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Ad Hoc Teamwork

The ad hoc teamwork setting is a situation when an
autonomous agent must collaborate with other teammate
agents to accomplish a common goal without prior
coordination.

Prior related work includes:
1. Multi-armed bandits problem with a teacher and a student. [2]
2. Robot soccer pick up games. [3]
3. Ad hoc teamwork for leading a flock. [4]
4. Multi-agent collaboration with open environment. [5]
5. Ad hoc teamwork in the pursuit domain. [6]



Ad Hoc Agent

A good "ad hoc team player" must be adept at: [7]
1. Assessing the capabilities of other agents.
2. Assessing the other agents’ knowledge states.
3. Estimating the effects of its actions on the other agents.

Evaluation framework proposed by Barrett and Stone. [8]
1. Team knowledge
2. Environment knowledge
3. Reactivity of teammates



Ad Hoc Agent

Novel perspective of ad hoc teamwork.
� Task identification should not be overlooked.
� Better planning with task and teammate identification.
� Close relationships between the three challenges.

Ad hoc agent receives no direct reward from
the environment.
Learning and making prediction by
observation.

Figure 1:
Challenges in
establishing ad hoc
teamwork



Tackling the Ad Hoc Teamwork Problem

K-player Fully Cooperative Matrix Game
Bounded Rationality



K-player Fully Cooperative Matrix Game

� = (K;(Ak);U)

U : payoff received by all agents.
Ak: set of actions[7] available to player k.
A=�K

k=1Ak: set of joint actions taken by all agents.
For example: a= ha1; : : : ;aKi represents joint action a by agents
a1 through aK .

�(a) =
KY
k=1

�k(ak) and
X

ak2Ak

�k(ak) = 1

�: probability mapping of agent k executing action ak.



K-player Fully Cooperative Matrix Game

T �: The target task.
�: The ad hoc agent

– Determine the task to be performed.
– Determine the strategy of its teammates.
– Act accordingly.

��: Teammate agent, or meta-agent.
– Fictitious play[9] - bounded rationality.
– Action selection strategy is internal.
– Uses at most N past observations to select its own individual action.



Bounded Rationality

Let V̂ (h1:n;a��) =
1

N

N�1X
t=0

UT �(ha�(n� t);a��i) then,

���(h1:n;a
�
��)> 0 only if a��� 2 argmaxa�� V̂ (h1:n;a��)

– h1:n = fa(1); : : : ;a(n)g denotes a specific instance of history
H(n);n�N , where H(n) = fA(t); t= 1; : : : ;ng.

– ���(h1:n;a
�
��) = P [Ak(n+1) = ak j a(n); : : : ;a(n�N +1)] :



Ad Hoc Agent Modeling

Online Learning Agent
E-commerce Scenario
Decision-Theoretic Framework - POMDP Agent



Online Learning Agent
Recall that:

V̂ k
� (h1:n;ak) =

1

N

N�1X
t=0

U� (hak;a�k(n� t)i); k = �;��:

We can define the set of maximizing actions as:

Âk
� (h1:n) = argmaxak2Ak

V̂ k
� (h1:n)

For best scenarios we define expert as a mapping
E� :H�A! [0;1] such that:

E� (h1:n;a) = E�
� (h1:n;a�)E

��
� (h1:n;a��)

More precisely:

Ek
� (h1:n;ak) =

(
1

jÂk
� (h1:n)j

if ak 2 Âk
� (h1:n)

0 otherwise
; k = �;��



Online Learning Agent

To evaluate the prediction, we define the loss function:

`(Â(n);A��(n)) = 1� �(Â��(n);A��(n))

Now we represent the expected loss of expert E� , given
history h1:n, at time n+1 as:

`� (h1:n;a��) = EE� (h1:n)
h
`(Â;a��)

i
,
X
a02A

E� (h1:n;a
0)`(a0;a��)

The cumulative loss of expert E� is how "bad" the ad hoc
agent can predict its teammate at time n:

