
1/27/2011 

1 

MARKOV PROCESSES 

TUTORIAL 

Adam Eck          January 25, 2011 

 

Agent Reasoning 
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 Which perspective to take? (AAMAS 2009) 

 Logic 

 Theorem provers, Logical languages 

 Game Theory 

 Nash equilibrium 

 Social Theory 

 Voting, Altruism 

 Emergent Behavior 

 Swarm, Mechanism design 

Agent Reasoning 
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 Problems with reasoning 

 Stochastic environments 

 Limited information 

 

 Real-world applications 

 Autonomous robots 

 E-commerce 

 Decision support systems 

 Industrial control 

 

Overview 
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 Background 

 

 Environment Models 

 

 Decision Problem Models 

 

 Multiagent Models 

Background| Vocabulary 
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 States 

 Set of unique descriptions of environment 

 Combination of meaningful attributes 

 

 Actions 

 Set of activities performed by agents 

 

 Observations 

 Information provided by environment 

 Depends on state, possibly actions 
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 State Transitions 

 Change in state 

 Depends on current state, possibly actions 

 

 History 

 Sequence of observations 

 Sometimes includes states/actions 

Background Environment Models Decision Models Multiagent Models 
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 Rewards 

 Benefit to an agent 

 State/action dependent 

 

 Costs 

 Negative effect on agent 

 State/action dependent 

 

 Utility 

 Sum of current and future rewards 

 Finite or infinite horizon (# of steps) 

 Often discounted 
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 Observability 

 Identification of states 

 Full 

 Agent always knows current state 

 E.g., robot with GPS 

 

 Partial 

 Current state hidden 

 Estimated by observations 

 E.g., robot with camera 

Background Environment Models Decision Models Multiagent Models 
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 Markov Property 

 Current state depends only on previous 

 Future state depends only on current 

 1st order Markov property 

 

 Markov process 

 Stochastic process model with Markov assumption 

 

 Not perfect, but tractable 

 “All models are wrong, some models are useful” --Dunbar 
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Background Environment Models Decision Models Multiagent Models 

Source: (Dunbar, 2010) 

Environment| Overview 

11 

Background Environment Models Decision Models Multiagent Models 

 Environment Modeling 

 Process independent of the agent 

 

 Markov Chains 

 

 Hidden Markov Models 

Environment| Overview 
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Background Environment Models Decision Models Multiagent Models 

 When to use 

 Want to model environment change 

 Actions don’t change state of environment 

 Or same changes for all actions 

 Rewards/costs tied only to environment state 

 

 Fully observable 

 Markov chain 

 Partially observable 

 Hidden Markov model 
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Background Environment Models Decision Models Multiagent Models 

 Markov Chain 

 Simplest model of stochastic changes in environment 

 Handles non-determinism in state changes 

 Building block for other models 

 

 2-tuple <S, T> 

 S = set of states 

 T(s, s’) = P(s’|s) = state transition probabilities 

 Can include reward R(s) or cost C(s) 

 

 

 

Environment| Markov Chain 
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Background Environment Models Decision Models Multiagent Models 

 Wireless Network Modeling (Nguyen et al., 1996) 

 Loss depends on outcome of previous packet 

 Accounts for “bursty” behavior 

 

Succ. Loss 

0.01 

0.3 0.99 

0.7 

Success Loss 

Success 0.99 0.01 

Loss 0.3 0.7 

Environment| Markov Chain 
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 Goal 

 Compute P(s’|s) for future states 

 Can be more than one step in the future 

 

 Chapman-Kolmogorov Equations 

 Use dynamic programming 
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Background Environment Models Decision Models Multiagent Models 

 Learn model 

 Count state transitions 

 NS(s, s’) = # of transitions from s to s’ 

 Fully observable 

 Dirichlet distribution 

 Probability from proportions 
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 Hidden Markov Model 

 Model stochastic environment with hidden states 

 Partially observable Markov chain 

 Handles incomplete information on states 

 

 4 tuple <S, Ω, T, O > 

 S and T as before 

 Ω = set of observations 

 O(s’, o) = P(o|s’) = observation probabilities 

Background Environment Models Decision Models Multiagent Models 
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 Dishonest Casino Modeling (Durbin et. al, 1998) 

 Casino uses two die 

 One fair, one loaded 

 

Background Environment Models Decision Models Multiagent Models 

Source: (Durbin et. al, 1998) 
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 Goal 1:  

 Predict hidden state sequence from observations 

 Most probable path p 

 

