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Introduction

e Why do we want to study a pedestrian simulation?
O Capacities of facilities in a building
O Prevent accidents
O Realism to simulated urban scenarios

e Pedestrian dynamics has two main perspectives.
O Macroscopic: global functions
> O Microscopic: individual features
B Collective effects observed in the motion of pedestrian crowds
B Higher-level decision making without major modifications of the
basic behavioral model



Objective

e Simulating groups of pedestrians, based on multi-agent
reinforcement learning (MARL) techniques.

e Demonstrate that MARL is a suitable framework for
generating plausible simulations (not to reproduce real

crowd behaviors) using learned microscopic interactions.
O Scenario 1: closed room with a single door (exit) that the agents have to
reach
o Scenario 2: crossing of two groups of agents inside a narrow corridor



Benefits of the MARL Approach

1. Low computational cost

2. The richness of the group behavior in terms of variability

3. Model-free design of the problem

4. Emergent collective behaviors
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Model

e Markov Decision Processes (MDP):
o 4-tuple

m State space S

m Action space A

m Probabilistic function P
P:SxAxS—[0,1]

m Reward function R
R:SxA—-R

o Find policy: maximum discounted expected reward
V(s) = E{3 ;20 7'rs}

where 7 is the discount parameter that sets the influence of future
rewards



Model

® Q-learning:
o uses a table (called Q) to represent the value function

o the expected accumulated reward of being in state s and
doing action a is stored

Q(st,at) = Q(st, at) + alrer1 + v max{Q(st41,a)} — Q(st, at)],



Scenarios

1. Group of pedestrians inside a closed room need to learn
how to reach the door and leave the room

2. Narrow corridor in which two groups of four agents each
have to cross to reach the opposite end.



Scenarios: constraints
e Agents

O Max velocity of 1.8m/s
O Center of a bounding circumference with radius 0.3m

e Environment

O Two dimensional continuous plane
O Scenario 1

B 225 square meters room

m Aperture of 0.8 meters (door) in the center of one of the sides
O Scenario 2

m Corridor of 15 meters long by 2 meters wide



Scenarios




Description of the features of the
agent’s state

® Deictic representation: register information about objects that are relevant to the task

at hand

Sag Module of the velocity of the agent.

Av Angle of the velocity vector relative to the reference line.

Dgoal Distance to the goal.

Srel; Relative scalar velocity of the ith nearest neighbor.

Dag; Distance to the ith nearest neighbor.

Aag; Angle of the position of the ith nearest neighbor relative to the refer-
ence line.

Lag; ! Label to identify the group that the neighbor belongs to.

Dob; Distance to the jth nearest static object (walls).

Aob; Angle of the position of the jth nearest static object relative to the
reference line.




Agent’s decision

o ACt|OnS are taken In Tvns vig 2 v v
pairs | — —

e Action2

O Speed = Adtin
O Velocity vector

e 8 different ratios plus N e
the ‘no operation’ | s N
option for both the 6::

speed and the angle

O 81 possible combined actions



Modeling the Agents’ Behavior

First Scenario (Agents in a room)

Crash against other agent -0.1
Crash against a wall -2.0
Reach the goal +100.0
Default 0.0
Second Scenario (Crossing)

Reach the goal +100.0
Default 0.0
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State Space Generalization

® The states are generalized using Vector Quantization (VQ)

o Map from a state space in a k-dimensional Euclidean space, R to a
finite set C containing N states.

. . . where C is the prototypes states and x is in
VQ (:L‘) = arg mlﬂyec{dﬁsﬁ(ﬂia y)} Rk and is the sensorized state

o Generalized Lloyd Algorithm (GLA)
Linde, Y., Buzo, A., Gray, R.: An algorithm for vector quantizer design.
IEEE Trans. on Commun. 28(1), 84—-95 (1980)

® Vector Quantization for Q-Learning (VQQL) is a learning schema that uses
VQ as the generalization method for the state space and the tabular
version of Q-Learning for the learning process



State Space Generalization

Single-agent VQQL Algorithm

1. Generate the set T of samples of the state space S interacting with the environment using
an exploratory policy.
2. Discretize the state space:
(a) Use GLA to obtain a state space discretization C € S from the sample set T'.
(b) Let V@ : S — C be the function that, given any state in S, returns the discretized
value in C.
3. Learn the Q-Table
While the final condition is not reached
i. Get an experience tuple < s1,a, 2,7 > by interacting with the environment.
ii. Map the states of the experience tuple using V Q. Each adquired tuple of expe-
rience < s1,a, s2,7 > is mapped to < VQ(s1),a, VQ(s2),7 >
iii. Apply the Q-Learning update function defined in Equation 1 to learn a tabular
value function Q: C' x A — R, using the mapped experience tuple.
4. Return Q and V@




