2



### Overview

- Machine Learning (ML) Review and Connections (Feb. 22)
- □ Active Learning (AL) summary (Feb. 22 & 24)
- □ AL application papers (Feb. 24)
- Discussion relevant to MAS (Anytime)

**ML Review** 

#### Datasets

3

- Taxonomy
- □ Supervised Learning (SL)

### ML Review—Dataset 1

- Dataset consists of set of instances
- An instance (i.e., data point) consists of Ddimensional feature vector (x)
- Features (i.e., attributes) can be numeric or discrete values
- An instance may have a desired prediction or label (y)
- Assumption: instances used for training are sampled independently from underlying distribution

### ML Review—Dataset 2

 Example dataset "Little Green Men" (Zhu & Goldberg, 2009)



## ML Review—Taxonomy

- □ Supervised learning (focus)
- Unsupervised learning
- Semi-supervised learning
- Reinforcement learning

### ML Review—SL 1

#### Uses training sample of instances with labels

- Common Tasks:
  - Regression

7

9

- 11

- Classification
  - Train a function (i.e., classifier) to predict the correct label for unknown data points from the same joint probability distribution as the training sample
  - Function divides feature space into decision regions where instances share the same label

### ML Review—SL 2

#### K-Nearest-Neighbor Classifier

Input: Training data  $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ ; distance function d(); number of neighbors k; test instance  $\mathbf{x}^*$ 

Find the k training instances x<sub>i1</sub>,..., x<sub>ik</sub> closest to x\* under distance d().
 Output y\* as the majority class of y<sub>i1</sub>,..., y<sub>ik</sub>. Break ties randomly.



### Connections 1

Artificial Intelligence (AI) Areas

Machine Learning (ML)

Multi-Agent Systems (MAS)

(others)

Intelligent Agent (Russell & Norvig, 1995)



ALVINN (Mitchell, 1997)

## Connections 2



## Connections 3

- Addressing "Al factionalism" not primary focus!
- Similarity between intelligent agents and SL
- Review of environment characteristics (Russell & Norvig, 1995)
  - Accessible ⇒ sensors have complete access
  - □ Deterministic next state from current state & action
  - Episodic experience divided into episodes
  - □ Static ⇒ environment does not change during deliberation
  - □ Discrete ➡ limited number of actions

# Connections 4

12

- Environment characteristics for SL
  - Accessible Yes, dataset has all relevant features
  - Deterministic No, label for next point does not depend on current
  - Episodic Yes, predicts labels individually
  - □ Static ➡ Yes, "concept" for dataset does not change
  - Discrete Yes, labels are fixed

| Environment   | Chess | Poker | SL  |
|---------------|-------|-------|-----|
| Accessible    | Yes   | No    | Yes |
| Deterministic | Yes   | No    | No  |
| Episodic      | No    | No    | Yes |
| Static        | Yes   | Yes   | Yes |
| Discrete      | Yes   | Yes   | Yes |

### **AL Summary**

#### Overview

- Strategies
- Interestingness Measures
- □ Analysis (Empirical/Theoretical)
- Problem Variants
- Practical Considerations

### AL Summary—Overview 1

- Also called query learning or optimal experimental design (in statistics)
- Problem: Instances are cheap but labels may be expensive
  - □ Speech recognition ➡ annotation is time consuming and requires trained linguists
  - □ Information extraction ⇒ trained using documents with detailed annotations
  - Classification/filtering requires users must provide many annotations

### AL Summary—Overview 2

#### □ Solution:

15

- Choose instances for oracle to label
- Re-learn the model (i.e., function)



### AL Summary—Strategies 1

- Membership query synthesis
- Stream-based selective sampling
- Pool-based sampling



Figure 4: Diagram illustrating the three main active learning scenarios.

## AL Summary—Strategies 2

#### □ Membership query synthesis

- Requests labels for synthesized queries (i.e., points) created de novo (i.e., anew)
- Can automatically discover interesting experiments (e.g., mutant yeast)
- May find queries which are not meaningful to the human annotator

# AL Summary—Strategies 3

#### □ Stream-based selective sampling

Assumes obtaining an unlabeled instance is free

Decides whether or not to query for the label

- Use informativeness measure or query strategy (examples given later)
- Compute region of uncertainty still ambiguous to the learner (Boundary of Use)
- Useful when memory or processing power may be limited

## AL Summary—Strategies 4

#### Pool-based sampling

- Assume large amount of unlabeled instances together with small amount of labeled instances
- Query in greedy fashion based on informativeness measure
- Ranks all instances together (more common) rather than sequentially as in stream-based