L� (h1:n),
n�1X
t=0

`� (h1:t;a��(t+1))



Online Learning Agent

We need a more generalized predictor mapping
P :H�A! [0;1] such that for any history h1:n:X

a2A

P (h1:n;a) = 1

Similarly, there is the expected loss of predictor P and
cumulative loss of P :

`P (h1:n;a��),
X
a02A

P (h1:n;a
0)`(a0;a��)

LP (h1:n) =
n�1X
t=0

`P (h1:t;a��(t+1))



Online Learning Agent

Determining a predictor that minimizes the expected regret:

Rn(P;E) = E [LP (h1:n)�L� (h1:n)]

Choice of predictor P : exponentially weighted average
predictor

P (h1:n; â),

P
�2T e

�
nL� (h1:n)E� (h1:n; â)P
�2T e

�
nL� (h1:n)



Online Learning Agent



E-commerce Scenario

Two agents collaborate to assemble a computer.
Each needs to purchase one of LCD monitor or
motherboard.
Each is optimized to assemble one of the two and will be
less efficient in the other.
Un-optimized job assignment incurs $2 in cost.
Same supplier shipment incurs $2 in reward.
Task is to maximize the profit, where each computer is sold
at $25.



E-commerce Scenario

�1 : Replace the agent optimized to build LCD Monitors
�2 : Replace the agent optimized to build desktop
computers.
T � = �2 is the target task.
(Z;W ): the action of purchasing partW from supplier Z.
�: ad hoc agent
��: teammate agent.

A� =A�� =
�
(A;LCD);(B;LCD);(A;MB);(B;MB)

	
and p0(�1) = p0(�2) = 0:5.



E-commerce Scenario

Figure 2: Price and shipping cost of different parts



E-commerce Scenario

Figure 3: Payoff matrix for the task “Replace the agent optimized to build LCD Monitors”

Figure 4: Payoff matrix for the task “Replace the agent optimized to build desktop computers”



E-commerce Scenario

Figure 5: Average cumulative regret of the exponentially weighted average predictor in the
e-commerce scenario. This result corresponds to the average of 1,000 independent Monte-Carlo trials

P is able to identify the strategy of the teammate.
The theoretical bound is an overestimate.
The task has a well-defined set of optimal actions.



Online Learning Agent Evaluation

What have we missed from the online learning agent model?



Online Learning Agent Evaluation

Missing elements:
Prior knowledge about the target task.
) Bayesian approach to the problem. [10]–[12]
Impact of �’s action on teammate agents.
) Re-evaluate regret function.

Better modeling:
Minimize the expected loss (better prediction of the action
of ��.
Maximize the payoff in the target task.



Decision-Theoretic Framework

T � is considered as an unobserved random variable.
The ad hoc agent keep a distribution pn over the space of
possible tasks at each time n.

pn(� ) = P [T � = � jH(n�1)] ;8� 2 T

pn(� ) is referred to as the belief of the agent � at time step n
related to what the target task is.



POMDP Agent Modeling[13]

M= (X ;A;Z;P;O;r;
)

X =HN �T is the state-space, i.e, random variable
X(n) = (HN (n�1);T �).
A=A��A�� is the action-space. At each time-step n, the
ad hoc agent must select an action Â(n) = hA�(n); Â��(n)i.
Z =A�� is the observation-space. XH(n) is fully observable
to �.
P represents the transition probabilities.

P(h0; � 0 j h;�;a) = PT (� 0 j �;a)PH(h0 j h;�;a):
O represents the observation probabilities, which indicates
the dependence between the observation on the state and
the agent’s action.

O(a0�� j h;�;a), P
�
Z(n+1) = a0�� jX(n+1) = (h;� );A(n) = a

�
= �(a0��;a��(N));



POMDP Agent Modeling

r is the reward function

r(h;�;a) =

0
@1�

X
â2A

E� (h; â)`(â;a)

1
A
0
@X
â2A

E� (h; â)U� (a�; â��)

1
A

�
X
â2A

E� (h; â)`(â;a)max
a
jU� (a)j ;

where ` is the loss function defined earlier.

 is the discount factor for future rewards.