Problems

e Policy guided-bias

e Number of prototypes to use
O Run 6 experiments in each scenario specifying the number of prototypes
B Agents placed randomly inside the room
B Same Maximum number of steps for all episodes and agents
B At each step, the agent has to make a decision to adjust its velocity



Experiments Results

+ Best trade-off between performance and computational cost:
« Scenario 1: 4096 prototypes
* Scenario 2: 8192 prototypes
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Algorithms

e The application of RL to pedestrian navigation faces 3

challenges:
o Multi-Agent environment
m Decide how many agents need to learn from scratch
o The agents can perceive a different number of agents in different
situations.
m S1. The different descriptions of the state space are inherent in
the incremental setting of the agents
m S2. The evolution of the episode in time creates a variable
perception of neighbors
o Random exploration of the environment does not produce a
representative dataset with which to generate a correct set of
prototypes for the VQ space generalization method



Iterative Schemas
e lterative Vector Quantization for Q-Learning (ITVQQL)

o Same number of agents for every learning iteration
o It models the state space with one set of prototypes with a fixed
number of features to represent the neighboring agents

e Incremental Vector Quantization for Q-Learning (IN-
VQAQL)

o Stage beginning with one agent in the first iteration and incrementing
by one more agent in each following iteration to reach the total number
of agents in the last iteration

o Uses different vector spaces to represent the different perceptions in
terms of the neighborhood



Description of the two schemas

Multi-agent ITVQQL/INVQQL schemas

Entry: The number of iterations N

Return: The sets Qn and Viy (The value table of Q-learning and the vector quantizer respec-

o =

5.

tively).

i1
. Set p to the initial number of agents in the environment
. For each agent, k (1 < k < p) set:

— its initial vector quantizer, Vok (s)=0
— its initial policy ’n'[";" = random

. Repeat:

(a) Decide whether or not to include new agents. Set p consequently.
(b) For each agent, k (1 < k < p) do:
i. Collect a dataset Tf for agent k using the policies 71':“_1 with Vf_l
ii. Build VJ‘ using Tf for agent k following a transfer learning strategy
(c) Learn Qf Vk,1 < k < p and hence the policies wf‘ using Q-Learning (with the option
of using transfer of value functions).
(d) i—i+1
Until i = N
Return Qp and Vi




Summary of the settings of the schemas

Feature ITVQQL | INVQQL
Number of prototypes Fixed Variable
Number of features per prototype Fixed Variable
Number of agents per iteration Fixed Variable
Inter-iteration policy transfer Yes Yes
Inter-iteration prototype transfer No Yes
Inter-iteration value function transfer Yes Yes




Value function transfer procedures

e Transfer of the value function learned in a previous

iteration as the initial values for the value function of the
next one.

e Euclidean metric

Simple Complexification with a Q-table

1. Train with a source representation and save the learned Q-table and the vector quantizier
QSO'{A‘,T‘CGS VSO’U.‘?"CG

2. for each prototype qf,,g0r € Ctarget

. 7 : i J
— Find prototype gsource € Csource | m.lanza'r'get - qSO’U.‘f‘CE“
J

- Qtarget (qga'rget’ acmonk) = Qsource (q'.gources adionk) Vactiony,




Transfer Learning Evaluation

1. Jumpstart: The improvement in the initial performance of an agent.
2. Asymptotic Performance: The improvement in the final performance

3. Time to Threshold: The learning steps needed by the agent to achieve
a pre-specified performance level
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Experiments

e Results for the first scenario
O Agents in a closed room scenario

e Results for the second scenario
O Crossing experiment



Results for the first scenario

e Number of iterations performed is 18 (N = 18)
e Each iteration has been set empirically to 50,000 episodes
o Episode ends when
= All the agents reach the goal
= Maximum of 150 decisions have been taken

e Same parameter configuration for all agents
v = 0.9 a=04 e=04



Visualization of the Prototypes

Standardized distance to the goal
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Learning Process Performance for all
the Schemas

Performance in simulation (%)
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Learning Process Performance

Performance ([x100] %)
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Analysis

e Learning process converge for the two proposed learning
schemas, in the considered domain
e The transfer of knowledge benefits the INVQQL schema

in the learning task.



Results for the Second Scenario

® Eight agents (N = 8) are divided in two groups
® Each iteration has been set empirically to 50,000 episodes
o Episode ends when
m All the agents reach the goal
m Maximum of 150 decisions have been taken
® Same parameter configuration for all agents

0.9

from 0.3 to 0.1
1.0 (initial value)
1.0 (initial value)
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Pedestrian simulation

e Quality Evaluation:
o Local interactions (microscopic level)
o Macro-dynamics (macroscopic level)
o Performance: path length, number of decisions per episode
and number of fails



Fundamental Diagram

e Calculation of the weighted averaged density and velocity

O Local density is obtained by averaging over a circular region of radius R
O The local density at the place r(x,y) at time t

p(r,t) =Y f(rj(t) — r),
J

O Gaussian, distance-dependent, weight function

o il
Fxj(t) = x) = —z expl LT

O Local speeds are defined via the weighted average

> vif(rj(t) —r)

Vi) = S @ -1




Local Interactions Analysis for the First
Scenario
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Macro-dynamics

e Comparison with Helbing model

Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of
escape panic. Nature 407, 487 (2000)

e Fundamental diagram summarizes the micro-
behavior, showing the relation between the speed
and the density of all the agents involved.



