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Introduction

• Data-driven modeling framework to construct agent-based crowd 
model based on real-world video data.

• Can be used to predict trajectories of pedestrians in the same 
scenario as the video.

• Dual-layer architecture:
• Bottom Layer models the microscopic collision avoidance behaviors.

• Top layer models the macroscopic behaviors such as goal selection patterns 
and the path navigation patterns.

• Automatic learning algorithm to learn behavior patterns.



Model Design – Abstract 

• Objective. Simulate crowd behaviors in a well-defined area with a 
number of source regions (SRs) and destination regions (DRs). 

• Pedestrians enter the area via SRs and leave the area via DRs.

• First Step – Determine:
1. How frequently pedestrians enter the SRs (arrival rate)

2. How pedestrians select their DRs.

• Second Step – After DRs are selected, determine:
• How pedestrians move towards their DRs (i.e., path navigation).

• How pedestrians avoid collisions with other pedestrians and obstacles



Dual-Layer Agent-based Crowd Modeling 
Architecture

Fig. 1 The proposed dual-layer agent-based crowd modeling architecture



Dual-Layer Agent-based Crowd Modeling 
Architecture (cont.)
• In the bottom layer (microscopic), various collision avoidance models 

can be used.
• Social-Force crowd Model (SFM) [1]

• Reciprocal Velocity Obstacles (RVO2) [2]. This paper uses RVO2.

• Top layer (macroscopic) uses three components:
1. First component describes how new pedestrians enter the simulated area.

2. The second component models the goal selection patterns of pedestrians 
by using a probability matrix.

3. The last component models the path navigation patterns of pedestrians.



Behavior of new pedestrians appearing in SRs

• Each SR (or DR) is approximately represented by a rectangle region.

• The behaviors of new pedestrians appearing in each SR is modeled as 
a Poisson process [3]:

𝑃 𝑁𝑖 𝑡 + 𝜏 − 𝑁𝑖 𝑡 = 𝑘 =
𝜆𝑖𝜏

𝑘exp(−𝜆𝑖𝜏)

𝑘!
(1)

• 𝑁𝑖 𝑡 + 𝜏 − 𝑁𝑖 𝑡 = 𝑘 is the number of new pedestrians entering the 
𝑖𝑡ℎ SR during time interval 𝑡, 𝑡 + 𝜏 .

• 𝜆𝑖 is the expected arrival rate of the 𝑖𝑡ℎ SR 

• Starting positions of pedestrians in each SR are modelled by using a 
Gaussian model.



Goal selection patterns of pedestrians, using 
probability matrix
• The probability of pedestrians moving from the 𝑖𝑡ℎ SR to the 𝑗𝑡ℎ DR is 

labelled as 𝑝𝑖,𝑗

• The goal selection patterns of pedestrians can be represented by the 
following matrix:

𝐏 =

𝑝1,1 𝑝1,2 …
… … …
𝑝𝑁,1 𝑝𝑁,2 …

𝑝1,𝑀
…

𝑝𝑁,𝑀

2

• 𝑁 is the number of SRs and 𝑀 is the number of DRs.



Path navigation patterns of pedestrians

• A Velocity field [4,5] consists of a series of position-direction pairs.
• Each position-direction pair determines the future moving directions of 

pedestrians near the position.
• Each DR is associated with one velocity field. 
• Entire region is divided into discrete grids. Suppose 𝐻 × 𝑊 grids.

𝐕𝑖 =

𝑣𝑖,1,1 𝑣𝑖,1,2 …
… … …

𝑣𝑖,𝐻,1 𝑣𝑖,𝐻,2 …

𝑣𝑖,1,𝑊
…

𝑣𝑖,𝐻,𝑊

(3)

• 𝑣𝑖,𝑗,𝑘 is a two-dimensional vector, represents the future moving directions 
of the pedestrians in the grid cell (𝑗, 𝑘).

• The value of 𝑣𝑖,𝑗,𝑘 is scenario specific, learned from video input data.



Crowd simulation procedure (Algorithm 1)

𝜆𝑖 is the expected arrival rate of the 𝑖𝑡ℎ SR.
𝐏 is the probability matrix for goal selection.
𝐕𝑗 is the velocity field of the 𝑗𝑡ℎ DR. 



Construction of 
model 
components

• The data extracted from 
videos are considered 
trajectories.

• Each trajectory is 
represented by a 
sequence of vectors.

Fig. 2: The procedures of constructing an agent-based crowd model based on video data



Initialization

• Each trajectory is divided into small number of segments. 

• Each grid cell contains at most one segmentation point.

• After that, the velocity field of each DR (i.e., 𝐕𝑖 ) is then initialized by 
assigning each grid with a vector that directly points to the DR.

𝑣𝑖,𝑗,𝑘 =  
𝛤 𝐴𝐵 , if grid cell 𝑗, 𝑘 contains no obstacles.

0,0 , if grid cell 𝑗, 𝑘 contains obstacles.
(4)

• 𝐴 is the center point of the grid cell 𝑗, 𝑘 , 𝐵 is the destination.

• 𝛤  𝑎 normalizes the input vector  𝑎 in such a way that the total length 
of  𝑎 is much smaller than the size of a single grid. 



Construction of model components based on 
off-line video
• The K-means clustering algorithm is used to cluster all trajectories 

into 𝑀 groups, where 𝑀 is the total number of DRs.

• The trajectories in the same group are expected to terminate at the 
same DR.

• In each iteration of the K-means clustering process, each trajectory is 
classified into the nearest cluster.

• After clustering all trajectories, each cluster 𝐶𝑖 is then used as the 
temporary velocity field of the corresponding 𝑖𝑡ℎ DR.

