

Agent Reasoning

□ Which perspective to take? (AAMAS 2009)

- 🗖 Logic
 - Theorem provers, Logical languages
- Game Theory
 - Nash equilibrium
- Social Theory
- Voting, Altruism
- Emergent Behavior
 - Swarm, Mechanism design

Agent Reasoning

- Problems with reasoning
 - Stochastic environments
 - Limited information
- Real-world applications
 - Autonomous robots
 - E-commerce
 - Decision support systems
 - Industrial control

Overview

- Background
- Environment Models
- Decision Problem Models
- Multiagent Models

Background | Vocabulary

States

- Set of unique descriptions of environment
- Combination of meaningful attributes

Actions

- Set of activities performed by agents
- Observations
 - Information provided by environment
 - Depends on state, possibly actions

Background Environment Models Decision Models Multiagent Models

Background | Vocabulary

- State Transitions
 - Change in state
 - Depends on current state, possibly actions
- History
 - Sequence of observations
 - Sometimes includes states/actions

Background | Vocabulary

Rewards

- Benefit to an agent
- State/action dependent

Negative effect on agent
State/action dependent

Costs

Utility

- Sum of current and future rewards
- Finite or infinite horizon (# of steps)
- Often discounted

Background Environment Models Decision Models Multiagent Models

Background | Vocabulary

Observability

- Identification of states
- Full
 - Agent always knows current state
 - E.g., robot with GPS

Partial

- Current state hidden
- Estimated by observations
- E.g., robot with camera

Background | Markov Processes

Markov Property

- Current state depends only on previous
- Future state depends only on current
- 1st order Markov property

Markov process

- Stochastic process model with Markov assumption
- Not perfect, but tractable
 - "All models are wrong, some models are useful" --Dunbar

ckground Environment Models Decision Models Multiagent Models

Background | Markov Processes

Environment | Overview

- Environment Modeling
 - Process independent of the agent
- Markov Chains
- Hidden Markov Models

Environment | Overview

- When to use
 - Want to model environment change
 - Actions don't change state of environment
 - Or same changes for all actions
 - Rewards/costs tied only to environment state
- Fully observable
 - Markov chain

11

Partially observable
 Hidden Markov model

12

14

16

18

Environment | Markov Chain

Markov Chain

- Simplest model of stochastic changes in environment
- Handles non-determinism in state changes
- Building block for other models

□ 2-tuple <S, T>

□ S = set of states

- □ T(s, s') = P(s' | s) = state transition probabilities
- Can include reward R(s) or cost C(s)

Background Environment Models Decision Models Multiagent Models

Environment | Markov Chain

- Wireless Network Modeling (Nguyen et al., 1996)
- Loss depends on outcome of previous packet
- Accounts for "bursty" behavior

Environment | Markov Chain

🗆 Goal

Compute P(s' | s) for future states

Can be more than one step in the future

- Chapman-Kolmogorov Equations
 - Use dynamic programming

$$T^{n}(s,s') = \sum_{s^{*} \in S} T^{m}(s,s^{*}) T^{n-m}(s^{*},s')$$

Environment | Markov Chain

Learn model

- Count state transitions
 - NS(s, s') = # of transitions from s to s'
 - Fully observable
- Dirichlet distribution
- Probability from proportions

$$T(s,s') = \frac{NS(s,s')}{\sum_{s^* \in S} NS(s,s^*)}$$

Environment | HMM

- Hidden Markov Model
 - Model stochastic environment with hidden states
 - Partially observable Markov chain

Handles incomplete information on states

 \Box 4 tuple <S, Ω , T, O >

- S and T as before
- Ω = set of observations
- $\Box O(s', o) = P(o | s') = observation probabilities$

Background Environment Models Decision Models Multiac

Environment | HMM

- Dishonest Casino Modeling (Durbin et. al, 1998)
 - Casino uses two die
 One fair, one loaded

Environment | HMM

Goal 1:

