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Evolutionary Computation 

• Evolutionary Computation (EC) is a class of algorithms that 
can be applied to open-ended learning problems in Artificial 
Intelligence 

• Traditionally, these algorithms evolve fixed-length genomes 
under the assumption that the space of the genome is 
sufficient to encode the solution 

• A genome containing genes encodes a single point in an -
dimensional search space. 

• In many cases, a solution is known to exist somewhere in that 
space. 

Neuroevolution 
• Neuroevolution is a form of machine learning that uses 

evolutionary algorithms to train artificial neural networks 

 

• Useful in applications where is difficult to create correct 
input-output pairs (where supervised learning algorithms are 
not suitable). Notable examples: games and robot motor 
control 

 

• It is classified in the category of reinforcement learning 
techniques 

 

Types of neuro-evolution algorithms 

• Some algorithms evolve only the weights of a neural network 
and others evolve both the weights and the topology of the 
network (Topology & Weight Evolving Artificial Neural 
Networks or TWEANNs) 

 

 

• Some methods evolve the structure in parallel with network 
parameters such as the network’s weights 

Types of neuro-evolution algorithms 
• When the genotype contains descriptions of neurons and 

connections inside the network, the neuro-evolution 
technique uses a direct encoding scheme.  

• Through evolution, a new network (genotype) is determined. 
The observable trait (or phenotype) is the new network and 
thus the genotype is the same with the phenotype. 

•  When the genotype specifies rules or other structures that 
describe how to generate a network, the neuro-evolution 
technique uses an indirect encoding scheme. 

• Through evolution, a new set of rules/structures (genotype) is 
determined. The observable trait (or phenotype) is the newly 
generated network and thus the phenotype is not the same 
with the genotype. 

 



4/6/2011 

2 

Issues in Evolutionary Computation 

• Many common structures are defined by an indefinite 
number of parameters – these can contain a variable number 
of parts that can be represented by any number of 
parameters above some minimum. 

• As an example, two neural networks with different numbers 
of connections and nodes can represent the same function . 

• Therefore, it is not clear what number of genes is appropriate 
for solving a particular problem. 

• In the case of fixed-length genotypes  it is necessary to use 
heuristics to estimate a priori the appropriate number of 
genes to encode such structures.  

Issues in Evolutionary Computation 

• Unfortunately, for very complex problems, heuristically 
determining the appropriate number of genes becomes 
impossible 

• For example, how many nodes and connections are necessary 
for a neural network that controls a poker playing robot? 

• Because little is known about the solutions, answers to such 
questions can hardly be based on empirical experience  

• One approach is to make the genome extremely large, so that 
the space it encodes is extremely large and a solution is likely 
to lie somewhere within -> but the larger the genome, the 
higher dimensional the space that evolution needs to search 

Issues in Evolutionary Computation 
 

 

• Another problem appears in open-ended problems where 
phenotypes are meant to improve indefinitely and there is 
no known final solution. 

 

 

• For example, when a good behavior of a poker playing robot is 
found through evolution, the researcher doesn’t know if there 
are better players out there -> therefore continual evolution 
has to take place 

Issues in Evolutionary Computation 

• Such continual evolution is difficult with a fixed genome 
because:  

(1) The entire representational space of the genome is used to  

       encode a good solution and improving it means to alter the     

       strategy, thereby sacrificing some of the functionality     

       learned over previous generations 

 

(2) Fixing the size of the genome in such domains arbitrarily  

       fixes the maximum complexity of evolved creatures,   

       defeating the purpose of the experiment. 

Issues in Evolutionary Computation Evolving Neural Network Topologies 
(NEAT method) 

• It’s a method that evolves both network topology and 
synaptic weights; uses a direct encoding scheme 

 

• Combines the usual search for appropriate network weights 
with complexification of the network structure 

 

• Generally, methods that include evolution of topologies have 
a bound on the complexity of networks that can be evolved; 
they also begin evolution with random topologies 

 

• The advantage of NEAT is that it can evolve networks of 
unbounded complexity from a minimal starting point 

 



4/6/2011 

3 

Major NEAT goals 
• Continual coevolution 

     Successful competitive coevolution can use the evolution of   

     topologies to continuously elaborate strategies. 

 

• Evolution of Adaptive Networks 

     The evolution of topologies allows neuro-evolution to evolve  

     adaptive networks with plastic synapses by designating which  

     connections should be adaptive and in what ways. 

 

• Combining Expert Networks 

     Separate expert neural networks can be fused through the  

     evolution of connecting neurons between them. 