 Use Viterbi algorithm 

1. Initialize vs(0) values to 0, vs0
(0) = 1 

2. For each position i in the sequence 

1. Calculate 

2. Calculate 

3. Build p from ptr 

Background Environment Models Decision Models Multiagent Models 
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 Goal 2:  

 Compute sequence probability 

 

 Use Forward algorithm 

1. Initialize fs(0) values to 0, fs0
(0) = 1 

2. For each position i in the sequence 

1. Calculate 

3. Calculate  
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 Goal 3:  

 Compute state probabilities 

 

 Use Backward algorithm 

1. Initialize bs(|x|) values to T(s, s0) 

2. For each position i in the sequence backwards 

1. Calculate 

3. Calculate  
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 Learn model:  

 Baum-Welch algorithm 

1. Initialize a random model 

2. While not converged 

1. For each sequence xj in X 

1. Run Forward algorithm on xj 

2. Run Backward algorithm on xj 

3. Update NS(s, s’) and NO(s’, o) 

2. Compute new model 

3. Calculate model likelihood 
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Decision| Overview 
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 Decision Problem Modeling 

 Depend on actions taken by agent 

 

 Markov Decision Process (MDP) 

 

 Partially Observable MDP (POMDP) 

Background Environment Models Decision Models Multiagent Models 
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 When to use 

 Want to model effect of agent on environment 

 Need to compute policy of actions 

 Actions do change state of environment 

 Rewards/costs tied to environment state and actions 

 

 Fully observable 

 MDP 

 Partially observable 

 POMDP 

Background Environment Models Decision Models Multiagent Models 
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Background Environment Models Decision Models Multiagent Models 

Markov Chain 

MDP 

HMM 

Fully Observable Partially Observable 

States 

Actions POMDP 

Decision| MDP 
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 Markov Decision Process 

 Model of agent influence on stochastic environment 

 Extends Markov chain with actions 

 

 4 tuple <S, A, T, R> 

 S as before 

 A = set of actions 

 T(s, a, s’) = P(s’|s, a) 

 R(s,a) = reward for performing a in s 
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 Choosing sensing activities with stateful resources 

 States: energy in sensor 

 3 actions: Advanced, Basic, Wait 

 Best reward with Advanced in High 

Background Environment Models Decision Models Multiagent Models 

High 

Energy 

Adv/0.4 

Basic/0.8 

Wait/1.0 

Low 

Energy 

Adv/0.6 

Basic/0.2 

Wait/1.0 

Wait/0.5 

High Low 

High/Adv 0.4 0.6 

High/Basic 0.8 0.2 

High/Wait 1.0 1.0 

Low/Adv 0.0 1.0 

Low/Basic 0.0 1.0 

Low/Wait 0.5 0.5 

Adv/1.0 

Basic/1.0 

Wait/0.5 

Decision| MDP 
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 Goal 

 Build a controller for agent actions 

 Generates a policy π mapping states to actions 

 Choose actions which maximize utility 

 

 Value functions (Bellman equations) 

 Discounted infinite-horizon 

 

 

 

 

 Finite-horizon 
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Current reward Discounted future reward 

Source: (Kaelbling et. al, 1998) 
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 Value iteration algorithm 

 

 

 

 

 

 

 

 Policy iteration algorithm: 

 Tracks best action for each state 

Background Environment Models Decision Models Multiagent Models 

Source: (Kaelbling et. al, 1998) 
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Decision| MDP 
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 Learn model 

 Model-based reinforcement learning (RL) 

 

 RMax algorithm (Brafman and Tennenholtz, 2002) 

 Count state transitions as in Markov chains 

 Fully observable 

 Save (count) rewards 

 Assume initial rewards maximal 

 Enforce exploration vs. exploitation 

Background Environment Models Decision Models Multiagent Models 

Decision| POMDP 
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 Partially Observable MDP 

 Model of agent influence on hidden states 

 Mixes HMM with MDP 

 

 6 tuple <S, A, Ω, T, O, R> 

 S, A, T, R as in MDP 

 Ω as in HMM 

 O(s’, a, o) = P(o | s’, a) 

Background Environment Models Decision Models Multiagent Models 

Decision| POMDP 
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 User Preference Elicitation (Doshi and Roy, 2008) 

 States = User goal (hidden) 

 Actions = Query/Confirm/Support 

 Observations = User response 

 Cost to sensing, rewards for correct support 

 