Predict hidden state sequence from observations
 Most probable path p

Use Viterbi algorithm

- Initialize $v_s(0)$ values to 0, $v_{s_0}(0) = 1$
- 2. For each position i in the sequence
 - 1. Calculate $v_{s'}(i) = O(s', x_i) \max_{a} v_s(i-1)T(s, s')$
 - 2. Calculate $ptr_i(s') = \arg \max v_s(i-1)T(s,s')$
- 3. Build p from ptr

Background Environment Models Decision Models Multiagent Models

Environment | HMM

- Goal 2:
 Compute sequence probability P(x)
 Use Forward algorithm
 Initialize f_s(0) values to 0, f_{s0}(0) = 1
 For each position i in the sequence
 - Calculate $f_{s'}(i) = O(s', x_i) \sum_{s \in S} f_s(i-1)T(s, s')$
 - 3. Calculate $P(x) = \sum_{s \in S} f_s(|x|)T(s_0, s)$

Environment | HMM

□ Goal 3: □ Compute state probabilities $P(\pi_i = s \mid x) = \frac{f_s(i)b_s(i)}{P(x)}$

- Use Backward algorithm
- 1. Initialize $b_s(|x|)$ values to T(s, s_0)
- 2. For each position i in the sequence backwards
- 1. Calculate $b_s(i) = \sum_{s,s} b_{s'}(i+1)T(s,s')O(s',x_{i+1})$
- 3. Calculate $P(x) = \sum_{s' \in S}^{s \in S} b_{s'}(1)T(s_0, s')O(s', x_1)$

Environment | HMM

Learn model:
Baum-Welch algorithm
Initialize a random model
While not converged
For each sequence xⁱ in X
Run Forward algorithm on xⁱ
Run Backward algorithm on xⁱ
Update NS(s, sⁱ) and NO(sⁱ, o)
Compute new model
Calculate model likelihood

Environment | HMM

$$NS(s,s') = \sum_{x^{i} \in X} \frac{1}{P(x^{j})} \sum_{i} T(s,s') O(s',x_{i}) f_{s}^{j}(i) b_{s'}^{j}(i+1)$$

$$NO(s',o) = \sum_{x' \in X} \frac{1}{P(x^{j})} \sum_{\{i \mid x/=o\}} f_{s'}^{j}(i) b_{s'}^{j}(i)$$

Decision | Overview

- Decision Problem Modeling
 Depend on actions taken by agent
- Markov Decision Process (MDP)
- Partially Observable MDP (POMDP)

22

Decision | Overview

When to use

- Want to model effect of agent on environment
- Need to compute policy of actions
- Actions **do** change state of environment
- Rewards/costs tied to environment state and actions
- Fully observable
 MDP
- Partially observable
 - POMDP

Background Environment Models Decision Models Multiagent Models

Decision Overview

	Fully Observable	Partially Observable	
States	Markov Chain	нмм	
Actions	MDP	POMDP	
Backar	und Environment Medels	26	

Decision | MDP

- Markov Decision Process
 - Model of agent influence on stochastic environment
 - Extends Markov chain with actions
- □ 4 tuple <S, A, T, R>
 - S as before
 - A = set of actions
 - □ T(s, a, s') = P(s' | s, a)
 - R(s,a) = reward for performing a in s

Decision | MDP

- Choosing sensing activities with stateful resources
 - States: energy in sensor
 - 3 actions: Advanced, Basic, Wait
 - Best reward with Advanced in High

Decision | MDP

Decision | MDP

Decision | MDP

Learn model

Model-based reinforcement learning (RL)

RMax algorithm (Brafman and Tennenholtz, 2002)

- Count state transitions as in Markov chains
- Fully observable
- Save (count) rewards
- Assume initial rewards maximal
 Enforce exploration vs. exploitation

Background Environment Models Decision Models Multiagent Models

Decision POMDP

- Partially Observable MDP
 - Model of agent influence on hidden states
 Mixes HMM with MDP

