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Disaster Response

 Problem Formulation

 First responders

 Search and rescue task

 Dynamic and uncertain environment

 Resource and task allocation

 Human Team Coordination

 Interdependencies between activities [2]

 Spatially distributed incidents & resources [3]

 Optimize coordination to minimize failures [4]



Disaster Response

 Challenges that align with ad hoc teamwork

 Create a shared understanding [5]

 Develop situation awareness [6]

 Align cooperative action through on-going communication [4]

Figure 1



Agent-Based Planning

 Decentralized coordination [7, 8]

 Decision based on local knowledge

 Coordination by a central authority [9]

 Complete knowledge of the system

 Coalition formation [10]

 Synergy based task completion



Challenges for Human-Agent

Collaboration Planning

 Transfer-of-control policies [11]

 Evaluate strategies of agent support [12]

 No real world studies

 Overlooked environmental dynamics

 Ignored subtleties of human interactions and perception

 No worst case or average case of simulations



Disaster Simulation & Games

 Agent based computational simulation

 Considering human psychosocial characteristics

 Mixed-reality game approach

 Situated in the real world

 Captures realistic cognitive and physical stress

 Behavioral observation



Multi-Agent MDP (MMDP) 

 Sequential decision making

 Dependence between task completion

 Monte-Carlo Tree Search for online planning
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Real World Disaster Model

 Consultations with emergency response organizations a,b

 Design of decision making challenges

 Hazard avoidance

 Path planning

 Team coordination

 Disaster Scenario

 Radioactive fueled satellite crash into a sub-urban area

 Debris damaging building and threatening civilians

 Radioactive cloud contamination 

 Emergency services to search and rescue

a. http://www.rescueglobal.org. 

b. http://www3.hants.gov.uk/emergencyplanning.htm. 

http://www.rescueglobal.org/
http://www3.hants.gov.uk/emergencyplanning.htm


Computational Model

 𝐺 : a grid overlaid the disaster space

 𝑥, 𝑦 ∈ 𝐺 : coordinates for objects and human on the grid

 𝑙 ∈ [0,100] : radioactivity level induced by the radioactive cloud

 𝐺′ ∈ 𝐺 : safe zones to drop off assets and casualties

 𝐼 = {𝑝1, … , 𝑝𝑖 , … , 𝑝𝑛} : set of FRs 

 𝑇 = {𝑡1, … , 𝑡𝑖 , … , 𝑡𝑚} : set of tasks

 ℎ𝑖 ∈ [0, 100] : health level for FRi, decreased by 0.02 × 𝑙 per second

 𝜃𝑖 ∈ Θ : type of responder 𝑝𝑖, which determines the capabilities

 𝐶𝑗 : set of responders that can complete task 𝑡𝑗 iff



Human-Agent Collaboration

 FRs are coordinated from a headquarters (HQ) 

 HQ is headed by a human coordinator H

 H is assisted by an agent-based planning agent PA

 PA receive input from, and direct FRs

 PA handles planning, task rejections and re-planning

 PA gives instructions directly to FRs

 H has the overriding power at any point



The Optimization Problem

MMDP with uncertainties



 State of the radioactive cloud:

 State for each responder’s health level, position and current task:

 State for each task’s status and position: 



 Probability of the radioactive cloud spread: 

 Probability of responder’s action transition: 

 Probability of task being completed: 

 Reward, penalties and cost. 



The Optimization Problem

 A policy for the MMDP is a mapping from states to joint action

 Quality of a policy is measured by expected value

 Goal is to find the optimal policy that maximizes the expected value with initial state
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Computational Threshold

 MMDP often results a very large search space

 8 responders, 17 tasks, 50 x 55 grid: more than 2 x 10400 states 

 Approximate optimal solution

 Top level: form teams

 Lower level: find paths to tasks

 Online planning for reachable states only

 98 states for 8 responders vs. (50 x 55)8



Team Coordination Algorithm



Task Planning

 Each FR 𝑝𝑖 of a specific type 𝜃𝑖 defined the task she can perform

 Each task 𝑡 requires a set of types Θ𝑡

 If 𝑝𝑖 is incapable of performing a task, then

 If a task is complete, then

 Define the value of a team as

 Goal: task assignment that maximizes all team values



Team Value Calculation [13]



Coordinated Task Allocation

 Each task is assigned to at most one team

 Each FR is assigned to only one task

 Standard Mixed Integer Linear Program (MILP) that can be solved using

off-the-shelf solvers

 Easily adaptable to FR’s requests 



Path Planning

 Single-agent MDP 

 State space only involves radioactive cloud and FR’s status

 Transition function only considers radioactive cloud spreading and changes of status

 Reward function considers cost of moving and radioactive exposure

 Solved using Real-Time Dynamic Programming (RTDP) [14] 
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AtomicOrchid Platform

 A location based mobile game based on the disaster scenario

 FRs: medic, fire-fighter, soldier and transporter

 Targets

 Victim – requires medic and fire-fighter

 Animal – requires medic and transporter

 Fuel – requires soldier and fire-fighter

 Other resources – requires soldier and transporter



AtomicOrchid Player Interface

Figure 2 Mobile responder tool



Integrating the PA

 PA takes the tame status as input and

generate plans for each FR

 The AtomicOrchid requests plans from PA,

located on a separate server

 Re-planning is triggered by:

 Completion of task

 Explicit rejection from a FR

Figure 3 Interactions

between PA, FR, and H



Demonstration

https://www.youtube.com/watch?v=1U3ENY6KhWY

https://www.youtube.com/watch?v=1U3ENY6KhWY
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Game Setting
 3 trials with 8 people each [15]

 ￡15 for 1.5-2 h of study

 Majority were students

 One session (A) without PA, two sessions (B,C) with PA

 400 x 400 meter game area

 2 safe zones and 16 targets in each session

 Each session is 30 minutes

 Data collection:

 20 h of video of participants

 Transcription and triangulation

 Most relevant types of acts:

 Assertives speech acts for truth of proposition

 Directives speech acts for action requirement



Game Results

One session (A) without PA, two sessions (B,C) with PA

 A is less efficient in traces while B, C have more coverage

 8 targets rescued in A, 12 in B and 11 in C

 14 re-planning in B and 18 in C



Game Results

Figure 4 Traces of player movements during two games. a Players are seen to herd to different tasks 

with no clear coordination. User ids in the game are shown in the legend. b Players are seen to pair 

up with different partners at different times indicating good coordination



Game Results

Figure 5 How task allocations were handled by FRs in the version with agent (left), and without agent (right). The ‘overridden’ 

box denotes the number of times an ‘accepted’ allocation in the non-agent case was not carried out to its full extent and, 

instead, another task was chosen by H to be completed



Game Results



Game Results

 FRs performed better and maintained higher health levels when supported by the agent.

 Fast re-planning helps more tasks to be completed.

 H and PA demonstrates effective division of labor.



Paper Conclusion

 Developed a novel planning agent (using an MMDP approach)

 Planning agent can quickly re-plan based on FR’s preferences and constraints

 Provided design guidelines for human-agent collaboration in human-agent collectives:

 Adaptivity

 Interaction simplicity

 Flexible autonomy



My Conclusion

 After-work assessment based on FR performance to generate initial states for next scenario

 Uncertainty in centralized human coordinator

 Task assignment enforcement based on FRs current states

 Reject to rejections

 Task priorities when defining reward function

 If team is rarely selected in previous visits, why should it have higher chance of being selected?



Thank you!

Q & A
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