Challenges addressed by NEAT 
• NEAT addresses 3 main challenges in evolving neural network 

topology:  

 

(1) What kind of genetic representation would allow disparate 
topologies to crossover in a meaningful way?  

 

(2) How can topological innovation that needs a few 
generations to optimize be protected so that it does not  
disappear from the population prematurely? 

 

(3) How can topologies be minimized throughout evolution so 
the most efficient solutions will be discovered?  

 

 

Genetic encoding in NEAT 

• Evolving structure requires a flexible genetic encoding. In 
order to allow structures to complexify, their representations 
must be dynamic and expandable. Each genome in NEAT 
includes a list of connection genes, each of which refers to 
two node genes being connected. 

 

•  Each connection gene specifies the in-node, the out-node, 
the weight of the connection, whether or not the connection 
gene is expressed (an enable bit), and an innovation number, 
which allows finding corresponding genes during crossover.  

Genetic encoding in NEAT 

NEAT Mutation 
• Mutation in NEAT can change both connection weights and 

network structures. 

• Structural mutations form the basis of complexification and 
occur in two ways: 

     (1) In the add connection mutation, a single new connection    

     gene is added and it connects two previously unconnected   

     nodes. 

     (2) In the add node mutation, an existing connection is split  

     and the new node placed where the old connection used to   

     be. The old connection is disabled and two new connections    

     are added to the genome. 

• The connection between the first node in the chain and the 
new node is given a weight of one, and the connection 
between the new node and the last node in the chain is 
given the same weight as the connection being split. 

Structural mutation in NEAT 
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Crossover in NEAT 
• Uses historical markings to line up genes with the same origin. 

• Historical origin of each gene can be used to tell us exactly 
which genes match up between any individuals in the 
population. 

• Two genes with the same historical origin represent the same 
structure (although possibly with different weights), since 
they were both derived from the same ancestral gene at some 
point in the past. Thus, all a system needs to do is to keep 
track of the historical origin of every gene in the system.  

• Whenever a new gene appears (through structural mutation), 
a global innovation number is incremented and assigned to 
that gene. 

• The innovation numbers thus represent a chronology of every 
gene in the system.  

Crossover example 

Crossover in NEAT 

• Historical markings allow NEAT to perform crossover without 
the need for expensive topological analysis. 

• Thus, the problem of comparing different topologies is 
essentially avoided and allows NEAT to complexify structure 
while still maintaining genetic compatibility. 

• However, it turns out that a population of varying 
complexities cannot maintain topological innovations on its 
own. 

• The solution is to protect innovation by speciating the 
population. 

Protecting Innovation through 
Speciation  

 • NEAT speciates the population so that individuals compete 
primarily within their own niches instead of with the 
population at large. This way, topological innovations are 
protected and have time to optimize their structure before 
they have to compete with other niches in the population. 

 

• Speciation also prevents bloating of genomes: Species with 
smaller genomes survive as long as their fitness is 
competitive, ensuring that small networks are not replaced by 
larger ones unnecessarily. 

 

• The rationale for this is that new ideas must be given time to 
reach their potential before they are eliminated.  

Protecting Innovation through 
Speciation 

• The distance between two network encodings is computed as 
a linear combination of the number of excess () and disjoint () 
genes, as well as the average weight differences of matching 
genes. 

 

 

 

• The coefficients c1, c2 and c3 adjust the importance of the 
three factors, and the factor N represents the number of 
genes in the larger genome; it normalizes for genome size 

Protecting Innovation through 
Speciation 

• Genomes are tested one at a time; if a genome's distance to a 
randomly chosen member of the species is less than a 
compatibility threshold, it is placed into this species. Each 
genome is placed into the first species from the previous 
generation where this condition is satisfied, so that no 
genome is in more than one species.  

 

• If a genome is not compatible with any existing species, a 
new species is created. The problem of choosing the best 
value for the threshold can be avoided by making it dynamic; 
that is, given a target number of species, the system can raise 
if there are too many species, and lower if there are too few. 
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Protecting Innovation through 
Speciation 

• As a reproduction mechanism, NEAT uses explicit fitness 
sharing, where organisms in the same species must share the 
fitness of their niche. Thus, a species cannot afford to become 
too big even if many of its organisms perform well.  

• Therefore, any one species is unlikely to take over the entire 
population, which is crucial for speciated evolution to 
maintain topological diversity. The adjusted fitness for the 
organism is calculated according to its distance from every 
other organism in the population:  

 

 

 

• The sharing function sh is set to 0 when distance is above the 
threshold ; otherwise, is set to 1. Thus, the denominator is 
reduced to the number of organisms in the same species as 
organism.  