Background Environment Models Decision Models Multiagent Models 

Agent 

Decision| POMDP 
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 Goal: similar to MDP 

 Build a policy π(b) mapping belief states to actions 

 Maximize expected utility 

 

 Belief states b(s) 

 Probabilities of being in environment states given 

observation and last belief state 

 Determined by State Estimator 

 

Background Environment Models Decision Models Multiagent Models 

Source: (Kaelbling et. al, 1998) 
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 Approach: build an MDP on belief states 

 S = B     

 A     

 T(b, a, b’) = P(b’ | b, a)  
 defined by State Estimator  

 R(b, a) =  

 

 Problem: continuous state MDP 

 States are probability distributions 

 Very difficult to solve (uncountably infinite number of states) 
 State space is  

 

Background Environment Models Decision Models Multiagent Models 

Source: (Kaelbling et. al, 1998) 

Decision| POMDP 
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 Better approach: Policy trees 

 Choose actions based on observations 

 Conditional plans 

 Define value function over trees 
 

 

 Expected utility of following tree 

 Optimize to build plan 

 One tree per state 

 Still exponential complexity 

Background Environment Models Decision Models Multiagent Models 
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Source: (Kaelbling et. al, 1998) 



1/27/2011 

7 

Decision| POMDP 
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 Most approaches: approximation algorithms 

 

 PBVI (Pineau et. al, 2003) 

 Estimate value function for sampled belief states 

 Each corresponds to an action 

 Find closest belief state, pick best action 

 

 Online approaches (Ross et al., 2008) 

 Limited depth trees 

 Heuristic search (Ross & Chaib-draa, 2007) 
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Decision| POMDP 
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 Learn model 

 Model-based partially observable reinforcement learning 
(PORL) 

 

 Perceptual Distinctions (Chrisman, 1992) 

 Applied Baum-Welch to POMDPs 

 

 Bayes Adaptive POMDP (Ross et. al, 2007) 

 “Meta-POMDP” approach 

 Possible POMDPs are states 

 Maintain belief state over possible models 

Background Environment Models Decision Models Multiagent Models 
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 Multiagent Processes 

 Multiple agents change environment 

 

 Decentralized MDP 

 

 Stochastic Games 

Background Environment Models Decision Models Multiagent Models 

Multiagent| Overview 
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 When to use 

 Want to model effect of multiple agents on 
environment 

 Need to compute policy of actions for each agent 

 Each agent’s actions change state of environment 

 Rewards/costs tied to environment state and actions 

 

 Cooperative 

 Decentralized MDP 

 Competitive 

 Stochastic Games 

Background Environment Models Decision Models Multiagent Models 

Multiagent| Decentralized MDP 
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 Decentralized MDP/POMDP 

 Model of multiple agents’ influence on stochastic 

environment  

 Extends MDP/POMDP to multiple cooperating agents 

 

 Similar model as MDP/POMDP 

 Shared S, T, Ω between agents 

 Same or different A, R for each agent 

 T, O, R depend on each agent’s actions 

Background Environment Models Decision Models Multiagent Models 

Multiagent| Decentralized MDP 
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 Fully observable 

 Agents combined know the true state 

 Each agent might only have incomplete information 

 May require communication 

 

 Partially observable 

 Combined observations does not yield state 

Background Environment Models Decision Models Multiagent Models 
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Background Environment Models Decision Models Multiagent Models 

Multiagent| Decentralized MDP 
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 Difficult problem 

 NEXP-hard (Bernstein et. al, 2002) 

 

 Heuristic/Approximate solutions 

 Value Function Propagation (Marecki and Tambe, 

2007) 

 Single-agent semi-MDPs with communication  

(Goldman and Zilberstein, 2008) 

Background Environment Models Decision Models Multiagent Models 

Multiagent| Stochastic Games 
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 Stochastic Games 

 Model of competitive agents in a stochastic 
environment 

 MDP is a single agent stochastic game 

 

 Similar model as Decentralized MDP 

 Agents maximize own rewards (selfish) 

 Don’t share information 

 

 Partially observable: Bayesian Games 

Background Environment Models Decision Models Multiagent Models 
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Multiagent| Stochastic Games 
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 Goal: develop a strategy governing behavior 

 Similar to policy in MDPs 

 

 Look for Nash equilibrium 

 No agent can do better with any other choice 

 

 Rely on properties of environment 

 Zero-sum game 

 Discounted rewards 

 Stationarity 

Background Environment Models Decision Models Multiagent Models 

Conclusion| Summary 

48 

 Markov Processes (discrete state/time) 

 Model stochastic environment 

 Can handle incomplete information 

 

 Environment models 

 Markov chain, HMM 

 Decision problem models 

 MDP, POMDP 

 Multiagent models 

 Decentralized MDP, Stochastic games 
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Conclusion| IAMAS Library 
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 Hidden Markov Models 

 Viterbi, Forward, Backward, Baum-Welch 

 MDP 

 RMax 

 POMDP 

 Policy trees, PBVI, BAPOMDP 

 

 Data structures and tools for other models 

Questions? 

