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Introduction

Consider	the	problem	of	a	robot	navigating	in	a	large	office	
building.		The	robot	can	move	from	hallway	intersection	to	
intersection	and	can	make	local	observations	of	its	world.		Its	
actions	are	not	completely	reliable,	however.		Sometimes,	
when	it	intends	to	move,	it	stays	where	it	is	or	goes	too	far;	
sometimes,	when	it	intends	to	turn,	it	overshoots.		It	has	
similar	problems	with	observation.		Sometimes	a	corridor	looks	
like	a	corner;	sometimes	a	T-junction	looks	like	an	L-junction.		
How	can	such	an	error-plagued	robot	navigate,	even	given	a	
map	of	the	corridors?



Introduction	2

In	general,	the	robot	will	have	to	remember	something	about	
its	history	of	actions	and	observations	and	use	this	
information,	together	with	its	knowledge	of	the	underlying	
dynamics	of	the	world	(the	map	and	other	information)	to	
maintain	an	estimate	of	its	location.		Many	engineering	
applications	follow	this	approach,	using	methods	like	the	
Kalman filter	…		expressed	as	an	ellipsoid	or	normal	
distribution	in	Cartesian	space.		This	approach	will	not	do	for	
our	robot,	though.		Its	uncertainty	may	be	discrete:	it	might	be	
almost	certain	that	it	is	in	the	north-east	corner	of	either	the	
fourth	or	the	seventh	floors,	though	it	admits	a	chance	that	it	
is	on	the	fifth	floor,	as	well.
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Then,	given	an	uncertain	estimate	of	its	location,	the	robot	has	
to	decide	what	actions	to	take.		In	some	cases,	it	might	be	
sufficient	to	ignore	its	uncertainty	and	take	actions	that	would	
be	appropriate	for	the	most	likely	location.		In	other	cases,	it	
might	be	better	for	the	robot	to	take	actions	for	the	purpose	of	
gathering	information,	such	as	searching	for	a	landmark	or	
reading	signs	on	the	wall.		In	general,	it	will	take	actions	that	
fulfill	both purposes	simultaneously.
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Partially	Observable	Markov	Decision	Process	
(POMDP)
To	solve	problems	of	choosing	optimal	actions	in	partially	
observable	stochastic	domains
• Essentially	a	planning	problem:	given	a	complete	and	

correct	model	of	the	world	dynamics	and	a	reward	
structure,	find	an	optimal	way	to	behave.

• But:	stochastic	domains	à depart	from	traditional		AI	
planning	model
– Rather	than	taking	plans	to	be	sequences	of	actions	(which	may	

only	rarely	execute	as	expected):	mappings	from	situations	to	
actions	that	specify	the	agent’s	behavior	no	matter	what	may	
happen
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Partially	Observable	Markov	Decision	Process	
(POMDP)
No	distinction	drawn	between	actions	taken	to	change	
the	state	of	the	world	and	actions	taken	to	gain	
information
• Thus,	optimal	performance	involves	something	akin	
to	a	“value	of	information”	calculation
– Amount	of	information	an	action	provides
– Amount	of	reward	an	action	produces
– How	an	action	changes	the	state	of	the	world



Background

Many	real	world	applications	are	both	non-
deterministic	and	partially	observable
• Autonomous	robot	control
– Imperfect	actions,	observations

• Decision	Support	Systems
– Incomplete	knowledge	of	user’s	cognitive	states
– Local	view	of	external	environment

• Industrial	Control	Systems
– Noisy	sensors
– Undiagnosed	faults



Background:	Markov	Chains

• Markov	Chains	to	model	the	environment
– Handle	non-determinism	with	probabilities

• 2	Tuple
– S =	{s} set	of	states
– P(s’	|	s) state	transitions

• Application:	Network	Loss
– (Nguyen	et	al.,	1996)



Background:	Hidden	Markov	Model

• Hidden	Markov	Model	(HMM)	to	model	the	
environment
– Incomplete	knowledge	of	states

• 4	Tuple
– S =	{s} set	of	states
– P(s’	|	s) state	transitions
– Ω =	{o} set	of	observations
– O(s,	o)	=	P(o |	s)						 observation	function

• Application:	Bioinformatics
– DNA	sequences	
– (Durbin	et	al.,	1998) ATCGTCATTGCCATATACC

GGCTATCATTTCCCAGGA
TCTTACCTTTAAGTCTATAC



Background:	Recap	1

Markov	Chain Hidden	Markov	
Model

Fully	Observable Partially	Observable

States

Actions



Markov	Decision	Processes	(MDPs)



MDPs	2

Although	there	may	be	a	great	deal	of	uncertainty	
about	the	effects	of	an	agent’s	actions,	there	is	never	
any	uncertainty	about	the	agent’s	current	state
• it	has	complete	and	perfect	perceptual	abilities	(MDP	only!)