 

Protecting Innovation through 
Speciation 

• Every species is assigned a potentially different number of 
offspring in proportion to the sum of adjusted fitnesses of its 
member organisms.  

 

• Species reproduce by first eliminating the lowest performing 
members from the population. The entire population is then 
replaced by the offspring of the remaining organisms in each 
species.  

 

• The net effect of speciating the population is that structural 
innovation is protected. 

 

Minimizing Dimensionality through 
Complexification 

 • NEAT begins with a uniform population of simple networks 
with no hidden nodes, differing only in their initial random 
weights. 

• Speciation protects new innovations, allowing topological 
diversity to be gradually introduced over evolution. Because 
of this preservation, NEAT can start minimally, and grow new 
structure over generations.  

• New structure is introduced incrementally as structural 
mutations occur, and only those structures survive that are 
found to be useful through fitness evaluations. This way, 
NEAT searches through a minimal number of weight 
dimensions, and ensures that networks become no more 
complex than necessary. This gradual production of 
increasingly complex structures constitutes complexification.  

Coevolution 

• Coevolution: In natural ecosystems, organisms of one species 
compete and/or cooperate with many other different species 
in their struggle for resources and survival. The fitness of each 
individual changes over time because it is coupled to that of 
other individuals inhabiting the environment. As species 
evolve they specialize and co-adapt their survival strategies to 
those of other species.  

 

• Competitive coevolution: Coevolution system in which the 
emphasis is on competition between species. The idea 
consists in establishing an ‘arms race’ where each species 
produces stronger and stronger strategies in order to defeat 
the other. This is a natural approach for problems such as 
game-playing where often an optimal opponent is not 
available. 

 

 

Coevolution 
 

• A very different kind of coevolutionary model emphasizes 
cooperation. Cooperative coevolution is motivated, in part, by 
the recognition that the complexity of difficult problems can 
be reduced through modularization.  

 

 

• In cooperative coevolutionary algorithms the species 
represent solution components. Each individual forms a part 
of a complete solution but need not represent anything 
meaningful on its own. The components are evolved by 
measuring their contribution to complete solutions and 
recombining those that are most beneficial to solving the task. 

Complexification in competitive 
coevolution 

• NEAT hypothesis: the complexification process allows 
discovering more sophisticated strategies, i.e. strategies that 
are more effective, flexible, and general, and include more 
components and variations than do strategies obtained 
through search in a fixed space 

 

• To demonstrate this hypothesis,  it is required a domain 
where it is possible to develop a wide range of increasingly 
sophisticated strategies, and where sophistication can be 
readily measured. 

 

• Solution: A competitive coevolution domain is particularly 
appropriate because a sustained ‘arms race’ should lead to 
increased sophistication.  
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The Robot Duel Domain 
 • The domain used to show the effects of 

complexification consists of two simulated 
robots that try to overpower each other 

 

The Robot Duel Domain 

• The robot duel task supports a broad range of sophisticated 
strategies that are easy to observe and interpret.  

 

• The competitors must become proficient at foraging, prey 
capture, and escaping predators. In addition, they must be 
able to quickly switch from one behavior to another.  

 

• The task is well-suited to competitive coevolution because 
naive strategies such as forage-then-attack can be 
complexified into more sophisticated strategies such as luring 
the opponent to waste its energy before attacking. 

The Robot Duel Domain The Robot Duel Domain 

• Each has two wheels controlled by separate motors. Five 
rangefinder sensors can sense food and another five can 
sense the other robot. Finally, each robot has an energy-
difference sensor, and a single wall sensor.  

• The robots are controlled with neural networks evolved 
with NEAT. The networks receive all of the robot sensors 
as inputs, as well as a constant bias that NEAT can use to 
change the activation thresholds of neurons.  

• They produce three motor outputs: Two to encode 
rotation either right or left, and a third to indicate 
forward motion power. These three values are then 
translated into forces to be applied to the left and right 
wheels of the robot.  

 

Competitive Coevolution Setup 
 • The robot duel domain supports highly sophisticated 

strategies. Thus, the question in such a domain is whether 
continual coevolution will take place, i.e. whether 
increasingly sophisticated strategies will appear over the 
course of evolution. 

• In competitive coevolution, every network should play a 
sufficient number of games to establish a good measure of 
fitness. To encourage interesting and sophisticated strategies, 
networks should play a diverse and high quality sample of 
possible opponents. 

• A solution is to evolve two separate populations, one for each 
robot. In each generation, each population is evaluated 
against an intelligently chosen sample of networks from the 
other population.  

