation either right or left, and a third to indicate
forward motion power. These three values are then
translated into forces to be applied to the left and right
wheels of the robot.

Competitive Coevolution Setup
 • The robot duel domain supports highly sophisticated

strategies. Thus, the question in such a domain is whether
continual coevolution will take place, i.e. whether
increasingly sophisticated strategies will appear over the
course of evolution.

• In competitive coevolution, every network should play a
sufficient number of games to establish a good measure of
fitness. To encourage interesting and sophisticated strategies,
networks should play a diverse and high quality sample of
possible opponents.

• A solution is to evolve two separate populations, one for each
robot. In each generation, each population is evaluated
against an intelligently chosen sample of networks from the
other population.

Competitive Coevolution Setup
• The population currently being evaluated is called the host

population, and the population from which opponents are
chosen is called the parasite population . The parasites are
chosen for their quality and diversity, making host/parasite
evolution more efficient and more reliable than one based on
random or round robin tournament.

• Each host is evaluated against four highest species champions
from the parasite population. Other eight opponents are
chosen randomly from a Hall of Fame composed of all
generation champions. This exploits speciation and fitness
sharing that occurs in NEAT. The Hall of Fame ensures that
existing abilities need to be maintained to obtain a high
fitness.

• Together, speciation, fitness sharing, and Hall of Fame
comprise an effective competitive coevolution methodology.

4/6/2011

7

Monitoring Progress in Competitive

Coevolution
 • A competitive coevolution run returns a record of every

generation champion from both populations.

• How can a sequence of increasingly sophisticated strategies
be identified in this data, if one exists?

• The answer is the dominance tournament method for
monitoring progress in competitive coevolution

• First of all, it is necessary to come up with a way to make
individual comparisons, i.e. whether one strategy is superior
to another one; the two champion networks (one from each
population) to be compared compete in 288 games; those
consist in various starting and food positions so that the
advantages and disadvantages are balanced between the two
individuals.

• A network A is superior to a network B if it wins more games
than B out of the 288 total games.

Monitoring Progress in Competitive
Coevolution

 • In order to decisively track strategic innovation, we need to
identify dominant strategies, i.e. those that defeat all
previous dominant strategies. This way, we can make sure
that evolution proceeds by developing a progression of strictly
more powerful strategies, instead of e.g. switching between
alternative ones.

• This is accomplished by the dominance tournament method

• A generation champion is the winner of a 288 game
comparison between the host and parasite champions of a
single generation.

• d_j is the jth dominant strategy to appear over evolution.
Dominance is defined recursively starting from the first
generation and progressing to the last:

Monitoring Progress in Competitive
Coevolution

• d_j is the jth dominant strategy to appear over evolution.
Dominance is defined recursively starting from the first
generation and progressing to the last:

• The first dominant strategy d_1 is the generation champion of
the first generation;

• Dominant strategy d_j, where j > 1, is a generation champion
such that for all I < j, d_j is superior to d_i (i.e. wins the 288
game comparison with it).

• This definition of dominance prohibits circularities.

Evolution of Complexity
 • Armed with the appropriate coevolution methodology and a

measure of success, the question that remains is : Does
complexification result in more successful competitive
coevolution?

• In order to analyze the results, complexity is defined as the
number of nodes and connections in a network.

Evolution of Complexity

• There are two underlying forces of progress: The building of
new structures, and the continual optimization of prior
structures in the background. The product of these two trends
is a gradual stepped progression towards increasing
complexity.

• An important question is: does the complexity always increase
whether it helps in finding good solutions or not?

• To see how complexification contributes to evolution, the
development over time of a sample dominant strategy is
observed

Sophistication through
Complexification

4/6/2011

8

Sophistication through
Complexification

• In some cases, weight optimization alone can produce
improved strategies.

• However, when those strategies need to be extended, adding
new structure allows the new behaviors to coexist with old
strategies.

• Also, in some cases it is necessary to add complexity to make
the timing or execution of the behavior more accurate.
Results obtained show how complexification can be utilized to
produce increasing sophistication.

• Complexifying coevolution was also compared to two
alternatives: standard coevolution in a fixed search space, and
simplifying coevolution from a complex starting point. The
results obtained show the net superiority of complexification.

Discussion

• What makes complexification such a powerful search
method?

• Whereas in fixed-topology coevolution, as well as in
simplifying coevolution, the good structures must be
optimized in the high-dimensional space of the solutions
themselves, complexifying coevolution only searches high-
dimensional structures that are elaborations of known good
lower-dimensional structures.

Discussion

• Before adding a new dimension, the values of the
existing genes have already been optimized over
preceding generations. Thus, after a new gene is added,
the genome is already in a promising part of the new,
higher-dimensional space.

• Thus, the search in the higher-dimensional space is not
starting blindly as it would if evolution began searching
in that space. It is for this reason that complexification
can find high-dimensional solutions that fixed-topology
coevolution and simplifying coevolution cannot.

References

• 1. Kenneth O. Stanley, Competitive Coevolution through
Evolutionary Complexification, Department of Computer Sciences,
The University of Texas at Austin

 (http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume21/

 stanley04a-html)

• 2. Wikipedia, Neuroevolution
http://en.wikipedia.org/wiki/Neuroevolution

• 3. Faustino Gomez, Jurgen Schmidhuber, Risto Miikkulainen,
Accelerated Neural Evolution through Cooperatively Coevolved
Synapses

http://en.wikipedia.org/wiki/Neuroevolution
http://en.wikipedia.org/wiki/Neuroevolution
http://en.wikipedia.org/wiki/Neuroevolution