Backaround Environment Models Decision Models Multigaent Mod

6 tuple <S, A, Ω, T, O, R>
 S, A, T, R as in MDP
 Ω as in HMM
 O(s', a, o) = P(o | s', a)

Decision | POMDP

□ User Preference Elicitation (Doshi and Roy, 2008)

- States = User goal (hidden)
- Actions = Query/Confirm/Support
- Observations = User response
- Cost to sensing, rewards for correct support

Decision | POMDP

- □ Goal: similar to MDP
 - Build a policy π(b) mapping belief states to actions
 Maximize expected utility

Belief states b(s)

- Probabilities of being in environment states given observation and last belief state
- Determined by State Estimator

$$b'(s') = \frac{O(s', a, a) \sum_{s \in S} T(s, a, s')b(s)}{\Pr(a \mid a, b)}$$

Source: (Kaelbling et. al, 1998)

ground Environment Models Decision Models Mu

Decision | POMDP

Decision | POMDP

Decision | POMDP

Most approaches: approximation algorithms

- □ PBVI (Pineau et. al, 2003)
 - Estimate value function for sampled belief states
 Each corresponds to an action
 - Find closest belief state, pick best action
- Online approaches (Ross et al., 2008)
 - Limited depth trees
 - Heuristic search (Ross & Chaib-draa, 2007)

Background Environment Models Decision Models Multiagent Models

Decision | POMDP

- 🗆 Learn model
 - Model-based partially observable reinforcement learning (PORL)
- Perceptual Distinctions (Chrisman, 1992)
 Applied Baum-Welch to POMDPs
- Bayes Adaptive POMDP (Ross et. al, 2007)
 "Meta-POMDP" approach
 Possible POMDPs are states
 - Maintain belief state over possible models

Background Environment Models Decision Models Multiagent Models

Multiagent | Overview

- Multiagent Processes
 - Multiple agents change environment
- Decentralized MDP
- Stochastic Games

Multiagent | Overview

- When to use
 - Want to model effect of multiple agents on environment
 - Need to compute policy of actions for each agent
 - **Each** agent's actions change state of environment
 - Rewards/costs tied to environment state and actions
- Cooperative
 - Decentralized MDP
- Competitive
 - Stochastic Games

Multiagent | Decentralized MDP

- Decentralized MDP/POMDP
 - Model of multiple agents' influence on stochastic environment
 - Extends MDP/POMDP to multiple cooperating agents
- □ Similar model as MDP/POMDP
 - Shared S, T, Ω between agents
 - Same or different A, R for each agent
 - T, O, R depend on each agent's actions

Background Environment Models Decision Models Multiagent Models

Multiagent | Decentralized MDP

- Fully observable
 - Agents combined know the true state
 - Each agent might only have incomplete information
 - May require communication
- Partially observable
 - Combined observations does not yield state

Multiagent | Decentralized MDP

Multiagent | Decentralized MDP

Difficult problem

NEXP-hard (Bernstein et. al, 2002)

Heuristic/Approximate solutions

- Value Function Propagation (Marecki and Tambe, 2007)
- Single-agent semi-MDPs with communication (Goldman and Zilberstein, 2008)

Background Environment Models Decision Models Multiggent Mode

Multiagent | Stochastic Games

- Stochastic Games
 - Model of competitive agents in a stochastic environment
 - MDP is a single agent stochastic game
- Similar model as Decentralized MDP
 - Agents maximize own rewards (selfish)
 - Don't share information
- Partially observable: Bayesian Games

Background Environment Models Decision Models Multiagent Mode

Multiagent | Stochastic Games

Multiagent | Stochastic Games

- Goal: develop a strategy governing behavior
 Similar to policy in MDPs
- Look for Nash equilibrium
 No agent can do better with any other choice
- Rely on properties of environment
 - Zero-sum game
 - Discounted rewards
 - Stationarity