• Temporary velocity field is further revised by considering neighboring 
influences.



Construction of model components based on 
off-line video (cont’d. 1)

• Vector closer to the grid 𝑗, 𝑘 will have a larger influence on 𝑣𝑖,𝑗,𝑘

• If obstacles are seen, all eight neighborhood of 𝑗, 𝑘 are checked, the 
best grid that is not inside obstacle and has the least turning angle is 
chosen. 

Fig. 3: Revising an infeasible velocity



Construction of model components based on 
off-line video (cont’d. 2)
• Once the velocity fields of all DRs are obtained, they can then be 

utilized to learn the state transition rates between SRs and DRs (i.e., 
the probability matrix).

• Choose trajectories that start at 𝑖𝑡ℎ SR and end in other regions. 

• 𝑆𝑖,𝑗 is the total number of trajectories that have the 𝑖𝑡ℎ SR as source 
and the 𝑗𝑡ℎ DR as destination. 

• Transition probability from the 𝑖𝑡ℎ SR to the 𝑗𝑡ℎ DR is:

𝑝𝑖,𝑗 =
𝑆𝑖,𝑗

 𝑘=1
𝑀 𝑆𝑖,𝑘

(5)



Case Study 1 (New York Grand Central 
Terminal) - Trajectories

Fig 4: A frame of the video and the transformed trajectories used in the first case study. (a) A frame of the 
video; (b) the transformed trajectories

(a) (b)

40,000 trajectories extracted

33 mins video



Case Study 1 – Velocity Fields

Fig 5: Two examples of the learned velocity fields in the first scenario



Case Study 1 –
Crowd Density

• Objective crowd density 
calculated based on the 
video data.

• Density values of a 
narrow region from (20, 
0) to (37, 15) are the 
largest.

• Density values in the 
center circle are very 
small, because there is a 
counter located in that 
region

Fig 6: The objective crowd density distributions in the first scenario



Case Study 1 – Crowd Density – Comparisons

Fig 7: The crowd density distributions of the six methods in the first scenario



Case Study 1 – Predicted Trajectories –
Comparisons

Fig 8: Examples of the predicted trajectories found by the D-ABC and the ConVelocity in the first scenario



Case Study 1 – Error Analysis

Method 𝝆𝒆𝒓𝒓𝒐𝒓

D-ABC 274.8

D-ABC/T 295.3

D-ABC/V 292.0

D-ABC/VT 318.1

RVO2-random 336.0

ANN 290.4

Method 𝑬𝒓𝒓𝒐𝒓

ConVelocity 2.58𝑎

D-ABC 1.79

Table 1: The ρerror results of the six methods in the first scenario  

Table 2: Average of the final prediction errors in the first scenario
Fig 9: Average prediction errors of the D-ABC and the ConVelocity

in the first scenario



Case Study 2 (ETH Walking Pedestrians)

Fig 10: The video and the trajectories used in the second case study. (a) A frame of the video; (b) the trajectories used

364 trajectories extracted

Video snapshot



Case Study 2 –
Velocity Fields

• velocities do not 
always directly point 
to the destinations.

• In regions near 
obstacles, they point 
to other directions so 
as to guide agents to 
avoid obstacles.

Fig 11: Examples of the learned velocity fields of the second scenario



Case Study 2 -
Crowd Density

• crowd density of the 
video data.

Fig 12: The objective crowd density distributions in the second case study



Case Study 2 – Crowd Density – Comparisons

Fig 13: The crowd density distributions of the six methods in the second case study



Case Study 2 – Predicted Trajectories –
Comparisons

Fig 14: Examples of the predicted trajectories found by the D-ABC and the ConVelocity in the second scenario



Case Study 2 – Error Analysis

Method 𝜌𝑒𝑟𝑟𝑜𝑟

D-ABC 1.97

D-ABC/T 2.40

D-ABC/V 2.12

D-ABC/VT 2.57

RVO2-random 2.86

ANN 2.04

Method 𝐸𝑟𝑟𝑜𝑟

ConVelocity 1.48𝑎

D-ABC 1.23 Fig 15: Prediction errors of the D-ABC and the ConVelocity in the second scenario

Table 3: The ρerror results of the six methods in the second scenario  

Table 5: Average of the final prediction errors second scenario  



Conclusion – Authors

• Proposed a generic data-driven crowd modeling framework to 
generate realistic crowd behaviors that can match the video data.

• Both the microscopic collision avoidance behaviors and multiple 
macroscopic behaviors.

• Results have shown that our proposed framework is effective to 
generate crowd behaviors, in terms of crowd density.

• Future work could include modelling for different types of agents.

• Using machine learning techniques to distill generic behavior instead 
of modelling specific scenarios, is promising future work.



My Conclusions

• It would be interesting to apply this concept in a chaotic scenario. To track and study trajectories 
of people in the presence of danger or during an unrest.

• Agent are of uniform characteristics, variables such as age or gender could not be considered with 
this method.

• The method of considering shortest paths from point A to point B, may only be true during rush 
hours and in places such as transport stations.

• While some limitations have been discussed in the paper, there have been no experiments to test 
exactly where the limitation lie in finding complicated trajectories such as a “W” shaped 
trajectory.

• It is not clear how obstacles are generated in the simulation models. The paper only shows how 
the model avoids obstacles. 

• A general relationship of the error and grid size is needed, the choice of grid sizes used for 
experiments are not explained. It seems to be too scenario-specific.

• In case study 1 (New York), 40000 trajectories are extracted from the video. The amount of 
computation seems to be very large, yet the paper doesn’t discuss such challenges.
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