Should we Compete or Should
we Cooperate”? Applying Game
Theory to Task Allocation In
Drone Swarms

Presented By : Chandima
Fernando

Ne‘Buvmsw.Y]oF :
Lincoln

Information On the Paper

Juan Jesus Roldan , Jaime del Cerro , Antonio
Barrientos are the authors

*Centre for Automation and Robotics (UPM- CSIC),
Technical University of Madrid

‘Presented Iin 2018 I|IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS) Madrid, Spain, October 1-5, 2018

Plan of the talk

Introduction

*Related Background
*Competitive Algorithm
*Cooperative Algorithm
*Experiments and Results
*Conclusion

Introduction — Set Up

*Swarms have a objective
*\Vising a location
 Jaking pictures
*Building a map
Communication limitations exist

*Task : Find a local task allocation that can be merged
Into a suitable global task allocation

Goal of the Paper

» Evaluate Nash equilibrium based competitive
strategy vs voting based cooperative strategy for
task allocation in a robotic swarm

Modification to previous work

Two major improvements over previous work

*Every robot with the same number of
connections

*Use of genetic algorithms for real-time agents
with large fleets

Evaluation

Completed Tasks CT

oo _fo if IRy : Ry — T,
Bl = doee — dr, 1, + 1, otherwise

*Social Utility SU

Ng

[dmu;x: o dﬁ' T. + 1)
SU = T
; NR,.T,

Nash Equilibrium

*|f each player has chosen a strategy, and no player
can benefit by changing strategies while the other
players keep theirs unchanged, then the current set of
strategy choices and the corresponding payoffs
constitutes a Nash equilibrium — Wikipedia

Prisoner 2 :
Prisoner 1 Cooperate (with other) | Defect (betray other)

Cooperate (with other) -1, -1 -3, 0
Defect (betray other) 0, -3 -2, -2

Competitive Algorithm

Algorithm 1 Competitive algorithm.

function COMPETITIVE(N i, Np)

R = createRobots(Nr,GRr, N¢)

T = createTasks(Np,Grp)

U = calculateUtility(R,T)

for r € R do
competitors = robot Awareness(r, R)
allocation = searchBest N E(competitors,U)
task Allocation(r) = allocation(0)

end for

return ftaskAllocation

end function

Competitive Algorithm

Each agent knows the neighbor agents distances and
the set of available tasks

*Agents calculate the equilibrium points for all
neighbors

Competitive Algorithm

to perform two tasks. The robots are located in Ry : (1,3)
and R, : (3,1), whereas the tasks are located in T} : (2,4)
and 75 : (2,1). The maximum distance considered for this
scenario 18 d,,.. = |/(5,5)| = 7.0711. The properties of

Robot 2 — Task 1 Robot 2 — Task 2
Robot 1 — Task | (0. 0) (5.84, 7.07)
Robot 1 — Task 2 (6.65, 4.91) (0, 0)

Cooperative Algorithm

*Pre assigned citizens and leader
Citizens vote for robots to perform each task
L eaders count vote and determine the task allocation

Voting Methods

Borda count is a ranked voting system where the
preferences of voters {1,2,3,...,N} are weighted with
decremental coefficients {N, N -1, N -2, ..., 1}

*Plurality rule is a binary voting system where each
voter assigns 1 to the preferred candidate and O to the
rest

NKD

Voting Methods

Approval voting is also a binary voting system, but
each voter assigns 1 to the N preferred candidates and
0 to the rest

Cumulative voting is a rated vote system where each
voter has P points that can distribute among the N
preferred candidates

Cooperative Algorithm

Algorithm 2 Cooperative algorithm.

function COOPERATIVE(Npg, Np)
R = create Robots(Ngr,Gr, N¢)
T = createTasks(Np,Gr)
U = calculateUtility(R,T)
L, C| = classi fyRobots(R)
for [€ L do
A; = robot Awareness(r, R)
votes(l) = Vote(A;)
V = getVoters(l,C)
for v € V do
A. = robot Awareness(r, R)
votes(c) = Vote(A,)
end for
result = Count(votes, M¢)
allocation(V') = searchBest N E(V, result)
taskAllocation(V') = allocation(V')
end for
return task Allocation
end function