The	next	state	and	the	expected	reward	depend	only	
on	the	previous	state	and	the	action	taken
• even	if	we	were	to	condition	on	additional	previous	states,	

the	transition	probabilities	and	the	expected	rewards	would	
remain	the	same

• The	Markov	property—the	state	and	reward	at	time	t +	1	is	
dependent	only	on	the	state	at	time	t and	the	action	at	time	t.



MDPs:		Acting	Optimally

Maximizing	some	measure	of	the	long-run	
reward	received
• E.g.,	finite-horizon	optimality	

– Maximizing	expected	sum	of	immediate	rewards	of	k
steps

– But,	what	is	k?

• E.g.,	infinite-horizon	discounted	model
– Summing	the	rewards	over	the	infinite	lifetime	of	the	

agent,	but	discount	them	geometrically	using	a	
discount	factor

– Why	discounted?		



MDPs:		Acting	Optimally	2

Policy	=	Description	of	the	behavior	of	an	agent
Two	kinds	of	policies:	stationary and	non-stationary
• A	stationary	policy	is	a	situation-action	mapping	that	

specifies	for	each	state,	an	action	to	be	taken.		
– The	choice	of	action	depends	only	on	the	state	and	is	

independent	of	the	time	step.

• A	non-stationary	policy	is	a	sequence	of	situation-action	
mappings,	indexed	by	time



MDPs:		Acting	Optimally	3

Horizon’s	impact	on	optimal	policy
• Finite:	typically	non-stationary	as	the	way	an	agent	chooses	

its	actions	on	the	last	step	of	its	life	is	generally	going	to	be	
very	different	from	the	way	it	chooses	them	when	it	has	a	
long	life	ahead	of	it

• Infinite:	typically	stationary	as	an	agent	has	a	constant	
expected	amount	of	time	remaining	à no	reason	to	change	
action	strategies



MDPs:		Acting	Optimally	4
Finite-Horizon
Evaluate	a	policy	based	on	the	long-run	value	that	the	
agent	expects	to	gain	from	executing	it

Recursively	defined

Immediate	
reward

Transition	
probability	
from	s to	s’

Value	of	s’	(but	
now	only	with	
remaining	t-1	

steps)

Discount	
factor



MDPs:		Acting	Optimally	4
Infinite-Horizon	Discounted
Evaluate	a	policy	based	on	the	expected	discounted	sum	
of	future	reward	agent	expects	to	gain	from	executing	it

Recursively	defined	as	well

Immediate	
reward

Transition	
probability	
from	s to	s’

Value	of	s’Discount	
factor



MDPs:		Acting	Optimally	5
Greedy	Policy
For	the	finite	horizon:

Policy	obtained	by,	at	every	step,	taking	the	action	that	
maximizes	expected	immediate	reward	plus	the	
expected	discounted	value	of	the	next	state,	as	
measured	by	V



MDPs:		Acting	Optimally	6
Optimal	Policy

Note:	Optimal	policy	=	a	sequence	of	actions	that	at	each	step	
maximizes	the	immediate	rewards	plus	the	discounted	expected	
gain	in	value	for	the	next	time	interval



MDPs:		Acting	Optimally	7
Optimal	Policy’s	Value

Note:	An	optimal	policy	π*	is	just	a	greedy	policy	with	respect	to	
V*



MDPs:	Computing	an	Optimal	Policy



MDPs:		Summary

• 4	Tuple	
– S	=	{s} set	of	environment	states
– A =	{a} set	of	possible	actions
– T(s,	a,	s’)	=	P(s’ |	s,	a)		 next	state	function
– R(s,	a) reward	function

• Autonomous	robot	example
– S	 set	of	locations
– A movements	(N,	S,	E,	W,	X)
– T movement	to	new	location
– R inverse	distance	to	goal



MDP:	Recap	2

Markov	Chain Hidden	Markov	
Model

Fully	Observable Partially	Observable

States

Actions
Markov	
Decision	
Process



Partial	Observability

For	MDPs	we	can	compute	the	optimal	policy	π	and	use	it	to	act	by	simply	
executing	π(s)	for	current	state	s.		What	happens	if	the	agent	is	no	longer	
able	to	determine	the	state	it	is	currently	in	with	complete	reliability?

