Deep
Reinforcement
Learning
— and —
Recurrent
World Models
Facilitate
Policy
Evolution

Deep Reinforcement Learning
— and —

Recurrent World Models Facilitate Policy
Evolution

David Ha and Jurgen Schmidhuber

Presentation by Chris Larsen
NeARv:oi Graduate Researcher

October 4, 2018



Deep
Reinforcement
Learning
— and —
Recurrent
World Models
Facilitate
Policy
Evolution

Chris Larsen

Introduction

Introduction

Senses = Internal Model = Actions

Each of us carries a predictive internal model inside our
brain

e We use this model even without full state knowledge

To do this in RL, a RNN (a neural network through time)
is used to represent the model

e Captures temporal and spatial representations of data

If the model is a sufficient representation of the
environment, we can train from that model
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To train a NN we use some algorithm (backpropagation, etc.)
to fit the function to labeled data.
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Deep Reinforcement Learning

Recall RL's main goal was to select an action that maximizes
the expected reward given the current state. Initially we kept a
table full of (state, action) values that we could reference to
select the best known action.
e What if we used a NN to approximate the "Value State”
function
e |.e. input a current state into a neural network to get out
an action to take

e State = Network = Action
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Deep Reinforcement Learning

e More generally an agent needs a policy function that maps
the current state to the best action, in deep learning this
policy function is generally represented by a NN

e BUT this is quite hard to do given that labeled data is not
available and learning good state values in DRL takes a
huge amount of time and resource compute

e So separate representing (Visual), learning (Model), and
acting (Controller) into three different NN...
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Agent Model

Agent Model

Architecture separated into 3 parts;

The (V) Visual Component
e Takes high dimensional input to latent representation

e The (M) Model Component
e Makes predictions about the future based on historical
information
e The (C) Controller Component
o Makes decisions given (V) and (M)
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e A Variational Autoencoder was used to compress high
dimensional data into a smaller, abstract latent

representation
e Car Racing N, = 32
e VizDoom N, = 64

Original Observed Frame

@—' Decoder

Frame




Deep

Reinforcement MOdel Component

Learning
— and —
Recurrent

] D e A Recurrent NN was utilized to compress what happens
S over time and predict the future
Evolution e LSTM Cells

e Mixture Density Network (MDN-RNN)

e Trains the RNN to output the probability distribution of
the next latent vector z;;1 given the current and past
information made available to it

* P(zt11]at, 2t he)
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Controller Component

e The controller is used to select which action to take to
maximize expected reward
e In this paper (C) is a simple linear layer
o a, = W [z:h:] + b
e (C) is trained using Covariance-Matrix Adaption Evolution
Strategy (optimized on single machine CPU)
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Car Racing Design

1. Collect 10,000 rollouts from a random policy.

2. Train VAE (V) to encode each frame into a latent vector 2 eR™:2,
3. Train MDN-RNN (M) to model P (24,1 | ag, 24, hy).

4. Define Controller (C) asa; = W, [z hy] + be.

5. Use CMA-ES to solve for a W, and b, that maximizes the expected cumulative reward.

Model Parameter Count
VAE 4,348,547
MDN-RNN 422,368

Controller 867
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Method
DQN (53]
A3C (continuous) [52]
A3C (discrete) [51]
ceobillionaire’s algorithm (unpublished) 471
V model only, z input
V model only, z input with a hidden layer

Full World Model, z and h

Car Racing
Experiment

Car Racing Results

Average Score over 100 Random Tracks
343 +18
591+ 45
652 +10
838+ 1
632 + 251
788 + 141
906 + 21
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VizDoom Design

1. Collect 10,000 rollouts from a random policy.

2. Train VAE (V) to encode each frame into a latent vector z €R%, and use V to convert the images
collected from (1) into the latent space representation.

3. Train MDN-RNN (M) to model P(2yy1,ds 1 | as, 24, hy)-
4. Define Controller (C) as a; = W, [2; hy].

5. Use CMA-ES to solve for a W, that maximizes the expected survival time inside the virtual

environment.

6. Use learned policy from (5) on actual Gym environment.

Model Parameter Count
VAE 4,446,915
MDN-RNN 1,678,785
Controller 1,088
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VizDoom Temperature

e The RNN model learns things such as game logic, enemy
behavior, physics, and graphic rendering
e The temperature can be increased to increase model

uncertainty thus making the game even harder than the
actual environment
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Temperature
0.10
0.50
1.00
1.15
1.30
Random Policy Baseline

Gym Leaderboard [34]

Score in Virtual Environment
2086 + 140
2060 &+ 277
1145 + 690
918 + 546
732 £ 269
N/A

N/A

S

VizDoom Results

core in Actual Environment
193 + 58
196 + 50
868 £ 511
1092 + 556
753 139
210 4108

820 + 58
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Cheating

Cheating

e Since the dream environment is governed by (M) the
agent may find adversarial policies that exploit the
uncertainty of the dream

e Some trajectories through (M) may not follow the
governing laws of the actual environment

¢ (C) has access to h, of (M)...
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Discussion

e Partially observable environments?
e Would need to use some sort of iterative training approach
e Train (V) and (M) using backprop on GPU, let (C) be
trained with ES on CPU

e Could (M) represent a family of environments from some
distribution and if so how general could (M) become?
e Could priors be formed by meta-learning (M) across
different settings?
e The (M) of life!
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Discussion

MAS Discussion

e Learning the (M) is computationally expensive and
requires good data samples
e Thus MAS could utilize a shared model of the
environment
e Allowing the agents to "share” prior information and

dynamics of the environment
e While also allowing each agent to act from its own

controller network
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