Use of Genetic Algorithms

*\When the number of tasks and the number of robots
are large

*Search space for task allocation explodes

*Use genetic algorithms to find the Nash equilibrium
values

Experiment 1 — Tasks per leader

*Performance of cooperative algorithm depending on
the tasks per leader

*500 Simulations performed

*Tasks are {21, 42, 63, 84, 100}
*Every leader coordinates 10 citizens

Experiment 1 - Results

Eumpleted Tasks | Social Utility

827.11
133.16
627.55

537.09
471.76

Experiment 2 - Best Electoral System

*Performance of cooperative algorithm depending on
the electoral system

*800 simulations were performed
*All 4 methods were evaluated

Experiment 2 - Results

Electoral method Completed Tasks | Social Utnhlity

67.75% 825.60

Plurality rule 67.30% 826.89
Approval voting 68.96% 847.03
‘ Cumulative voting 67.92% 829.69

Experiment 3 — Size of the group

*Performance of algorithms depending on the size of
scenario.

1000 Simulations conducted

'NR = NT = {20, 40, 60, 80, 100, 120, 140, 160, 180,
200}

Results

Np = Nt | Competiive | Cooperative
20 CT=66.45% | CT=78.80%
SU=175.04 SU=155.98

40 CT=64.63% | CT=72.70%
SU=346.71 S5U=3242]

60 CT=6348% | CT=70.27%
S5U=514.98 S5U=486.94

30 CT=63.59% | CT=68.64%
SU=690.38 SU=650.11

100 CT=63.52% | CT=67.74%
SU=864.71 SU=822.86

120 CT=63.01% | CT=67.05%
SU=1.,032.0 | S5U=1,002.4

140 CT=63.19% | CT=67.19%
SU=1.208.0 | SU=I1.186.6

160 CT=63.04% | CT=66.69%
SU=1.381.1 | SU=1,365.1

180 CT=63.31% | CT=66.44%
S5U=1.559.1 | S5U=1.541.6

200 CT=62.74% | CT=66.17%
SU=1.823.8 | SU=1,721.7

Experiment 4 — Number of connections

*Performance of cooperative algorithm depending on its
parameters

For 1000 simulations

Number of connections = {2, 4, 6, 8, 10, 12, 14, 16, 18,
20}

Results

N¢e | Competitive | Cooperative
2 CT=61.77% | CT=61.54%
SU=890.35 SU=818.39

R CT=6267% | CT=62.49%
SU=890.37 SU=812.56

6 CT=62.70% | CT=64.47%
SU=876.52 SU=820.32

8 CT=63.20% | CT=66.92%
SU=871.79 | SU=831.81

10 | CT=6297% | CT=67.25%
SU=857.65 SU=819.17

12 | CT=6323% | CT=69.06%
SU=851.23 SU=823.21

14 | CT=62.62% | CT=70.39%
SU=833.17 SU=826.52

16 | CT=6344% | CT=71.61%
SU=838.30 | SU=82945

18 | CT=6298% | CT=70.38%
SU=823.87 SU=810.94

20 | CT=6280% | CT=72.44%
SU=815.77 SU=822.03

Application for swarms

* 400 Robots and 400 tasks

* 10 neighbor connectivity

A virtual environment in a game engine

* Mission : Map a part of the virtual environment

Application for swarms

Distribution of robots and tasks

() Robots
) Tasks
£ - Graph
. — Allocation
P Aircraft
—= Route
X (m)
Competitive Algorithm Cooperative Algorithm
e - s .
- o e f:ﬂ' - ;f.-
" % Fo iﬁﬂ-:
3 3 o i
- . X P as
500 - - B -
200 - y : e i!':.r
. : e Lt B
b X c

X (m) X {m)

Application for swarms

B e e e e e e e e e

(b)

(a)

Conclusions — In the paper

» Key conclusion : cooperation is better than
competition

* |n an environment with less communication resources,
cooperation will get most number of tasks completed.

Conclusions — Own

* The evaluation metrics are not enough to come at a
conclusion.

*Specially with mixed results
* The equations, symbols are not explained.
*The algorithms contain undefined functions.

*This can be expanded for any multi-robotic platform —
not just drones.

NKD

Conclusions — Own

*Can a robot calculate the Nash equilibrium as the
tasks are inter related ?

*The complexities are not defined !

* Therefore, we can assure "Dear robots, you should
cooperate!”

*Surprised as this got accepted to IROS

