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Disaster Response

 Problem Formulation

 First responders

 Search and rescue task

 Dynamic and uncertain environment

 Resource and task allocation

 Human Team Coordination

 Interdependencies between activities [2]

 Spatially distributed incidents & resources [3]

 Optimize coordination to minimize failures [4]



Disaster Response

 Challenges that align with ad hoc teamwork

 Create a shared understanding [5]

 Develop situation awareness [6]

 Align cooperative action through on-going communication [4]

Figure 1



Agent-Based Planning

 Decentralized coordination [7, 8]

 Decision based on local knowledge

 Coordination by a central authority [9]

 Complete knowledge of the system

 Coalition formation [10]

 Synergy based task completion



Challenges for Human-Agent

Collaboration Planning

 Transfer-of-control policies [11]

 Evaluate strategies of agent support [12]

 No real world studies

 Overlooked environmental dynamics

 Ignored subtleties of human interactions and perception

 No worst case or average case of simulations



Disaster Simulation & Games

 Agent based computational simulation

 Considering human psychosocial characteristics

 Mixed-reality game approach

 Situated in the real world

 Captures realistic cognitive and physical stress

 Behavioral observation



Multi-Agent MDP (MMDP) 

 Sequential decision making

 Dependence between task completion

 Monte-Carlo Tree Search for online planning
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Real World Disaster Model

 Consultations with emergency response organizations a,b

 Design of decision making challenges

 Hazard avoidance

 Path planning

 Team coordination

 Disaster Scenario

 Radioactive fueled satellite crash into a sub-urban area

 Debris damaging building and threatening civilians

 Radioactive cloud contamination 

 Emergency services to search and rescue

a. http://www.rescueglobal.org. 

b. http://www3.hants.gov.uk/emergencyplanning.htm. 

http://www.rescueglobal.org/
http://www3.hants.gov.uk/emergencyplanning.htm


Computational Model

 𝐺 : a grid overlaid the disaster space

 𝑥, 𝑦 ∈ 𝐺 : coordinates for objects and human on the grid

 𝑙 ∈ [0,100] : radioactivity level induced by the radioactive cloud

 𝐺′ ∈ 𝐺 : safe zones to drop off assets and casualties

 𝐼 = {𝑝1, … , 𝑝𝑖 , … , 𝑝𝑛} : set of FRs 

 𝑇 = {𝑡1, … , 𝑡𝑖 , … , 𝑡𝑚} : set of tasks

 ℎ𝑖 ∈ [0, 100] : health level for FRi, decreased by 0.02 × 𝑙 per second

 𝜃𝑖 ∈ Θ : type of responder 𝑝𝑖, which determines the capabilities

 𝐶𝑗 : set of responders that can complete task 𝑡𝑗 iff



Human-Agent Collaboration

 FRs are coordinated from a headquarters (HQ) 

 HQ is headed by a human coordinator H

 H is assisted by an agent-based planning agent PA

 PA receive input from, and direct FRs

 PA handles planning, task rejections and re-planning

 PA gives instructions directly to FRs

 H has the overriding power at any point



The Optimization Problem

MMDP with uncertainties



 State of the radioactive cloud:

 State for each responder’s health level, position and current task:

 State for each task’s status and position: 



 Probability of the radioactive cloud spread: 

 Probability of responder’s action transition: 

 Probability of task being completed: 

 Reward, penalties and cost. 



The Optimization Problem

 A policy for the MMDP is a mapping from states to joint action

 Quality of a policy is measured by expected value

 Goal is to find the optimal policy that maximizes the expected value with initial state
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Computational Threshold

 MMDP often results a very large search space

 8 responders, 17 tasks, 50 x 55 grid: more than 2 x 10400 states 

 Approximate optimal solution

 Top level: form teams

 Lower level: find paths to tasks

 Online planning for reachable states only

 98 states for 8 responders vs. (50 x 55)8



Team Coordination Algorithm



Task Planning

 Each FR 𝑝𝑖 of a specific type 𝜃𝑖 defined the task she can perform

 Each task 𝑡 requires a set of types Θ𝑡

 If 𝑝𝑖 is incapable of performing a task, then

 If a task is complete, then

 Define the value of a team as

 Goal: task assignment that maximizes all team values



Team Value Calculation [13]



Coordinated Task Allocation

 Each task is assigned to at most one team

 Each FR is assigned to only one task

 Standard Mixed Integer Linear Program (MILP) that can be solved using

off-the-shelf solvers

 Easily adaptable to FR’s requests 



Path Planning

 Single-agent MDP 

 State space only involves radioactive cloud and FR’s status

 Transition function only considers radioactive cloud spreading and changes of status

 Reward function considers cost of moving and radioactive exposure

 Solved using Real-Time Dynamic Programming (RTDP) [14] 
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AtomicOrchid Platform

 A location based mobile game based on the disaster scenario

 FRs: medic, fire-fighter, soldier and transporter

 Targets

 Victim – requires medic and fire-fighter

 Animal – requires medic and transporter

 Fuel – requires soldier and fire-fighter

 Other resources – requires soldier and transporter



AtomicOrchid Player Interface

Figure 2 Mobile responder tool



Integrating the PA

 PA takes the tame status as input and

generate plans for each FR

 The AtomicOrchid requests plans from PA,

located on a separate server

 Re-planning is triggered by:

 Completion of task

 Explicit rejection from a FR

Figure 3 Interactions

between PA, FR, and H



Demonstration

https://www.youtube.com/watch?v=1U3ENY6KhWY

https://www.youtube.com/watch?v=1U3ENY6KhWY
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Game Setting
 3 trials with 8 people each [15]

 ￡15 for 1.5-2 h of study

 Majority were students

 One session (A) without PA, two sessions (B,C) with PA

 400 x 400 meter game area

 2 safe zones and 16 targets in each session

 Each session is 30 minutes

 Data collection:

 20 h of video of participants

 Transcription and triangulation

 Most relevant types of acts:

 Assertives speech acts for truth of proposition

 Directives speech acts for action requirement



Game Results

One session (A) without PA, two sessions (B,C) with PA

 A is less efficient in traces while B, C have more coverage

 8 targets rescued in A, 12 in B and 11 in C

 14 re-planning in B and 18 in C



Game Results

Figure 4 Traces of player movements during two games. a Players are seen to herd to different tasks 

with no clear coordination. User ids in the game are shown in the legend. b Players are seen to pair 

up with different partners at different times indicating good coordination



Game Results

Figure 5 How task allocations were handled by FRs in the version with agent (left), and without agent (right). The ‘overridden’ 

box denotes the number of times an ‘accepted’ allocation in the non-agent case was not carried out to its full extent and, 

instead, another task was chosen by H to be completed



Game Results



Game Results

 FRs performed better and maintained higher health levels when supported by the agent.

 Fast re-planning helps more tasks to be completed.

 H and PA demonstrates effective division of labor.



Paper Conclusion

 Developed a novel planning agent (using an MMDP approach)

 Planning agent can quickly re-plan based on FR’s preferences and constraints

 Provided design guidelines for human-agent collaboration in human-agent collectives:

 Adaptivity

 Interaction simplicity

 Flexible autonomy



My Conclusion

 After-work assessment based on FR performance to generate initial states for next scenario

 Uncertainty in centralized human coordinator

 Task assignment enforcement based on FRs current states

 Reject to rejections

 Task priorities when defining reward function

 If team is rarely selected in previous visits, why should it have higher chance of being selected?



Thank you!

Q & A
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