Background Environment Models Decision Models Multiagent Models

Conclusion | Summary

- Markov Processes (discrete state/time)
 - Model stochastic environment
 - $\hfill\square$ Can handle incomplete information
- Environment models
 Markov chain, HMM
- Decision problem models
 MDP, POMDP
- Multiagent models
 - Decentralized MDP, Stochastic games

Conclusion | IAMAS Library

- Hidden Markov Models
 - Viterbi, Forward, Backward, Baum-Welch
- MDP
- RMax
- - Policy trees, PBVI, BAPOMDP
- Data structures and tools for other models

Conclusion Discussion

- □ Which models might be applicable to final projects?
 - Poker playing agent?
 - Agents on mars?
- Can we incorporate ULM features?
 - Or vice-versa?
- □ How sufficient is MDP-based reasoning as a theory for agent control?

General References

Markov Chains

49

51

53

- R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, 1998, Biological Sequence Analysis, Cambridge University Press.
- F.S. Hillier and G.J. Lieberman, 2005, Introduction to Operations Research, 8th Edition, McGraw Hill.
- Hidden Markov Models
- R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, 1998, Biological Sequence Analysis, Cambridge University Press. Markov Decision Processes
- L.P. Kaelbling, M.L. Litman, and A.R. Cassandra, Planning and acting in partially observable stochastic domains, *Artificial Intelligence*, vol. 101, pp. 99-134, 1998. Multiagent Models
 - D.S. Berstein, R. Givan, N. Immerman, S. Zilberstein. 2002. The complexity of decentralized control of Markov decision processes. Mathematics of Operations Research. 27(4), 819-840.
 - J. Filar and K. Vrieze, 1997, Competitive Markov decision processes, Springer.
 Y. Shoham and K. Leyton-Brown, 2009, Multiagent Systems: Algorithmic, game-theoretic, and logical foundations, Cambridge University Press.

52

50

Other References

- R.I. Brafman and M. Tennenholtz, 2002, R-max A general polynomial time algorithm for near-optimal reinforcement learning, Journal of Machine Learning Research, 3, 213-231.
- L. Chrisman, 1992, Reinforcement learning with perceptual aliasing: the perceptual distinctions approach Proc. of AAAI'92.
- F. Doshi and N. Roy, 2008, The permutable POMDP: fast solutions to POMDPs for preference elicitation, Proc. of AAMAS'08, 493-500.
- S. Dunbar, 2010, Stochastic Processes,
- nath.unl.edu/~sdunbar1/Mathematical s.xml, accessed on January 21, 2011. C.V. Goldman and S. Zilberstein, 2008, Communication-based decomposition mech MDPs, JAIR, 32, 169-202.
- MDPF, JMF, 32, 169-202. J. Marceki and M. Kambe, 2007, On opportunistic techniques for solving decentralized Markov decision processes with temporal constraints, Proc. of AAMAS'07. G. T. Nguyen, E.H. Katz, B. Nobel, and M. Satyanorzyanan, A trace-based approach for modeling wireless channel behavior, Proc. 1996 Winter Simulation Conf., ed. JM. Charnes, D.J. Morrice, D.I. Brunner, and J.J. Swain, Coranado, C.K., pp. 597-604, Dec. 8-11, 1996.
- J. Pineau, G. Gordon, and S. Thrun, 2003, Point-based value iteration: An anytime algorithm for POMDPs, Proc. of IJCA/03, 1025-1032.
- S. Ross and B. Chaib-droa, Aems: An anytime online search algorithm for approximate policy refinement in large POMDPs, Proc. of IJCAI '07, pp. 2592-2598, 2007.
- S. Ross, B. Chaib-draa, and J. Pineau, 2007, Bayes-adaptive POMDPs, Proc. of NIPS'07. S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa, Online planning algorithms for POMDPs, *Journal of Artificial Intelligence Research*, vol. 32, pp. 663-704, 2008.