?Why do we penalize reward with the maximum possible
rewards?



POMDP Agent Modeling

Figure 6: POMDP performance in the e-commerce scenario for different reward functions



Empirical Evaluation

Methodology for Empirical Evaluation
Performance on a Set of Experiments
Scalability of Proposed Approach
POMDO Evaluation and Tradeoff



Methodology

Sets of experiments.
1. Performance of both approaches, with control groups.
2. Scalability of both approaches to increasing complexity.

– Number of tasks.
– Number of agents.
– Number of actions.

One ad hoc agent with multiple "legacy agents".
Ad hoc agent must identify task, teammates and do
planning.
Results are from averages over 1000 independent Monte
Carlo trials, each consisting 100 learning steps.



Agents Used for Comparison

Figure 7: Summary of all agents used for comparison



Performance on E-commerce Scenario

Figure 8: Performance of the different approaches in the e-commerce scenario for different horizon
lengths.



Performance on E-commerce Scenario

Figure 9: Average discounted payoff of the different approaches in the e-commerce scenario for a
horizon H = 3.



Performance on E-commerce Scenario

Figure 10: Average loss of the different approaches in the e-commerce scenario for different horizon
lengths.



Performance on E-commerce Scenario

Figure 11: Average payoff of the different approaches in the e-commerce scenario, for different
horizon lengths.



Scalability on Number of Tasks

2-agent, 2-action with tasks ranging from 5 up to 50. H = 2

Figure 12: a Performance of the different approaches in randomly generated scenarios as a function
of the number of possible tasks. b POMDP computation time as a function of the number of tasks



Scalability on Number of Actions

2-agent, 5 tasks with number of actions ranging from 2 up to 50.
H = 2

Figure 13: a Performance of the different approaches in randomly generated scenarios as a function
of the number of actions per agent. b POMDP computation time as a function of the number of
actions per agent



Scalability on Number of Agents

2-actions, 5 tasks with number of agents ranging from 2 up to
50. H = 2

Figure 14: a Performance of the different approaches in randomly generated scenarios as a function
of the number of agents. b POMDP computation time as a function of the number of agents



POMDP Evaluation and Tradeoff

POMDP outperforms OL and other agents in most settings.
POMDP is close to MDP in different domains.
Performance of POMDP comes at a computational cost.

jHN j= jAjK�N :

Both approaches outperform "pure learning" approach
based on standard RL.



Paper Conclusions

– Novel perspective of the ad hoc teamwork problem, focusing
on task and teammate identification for better planning.

– Sequential decision formalization of the ad hoc teamwork
problem.

– Two approaches for ad hoc agent modeling.
– Bounded rationality for both proposed approaches.
– Performance comes at a cost.



My Conclusions

– Real-life scenarios involve large action space, POMDP might
not be optimal strategy.

– Scalability issue with infinite memory on the horizon.
– History component is simplified to the most recent actions only.
– Real life humans have way more memories to make decisions on actions.

– Pre-processing of action space to better suit POMDP
computation?



My Conclusions

– How does the agents perform in an open environment?
– Agent openness and task openness essentially leads to dynamic action

space.
– POMDP could perform well since it has a faster "start-up" speed.

– Bounded rationality relies heavily on "no mistake" agents.
– Online learning will not perform well if the actions are noisy or certain

agents start to behave "crazy".
– In other settings when risk assessment needs to be considered, will both

approaches will be applicable?



Thank you!
Q & A
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Online Learning Agent

Theorem 1
If 
t =

q
2ln jEj=t1=2 for all t > 0, then, for any finite history

h1:n 2H,

Rn(P;E)�

r
n

2
ln jEj:

Provides a minor improvement over previous existing
bounds. ([14], Theorem 2.3)
Matches the optimal bound for this class of prediction
problems. [14]
Independent of particular setting.
Worst case performance does not deteriorate significantly
with increasing number of tasks considered.