Macro-dynamics
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Performance

Averaged lengths and standard deviation for the paths in meters

#Ag. | IT IN TFIT TFIN VQQL
18 T4+7 20+21 15+7 18+£10 15+11
36 1345 18415 1547 1848 15417
54 1446 18413 1648 19410 15411
72 154+6 18412 1648 19+11 15410
90 1547 18411 174£9 20+£11 17410

Averaged number and standard deviation of decision per episode

#Ag. | IT IN TFIT TFIN VQQL
18 28 £56 41136 28156 63 £ 35 27 + 21
36 32+41 75452  67+53 93 + 58 43 + 60
54 51+55 118+77 95+74 135+86 52 + 60
72 68 L 70 121478 120484 1754112 69 + 62

90 84185 144195 145+£96 211+£131 105+135



Performance

Medians and means (in parenthesis) for the agents that do
not reach the door (fails) when scaling up the number of
agents. Median values separated by letters for the same
number of agents (within a row), are significantly different
(P<= 0.05) according to Kruskal-Wallis test.

#Ag. IT IN TF.IT TF_IN VQQL  P-value

18 1b6(2.4) 4c(42) O0a (1.0 0a (2.9) 1b (2.8) 0

36 lab(6.5) 4c(48) 0a(2.8) 3.5bc(6.2) Oab (6.8) 4x107°
54 la(64) 40b(6.0) O0a (3.6) 4b(6.4) 10 ab (15.7) 7x10°10
72 lab(94) 4b(5.6) 1a(3.9) 4 b (6.6) b(22.1) 4x1078
90 1ab(10.3) 4b(6.0) 1a (4.1) 3b(6.5) 18. 5 c(25.0) 4x10~10



Performance Analysis

1.

The analysis of the graphs of speed and distance to the nearest
neighbors, shows that all the schemas provide behaviors with a
correlation between the curves.

. The fundamental diagrams and density maps reveal that the main

characteristics of the pedestrian dynamics and collective behavior
appear in all the schemas.

. The scalability tests displayed in the tables show properties of

real pedestrian behavior and demonstrate empirically that the
learned behaviors are generalizable to other configurations with
more agents.

. VQQL baseline algorithm has worse performance (highest mean)

than the rest of the schemas when scaling up the number of
agents. IF_IT has the best performance (lowest mean)



Macroscopic analysis for the second
scenario

e Study the emergence of collective behaviors

o Formation of lines

Four steps of a simulation from the crossing scenario with the TF_IT schema




Macroscopic analysis for the second
scenario

Mean of the number of episodes that end successfully from a
series of 100 episodes

TFIT TFIN VQQL P-value
81 a 52 b 63c  0.0000




Macroscopic Analysis for the Second
Scenario
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Second Scenario Analysis

1. The emergence of the lanes occurs in all the learning
approaches evaluated. In all the cases, the lanes have
similar structure.

2. The TF_IT has better performance than the TF_IN
schema and the VQQL baseline experiment
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Paper Conclusions

e The use of learning techniques provides several

advantages for the pedestrian simulation field

o The agents learn independently

o The agent’s learning is offline, so it has a very low computational
overhead

o Model free techniques such as Q-learning avoid introducing hand-
coded domain knowledge into the system

o The agent is not a closed system where its knowledge comes only
from its own experience. RL incorporates external knowledge using
transfer techniques.



Paper Conclusions

e VQAQL algorithm and its derivative schemas are
convergent

e The simulation of these policies has confirmed the
learning of the basic rules of pedestrian dynamics.

e The similarities with the Helbing model show that the
agents have developed plausible behaviors of pedestrian.



My Conclusions

Incorporate properties to the agents, such as age, gender, etc. to
make a more realistic simulation.

Room sizes are fixed. What would be the results in a more
complex scenario with different room sizes?

Adding multiple exits to the first scenario. The agents need to
choose the best exit (closest and less crowded).

Change of speed other than just when there is a possibility of
collision.

It would be interesting to see the results of the second scenario if
there is not an even distribution of agents in the two groups.
Make decisions depending on other agents’ velocity to reach the
goal faster (second scenario)



Video

https://www.uv.es/agentes/RL/itvqqgl.htm



Thank you

Any Questions?