### AL Summary—Measures 1

#### Uncertainty sampling

- Query the instance the learner is least certain how to label
  - Least confident  $x_{LC}^* = \underset{x}{\operatorname{argmax}} 1 P_{\theta}(\hat{y}|x),$
  - Margin sampling

Entropy

$$\begin{split} & x_M^* = \mathop{\mathrm{argmin}}_x P_\theta(\hat{y}_1|x) - P_\theta(\hat{y}_2|x), \\ & x_H^* = \mathop{\mathrm{argmax}}_x - \sum P_\theta(y_i|x) \log P_\theta(y_i|x), \end{split}$$

■ None of the three are "best", but entropy minimizes log-loss while the other two reduce classification error

### AL Summary—Measures 2

Query-by-committee

21

- Maintain a committee of models (i.e., ensemble of classifiers)
  - Construct a small committee of models (e.g., HMM, boosting, bagging)
  - Use entropy or Kullback-Leibler divergence to measure consensus of committee
- Informativeness measured using disagreement

### AL Summary—Measures 3

#### Expected model change

- Select instance that would cause the greatest change to current model if label was known
  - Can measure for any function using gradient decent (e.g., artificial neural networks) by measuring change in the weights
- Choosing point can be computational expensive if set of features and labels is large
  - Genetic Algorithm Classifier System

## AL Summary—Measures 4

#### □ Expected error reduction

- Select instance that would minimize the generalization error in current model
- Choosing this point can be computationally expensive because the function must be re-trained after labeling each point
  - Approximate over all possible labels with the current model!

## AL Summary—Measures 5

#### Variance reduction

24

- Reduce the generalization error indirectly by minimizing variance
- For gradient descent methods, we can reduce the variance by using the Fisher information matrix. Optimizing on this matrix can be tricky and there are several strategies:
  - A-optimality minimize the trace of the inverse matrix (most common)
  - D-optimality minimize the determinant of the inverse matrix
  - E-optimality minimize the max eigenvalue of the inverse matrix
- Classifier does <u>not</u> need to be retrained

## AL Summary—Measures 6

#### Density-weighted methods

25

27

29

- Previous methods are vulnerable to outliers
- Want to find query points which are representative of underlying distribution
  - Weight uncertainty metric by similarity of instance to other instances in training data
  - Use a density method which clusters the unlabeled instances and query cluster centroid

### AL Summary—Analysis 1

#### Empirical

- Majority of papers say AL reduces number of labeled instances need to achieve desired accuracy
- However, training data created is biased towards function rather than underlying distribution
- AL sometimes requires more labels to do well than passive and/or do worse than random sampling

### AL Summary—Analysis 2

- Theoretical (limited advances)
  - Some work on how many random labeled instances are needed to achieve the maximum desired error rate for pool-based AL
  - Pool-based AL with linear classifiers shown to have worst-case performance equivalent to supervised learning
  - Theoretical frameworks are <u>not extendible</u> to all SL algorithms

### AL Summary—Variants 1

- AL for structured outputs
  - Extension to probabilistic finite state machines (HMMs, context-free grammars, etc.)
- □ Active feature acquisition
  - Extension to request missing feature data
  - Goal: select most informative features (e.g., budgeted learning)

## AL Summary—Variants 2

- Active class selection
  - Assumes labels are freely available but there is cost associated with instances
  - Fairly new problem variant
- Active clustering
  - Extension to unsupervised clustering used to organize data into meaningful patterns
  - □ Goal: choose instances which self-organize into groups with less overlap (improve cluster assumption) ⇒ semisupervised clustering

## AL Summary—Considerations 1

- Batch-mode active learning
  - Query instances in groups
  - Cannot simply select Q-best because of overlap—must consider "diversity" in Q-best
- Noisy oracles
  - Quality of the label could vary (e.g., crowd-sourcing)
  - Learner must decide whether to query label for new instance or re-query label for existing instance

# AL Summary—Considerations 2

#### Variable learning cost

- Cost for labels could vary
- Previous work generally assumes annotation costs are known and modify measure to balance annotation/misclassification cost
- □ Alternative query types
  - Instances are grouped into bags (e.g., bag: document, instances: passages)
  - Queries are made about bags rather than instances (higher level)

### AL Summary—Considerations 3

#### Multi-task AL

- Instances could have multiple, correlated labels
- Take into account mutual information among different labels
- Changing model classes
  - AL chooses instances biased towards classifier used which may reduce accuracy for others
  - Only a problem when classifier could change

## **AL** Application

33

35

- Attenburg (2010) Why Label when you can search?
  Active class selection
  - Noisy oracles (crowd-sourcing)
- Donmez (2008) Paired Sampling in Density Active Learning
  - Active clustering
  - Density-weighted method