POMDP Agent

Theorem 2
The POMDP-based approach to the ad hoc teamwork problem is
a no-regret approach, i.e.,

lim
n!1

1

n
Rn(P;E) = 0:



E-commerce Scenario

With initial empty history h0 = fg:

V̂ �
�1

�
h0;(A;LCD)

�
= V̂ �

�1

�
h0;(B;LCD)

�
= 0;

V̂ �
�1

�
h0;(A;MB)

�
= V̂ �

�1

�
h0;(B;MB)

�
= 0;

V̂ �
�2

�
h0;(A;LCD)

�
= V̂ �

�2

�
h0;(B;LCD)

�
= 0;

V̂ �
�2

�
h0;(A;MB)

�
= V̂ �

�2

�
h0;(B;MB)

�
= 0:

Similarly for the teammate agent, the prediction is at random.

V̂ ��
�1

�
h0;(A;LCD)

�
= V̂ ��

�1

�
h0;(B;LCD)

�
= 0;

V̂ ��
�1

�
h0;(A;MB)

�
= V̂ ��

�1

�
h0;(B;MB)

�
= 0;

V̂ ��
�2

�
h0;(A;LCD)

�
= V̂ ��

�2

�
h0;(B;LCD)

�
= 0;

V̂ ��
�2

�
h0;(A;MB)

�
= V̂ ��

�2

�
h0;(B;MB)

�
= 0;



E-commerce Scenario

Assuming the ad hoc agent picks action A1(1) = (B;LCD) with a
prediction of Â2(1) = (A;MB), and the legacy agent’s actual
action is A2(1) = (A;LCD). The history becomes
h1 = fh(B;LCD);(A;LCD)ig. Correspondingly, the loss and
regrets:

L�1(h1) = 1; L�2(h1) = 0:5; LP (h1) = 0:75; R0(P;E) = 0:25



E-commerce Scenario
Now in the second step, with h1 we have updated values:

V̂ �
�1

�
h1;(A;LCD)

�
=�22;

V̂ �
�1

�
h1;(A;MB)

�
= 4;

V̂ �
�2

�
h1;(A;LCD)

�
=�22;

V̂ �
�2

�
h1;(A;MB)

�
= 6;

V̂ �
�1

�
h1;(B;LCD)

�
=�24;

V̂ �
�1

�
h1;(B;MB)

�
=�1;

V̂ �
�2

�
h1;(B;LCD)

�
=�24;

V̂ �
�2

�
h1;(B;MB)

�
= 1:

The ad hoc agent will select action A1(2) = (A;MB). Similarly
the prediction:

V̂ �
�1

�
h1;(A;LCD)

�
=�24;

V̂ �
�1

�
h1;(A;MB)

�
= 4;

V̂ �
�2

�
h1;(A;LCD)

�
=�24;

V̂ �
�2

�
h1;(A;MB)

�
= 3;

V̂ �
�1

�
h1;(B;LCD)

�
=�19;

V̂ �
�1

�
h1;(B;MB)

�
=�6;

V̂ �
�2

�
h1;(B;LCD)

�
=�19;

V̂ �
�2

�
h1;(B;MB)

�
= 4:

The ad hoc agent will predict (B;MB). Given
T � = �2; Â2(2) = (B;MB), we have:
L�1(h2) = 1; L�2(h2) = 0:5; LP (h2) = 0:75; R1(P;E) = 0:25



Pursuit Domain Benchmark

Figure 15: Capture configurations a in the classical pursuit domain; b in the modified pursuit domain



Pursuit Domain Benchmark

Figure 16: Comparative performance of the OL approach, the BSKR approach of Barrett et al. [15]
and a standard RL agent in the pursuit domain. All results are averages over 1,000 independent
Monte Carlo runs
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