Consensus Based Distributed Multi-Agent Systems

Presented by : Chandima Fernando

Credits

- •Ge, X., Yang, F. and Han, Q.L., 2017. Distributed networked control systems: A brief overview. Information Sciences, 380, pp.117-131.
- •Ren, W., Beard, R.W. and Atkins, E.M., 2007. Information consensus in multivehicle cooperative control. IEEE Control Systems, 27(2), pp.71-82.

Motivation !

Overview

NEXT • Types of Systems Good and Bad

- Distributed Multi Agent Systems Challenges in Distributed MAS
- Methodologies for DMASs
 - •Graph Theory
 - State Based Agent Modeling
- Consensus Algorithms

Types of Systems Centralized configuration

> •All agents are required send the information back to a remote controller node and send the control back to each agent.

Types of Systems Centralized configuration - Advantages

 Since all agent information is available at the controller side, control performance may be generally optimal.

Analysis is relatively easy

Types of Systems Centralized configuration - Disadvantages

- •Failure of the central processing unit -> failure of all agents
- •High cost of collecting data from individual agent
- Increased computational burden

Types of Systems *Distributed configuration*

- •Environment information through local communication.
- •Each agent locally performs its local computation.
- •Each agent acts individually.

Types of Systems *Distributed configuration*

- Information of each agent is exchanged among other agents.
- •Systems usually consists of a large number of simple interacting agents.

Types of Systems *Distributed configuration - Advantages*

- •Alleviates computation burden.
- •Scalability.
- •Robustness.

Types of Systems *Distributed configuration - Disadvantage*

- Sub-optimal solutions
- Difficult to analyze stability properties

Overview

 Types of Systems Good and Bad Distributed Multi Agent Systems **NEXT** Challenges in Distributed MAS Methodologies for DMASs •Graph Theory State Based Agent Modeling Consensus Algorithms

Challenging issues in Distributed MAS communication challenges

- •Network-induced delays
 - Computational delays in agent components, such as sensors, controllers and actuators
 - Network access delays in network
 - Transmission delays in the communication network
 - •May lead to deteriorated agent performance.

Challenging issues in Distributed MAS communication challenges

•Data packet dropouts Random and deterministic •Data packet disorder Packets arriving at different temporal orders

Challenging issues in Distributed MAS communication challenges

- Quantization error •When agents decode the transmitted analog signals
- •Time-varying network topology Agent mobility, agent failure and agent adding

Challenging issues in Distributed MAS computation challenges

- (sensors, controllers and actuators)

- Modeling of communication networks Increase of number of agents Increase of numbers of agents components Complexity of control algorithms

Challenging issues in Distributed MAS control challenges

- Resources are limited and often shared between multiple agents
- Agents resources are limited
- •Real-time distributed scheduling algorithms are needed

Overview

 Types of Systems Good and Bad Distributed Multi Agent Systems **NEXT** Challenges in Distributed MAS Methodologies for DMASs State Based Agent Modeling •Graph Theory Consensus Algorithms

Methodologies for Distributed MAS State Based Agent Modeling

- Dynamics of an agent can be modeled using physics
- $x_1 = x(t)$ be the position. $x_2 = \dot{x}(t)$ be the velocity. $x_3 = \ddot{x}(t)$ be the acceleration of an agent at time t.

Methodologies for Distributed MAS State Based Agent Modeling

- •Assume we can control the acceleration directly with a force u,
- $x_1 = x(t); x_2 = \dot{x}(t); x_3 = \ddot{x}(t) = u$ •After substitution,
 - $\dot{x}_1 = x_2$ $\dot{x}_2 = u$

Methodologies for Distributed MAS State Based Agent Modeling Represent the same $\dot{x}_1 = x_2; \dot{x}_2 = u$ With matrix notation : $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix}$

 $\dot{x} = Ax + Bu$

Let the multi-agent communication system be represented by a N node graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, with a set of nodes representing each agent $\mathcal{V} = \{v_1, v_2, .., v_N\}$. An edge of \mathcal{G} represents communication between the agents and is denoted by $arepsilon_{ij}=(v_i,v_j).$ The set of edges $\mathcal{E}\subseteq\mathcal{V}\times\mathcal{V}$ can be

 $\mathcal{A} = [a_{ij}]$ of the graph \mathcal{G} is defined as

$$a_{ij} = \begin{cases} 1, & \epsilon \\ 0, & \epsilon \end{cases}$$

 $\varepsilon_{ij} \in \mathcal{E}$

otherwise.

Degree matrix							Adjacency matrix							
(2)	0	0	0	0	0 \		0	1	0	0	1	0 \		
0	3	0	0	0	0		1	0	1	0	1	0		
0	0	2	0	0	0		0	1	0	1	0	0		
0	0	0	3	0	0		0	0	1	0	1	1		
0	0	0	0	3	0		1	1	0	1	0	0		
$\sqrt{0}$	0	0	0	0	1/		$\setminus 0$	0	0	1	0	0/		

Degree matrix								Adjacency matrix						
	2	0	0	0	0	0 \		(0	1	0	0	1	0 \	
	0	3	0	0	0	0		1	0	1	0	1	0	
	0	0	2	0	0	0		0	1	0	1	0	0	
	0	0	0	3	0	0		0	0	1	0	1	1	
	0	0	0	0	3	0		1	1	0	1	0	0	
	$\sqrt{0}$	0	0	0	0	1/		$\sqrt{0}$	0	0	1	0	0/	

Consensus Algorithms

- Consensus means agreement -These algorithms allow agents to agree on a shared state.
- This shared state can be
 - Position
 - •Velocity
 - Information on a global map
 - •A sensor value

Consensus Algorithms

Basic algorithm looks like this :

$$u_i(t) = \sum_{j=1}^n a_{ij} \left[r_j(t) \right]$$

 $-r_i(t)$]

Consensus Algorithms Formation Making

$$u_i = \sum_{j \in \mathcal{N}_i} e_{k_{ij}} (p_j - p_i)$$

$$e_{k_{ij}} = \|p_i - p_j\|^2 - (d_{ij}^*)^2$$

Consensus Algorithms Formation Making

$$u_i = \sum_{j \in \mathcal{N}_i} e_{k_{ij}} (p_j - p_i)$$

$$e_{k_{ij}} = \|p_i - p_j\|^2 - (d_{ij}^*)^2$$