## AL Summary—Attenburg 1

- The authors are interested in safe advertising—deciding whether web pages contain questionable content (e.g., porn)
- Humans examining text for every page would be expensive. However, humans can examine some of the pages using crowd-sourcing
- SL can learn functions to decide, but accuracy depends on pages provided for training

## AL Summary—Attenburg 2

- AL could be used to find training instances and use human to provide label
- Problem: Extreme class imbalance
  - Only a tiny fraction of pages contain questionable content (1/100)
  - Active learning rarely chooses any instances with positive labels resulting in class imbalance
  - SL systems do not learn well from training data with class imbalance (even distribution is best)

## AL Summary—Attenburg 3

- Solution: use both AL and guided learning (i.e., active class selection)
  - Guided learning uses oracle to search for instances satisfying some criteria (e.g., instances with positive labels from questionable content)
  - Note: Guided learning subsumes AL and should have higher cost
    - Guided Learning: search + label
    - Active Learning: label

## AL Summary—Attenburg 4

#### AL Measures Used

- Boosted disagreement query-by-committee (query instance with most disagreement)
- Density sensitive pre-clustering (query instance nearest cluster centroid)

### AL Summary—Attenburg 5

#### Guided learning (simulated)

- Previous work on SL shows even split in training data generally gives highest test accuracy
- Therefore, guided learning should request new instances with even split of labels
- Authors simulate guided learning using equal sampling technique on dataset
  - Points are sampled equally and u.a.r. from bins with different labels until minority bin is empty

## AL Summary—Attenburg 6

#### Experimental Setup

39

- Dataset from Open Directory project containing 4,000,000 urls
- Uses logistical regression model (i.e., linear classifier)
  SL is efficient during training which is important for large datasets
  - Smaller-scale experiments (i.e., sanity-checks) show benefits of approach are independent of SL used
  - All experiments use receiver operating characteristic curve important for class imbalance

## AL Summary—Attenburg 7

#### Results

- Searching for instances with balanced label proportion gives better results without AL (trivial)
- Natural clusters of instances which are strongly misclassified but not high priority for exploration
  - Density-sensitive AL does not work well when concepts are disjunctive (i.e., label dispersion)

### AL Summary—Attenburg 8

#### Results (cont.)

41

Benefits of guided learning depend on cost (expected)



# AL Summary—Donmez 1

- □ The authors are interested in AL for:
  - Balanced sampling on both sides of decision boundary (overcome cold-start problem)
  - Exploiting natural clustering of instances
- Analogy: easier to obtain geological data on regions with/without oil than to drill multiple test holes

## AL Summary—Donmez 2

43

45

#### Density-sensitive distance estimation

- Assumes decision boundary lies in low density region (i.e., cluster assumption)
- Clusters using fully-connected graph with edge weights from Euclidean distance
- Density-sensitive distance based on longest distance edge
  - Can give poor results when two points are connected by a long path of short edges
  - Need to balance inter-cluster and intra-cluster distance use multi-dimensional scaling

### AL Summary—Donmez 3

#### Density-sensitive paired sampling

- Uses logistical regression model (i.e., linear classifier)
  Pairs of points sampled with opposite labels and high uncertainty
- Also consider points in high density regions to increase confidence in labels for neighbors

## AL Summary—Donmez 4

- Overall: Balance density estimate with uncertainty from SL
  - Avoid querying labels for points in "successful" regions where SL has high confidence
- Function used is quite convoluted, but favors pairs of points from large neighborhoods which have different (i.e., uncertain) labels

## AL Summary—Donmez 5

#### Results

46

Balance gives better results than individual AL measures



### **AL** Conclusions

#### Questions

47

- What areas of MAS can benefit from AL?
- Which strategies, measures, etc. should we use for MAS?
- Who is going to win the epic badminton match?



# References

- Attenberg, J., & Provost, F. Why Label when you can Search?, ACM SIGKDD, pp. 423-432, 2010.
- Donmez, P., & Carbonell, J. Paired-Sampling in Density-Sensitive Active Learning. Proceedings of the 10th International Symposium on Artificial Intelligence and Mathematics, 2008. Which E. M. Content and Mathematics, 2008.
- Mitchell, T., Machine Learning, McGraw-Hill, 1997.
- Russell and S., Norvig, P., Artificial Intelligence A Modern Approach, Prentice Hall, 1995.
- Settles, B., Active Learning Literature Survey, University of Wisconsin—Madison, No. 1648, 2010.
- > Zhu, X. and Goldberg, A.B., Introduction to Semi-Supervised Learning, Morgan & Claypool Publishers, 2009