Competitive Coevolution Setup 
• The population currently being evaluated is called the host 

population, and the population from which opponents are 
chosen is called the parasite population . The parasites are 
chosen for their quality and diversity, making host/parasite 
evolution more efficient and more reliable than one based on 
random or round robin tournament.  

 

• Each host is evaluated against four highest species champions 
from the parasite population. Other eight opponents are 
chosen randomly from a Hall of Fame composed of all 
generation champions. This exploits speciation and fitness 
sharing that occurs in NEAT. The Hall of Fame ensures that 
existing abilities need to be maintained to obtain a high 
fitness.  

 

• Together, speciation, fitness sharing, and Hall of Fame 
comprise an effective competitive coevolution methodology.  
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Monitoring Progress in Competitive 

Coevolution 
 • A competitive coevolution run returns a record of every 

generation champion from both populations. 

• How can a sequence of increasingly sophisticated strategies 
be identified in this data, if one exists?  

• The answer is the dominance tournament method for 
monitoring progress in competitive coevolution 

• First of all, it is necessary to come up with a way to make 
individual comparisons, i.e. whether one strategy is superior 
to another one; the two champion networks (one from each 
population) to be compared compete in 288 games; those 
consist in various starting and food positions so that the 
advantages and disadvantages are balanced between the two 
individuals. 

• A network A is superior to a network B if it wins more games 
than B out of the 288 total games.  

Monitoring Progress in Competitive 
Coevolution 

 • In order to decisively track strategic innovation, we need to 
identify dominant strategies, i.e. those that defeat all 
previous dominant strategies. This way, we can make sure 
that evolution proceeds by developing a progression of strictly 
more powerful strategies, instead of e.g. switching between 
alternative ones.  

• This is accomplished by the dominance tournament method 

• A generation champion is the winner of a 288 game 
comparison between the host and parasite champions of a 
single generation. 

• d_j is the jth dominant strategy to appear over evolution. 
Dominance is defined recursively starting from the first 
generation and progressing to the last:  

Monitoring Progress in Competitive 
Coevolution 

• d_j is the jth dominant strategy to appear over evolution. 
Dominance is defined recursively starting from the first 
generation and progressing to the last:  

• The first dominant strategy d_1 is the generation champion of 
the first generation; 

• Dominant strategy d_j, where j > 1, is a generation champion 
such that for all I < j, d_j is superior to d_i (i.e. wins the 288 
game comparison with it).  

• This definition of dominance prohibits circularities. 

 

 

Evolution of Complexity 
 • Armed with the appropriate coevolution methodology and a 

measure of success, the question that remains is : Does 
complexification result in more successful competitive 
coevolution? 

• In order to analyze the results, complexity is defined as the 
number of nodes and connections in a network. 

 

 

Evolution of Complexity 

• There are two underlying forces of progress: The building of 
new structures, and the continual optimization of prior 
structures in the background. The product of these two trends 
is a gradual stepped progression towards increasing 
complexity. 

 

• An important question is: does the complexity always increase 
whether it helps in finding good solutions or not? 

 

• To see how complexification contributes to evolution, the 
development over time of a sample dominant strategy is 
observed 

Sophistication through 
Complexification 
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Sophistication through 
Complexification 

• In some cases, weight optimization alone can produce 
improved strategies. 

• However, when those strategies need to be extended, adding 
new structure allows the new behaviors to coexist with old 
strategies.  

• Also, in some cases it is necessary to add complexity to make 
the timing or execution of the behavior more accurate. 
Results obtained show how complexification can be utilized to 
produce increasing sophistication. 

• Complexifying coevolution was also compared to two 
alternatives: standard coevolution in a fixed search space, and 
simplifying coevolution from a complex starting point. The 
results obtained show the net superiority of complexification. 

Discussion 

 

• What makes complexification such a powerful search 
method?  

 

 

• Whereas in fixed-topology coevolution, as well as in 
simplifying coevolution, the good structures must be 
optimized in the high-dimensional space of the solutions 
themselves, complexifying coevolution only searches high-
dimensional structures that are elaborations of known good 
lower-dimensional structures.  

Discussion 

• Before adding a new dimension, the values of the 
existing genes have already been optimized over 
preceding generations. Thus, after a new gene is added, 
the genome is already in a promising part of the new, 
higher-dimensional space.  

 

• Thus, the search in the higher-dimensional space is not 
starting blindly as it would if evolution began searching 
in that space. It is for this reason that complexification 
can find high-dimensional solutions that fixed-topology 
coevolution and simplifying coevolution cannot. 
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