50 

Conclusion| Discussion 
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 Which models might be applicable to final projects? 

 Poker playing agent? 

 Agents on mars? 

 

 Can we incorporate ULM features? 

 Or vice-versa? 

 

 How sufficient is MDP-based reasoning as a theory 

for agent control? 

 

 

General References 

52 

 Markov Chains 

 R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, 1998, Biological Sequence Analysis, 
Cambridge University Press. 

 F.S. Hillier and G.J. Lieberman, 2005, Introduction to Operations Research, 8th Edition, 
McGraw Hill. 

 Hidden Markov Models 

 R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, 1998, Biological Sequence Analysis, 
Cambridge University Press. 

 Markov Decision Processes 

 L.P. Kaelbling, M.L. Littman, and A.R. Cassandra, Planning and acting in partially 
observable stochastic domains, Artificial Intelligence, vol. 101, pp. 99-134, 1998. 

 Multiagent Models 

 D.S. Berstein, R. Givan, N. Immerman, S. Zilberstein. 2002. The complexity of decentralized 
control of Markov decision processes. Mathematics of Operations Research. 27(4). 819-
840. 

 J. Filar and K. Vrieze, 1997, Competitive Markov decision processes, Springer. 

 Y. Shoham and K. Leyton-Brown, 2009, Multiagent Systems: Algorithmic, game-theoretic, 
and logical foundations, Cambridge University Press. 

Other References 

53 

 R.I. Brafman and M. Tennenholtz, 2002, R-max – A general polynomial time algorithm for near-optimal 
reinforcement learning, Journal of Machine Learning Research, 3, 213-231.  

 L. Chrisman, 1992, Reinforcement learning with perceptual aliasing: the perceptual distinctions approach. 
Proc. of AAAI’92. 

 F. Doshi and N. Roy, 2008, The permutable POMDP: fast solutions to POMDPs for preference elicitation, 
Proc. of AAMAS’08, 493-500. 

 S. Dunbar, 2010, Stochastic Processes, 
http://www.math.unl.edu/~sdunbar1/MathematicalFinance/Lessons/Background/StochasticProcesses/stoch
asticprocesses.xml, accessed on January 21, 2011. 

 C.V. Goldman and S. Zilberstein, 2008, Communication-based decomposition mechanisms for decentralized 
MDPs, JAIR, 32, 169-202. 

 J. Marecki and M. Tambe, 2007, On opportunistic techniques for solving decentralized Markov decision 
processes with temporal constraints, Proc. of AAMAS’07. 

 G.T. Nguyen, R.H. Katz, B. Nobel, and M. Satyanarayanan,  A trace-based approach for modeling wireless 
channel behavior, Proc. 1996 Winter Simulation Conf., ed. J.M. Charnes, D.J. Morrice, D.T. Brunner, and J.J. 
Swain, Coronado, CA, pp. 597-604, Dec. 8-11, 1996.  

 J. Pineau, G. Gordon, and S. Thrun, 2003, Point-based value iteration: An anytime algorithm for POMDPs, 
Proc. of IJCAI'03, 1025-1032.  

 S. Ross and B. Chaib-draa, Aems: An anytime online search algorithm for approximate policy refinement in 
large POMDPs, Proc. of IJCAI ’07, pp. 2592-2598, 2007. 

 S. Ross, B. Chaib-draa, and J. Pineau, 2007, Bayes-adaptive POMDPs, Proc. of NIPS’07.  

 S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa, Online planning algorithms for POMDPs, Journal of 
Artificial Intelligence Research, vol. 32, pp. 663-704, 2008. 

http://www.math.unl.edu/~sdunbar1/MathematicalFinance/Lessons/Background/StochasticProcesses/stochasticprocesses.xml
http://www.math.unl.edu/~sdunbar1/MathematicalFinance/Lessons/Background/StochasticProcesses/stochasticprocesses.xml