A	naïve	approach	would	be	for	the	agent	to	map	the	most	recent	
observation	directly	into	an	action	without	remembering	anything	from	the	
past
• Performing	the	same	action	in	every	location	that	looks	the	same—hardly	a	

promising	approach

Better?		Adding	randomness	to	the	agent’s	behavior:	a	policy	can	be	
a	mapping	from	observations	to	probability	distributions	over	
actions
• Randomness	allows	the	agent	to	sometimes	choose	different	actions	in	

different	locations	with	the	same	appearance



POMDP

Note:	uncertain	about	observation	à observation	function	to	
capture	the	probability	distribution	that	if	an	agent	observes	o,	
what	is	the	probability	that	it	is	because	of	performing	a to	state	s?



POMDP	vs.	MDP

A	POMDP	is	an	MDP	in	which	the	agent	is	unable to	observe	the	current	
state.		Instead,	it	makes	an	observation	based	on	the	action	and	resulting	
state	using	an	estimator.		The	agent’s	goal	remains	to	maximize	expected	
discounted	future	reward.

MDP

POMDP	=	state	estimator	(SE)	+	policy	(π)	

What	is	b?



POMDP:	Problem	Structure

The	agent	makes	
observations	and	
generates	actions
• An	internal	belief	state,	

b,	that	summarizes	its	
previous	experience	(is	
this	still	Markov?)

• SE:	responsible	for	
updating	the	belief	state	
based	on	the	last	action,	
the	current	observation,	
and	the	previous	belief	
state

• π:	responsible	for	generating	
actions,	but	as	a	function	of	the	
agent’s	belief	state	instead	of	
the	state	of	the	world



POMDP:	Belief	States

One	choice	might	be	the	most	probable	state	of	the	world,	given	
the	past	experience.
• Plausible	…	is	it	sufficient	in	general?
• In	order	to	act	effectively,	an	agent	must	take	into	account	its	own	degree	of	

uncertainty	and	reason	with	that	uncertainty
• E.g.,	If	lost	or	confused,	might	be	appropriate	for	an	agent	to	take	sensing	

actions	
Probability	distributions	over	state	of	the	world
• Encode	an	agent’s	subjective	probability	about	the	state	of	the	

world	and	provide	a	basis	for	acting	under	uncertainty
• Sufficient	statistic	for	the	past	history	and	initial	belief	state	of	

the	agent:	given	the	agent’s	current	belief	state,	no	additional	
data	about	its	past	actions	or	observations	would	supply	any	
further	information	about	the	current	state	of	the	world
• The	process	over	belief	states	is	Markov!



POMDP:	Computing	Belief	States

Bayes	Theorem



POMDP:	Example

Four	states	(S)
• One	goal	state	(star)
Two	possible	observations	(O)
• One	is	always	made	when	the	agent	is	in	state	1,	2,	or	4
• One	is	made	when	the	agent	is	in	the	goal	state	(3)
Two	possible	actions	(A)
• EAST,	WEST
Transitions	(T)
• If	no	movement	is	possible	in	a	particular	direction,	then	the	agent	stays	put
• The	above	actions	succeed	with	p	=	0.9
• When	actions	fail	(i.e.,	with	p	=	0.1),	the	movement	is	in	the	opposite	direction



POMDP:	Example,	Cont’d

• Its	initial	belief	state	is	[0.333		0.333		0		0.333]
• If	the	agent	takes	action	EAST	and	does	not	observe	the	goal,	then	the	new	

belief	state	becomes?
• Note	that	O(s’,	a,	o)	=	1	if	non-goal	state,	and	0	if	goal	state.

S1 S2 S3 S4

T	=	0 0.333 0.333 0 0.333

T	=	1 ? ? ? ?

T	=	2



POMDP:	Example,	Cont’d

b’(s1)	=	O(s1,	EAST,	o)*[	T(s1,EAST,s1)b(s1)	+	T(s2,EAST,s1)b(s2)	+	T(s3,EAST,s1)b(s3)	+	
T(s4,EAST,s1)b(s4)	]		
=		1*[0.1*0.333	+	0.1*0.333	+	0*0	+	0*0.333]
=		0.0667	(un-normalized)

S1 S2 S3 S4

T	=	0 0.333 0.333 0 0.333

T	=	1 ? ? ? ?

T	=	2

S1 S2 S3 S4

T	=	0 0.333 0.333 0 0.333

T	=	1
0.0667 (un-
normalized) ? ? ?

T	=	2



POMDP:	Example,	Cont’d

b’(s2)	=	O(s2,	EAST,	o)*[	T(s1,EAST,s2)b(s1)	+	T(s2,EAST,s2)b(s2)	+	T(s3,EAST,s2)b(s3)	+	
T(s4,EAST,s2)b(s4)	]		
=		1*[0.9*0.333	+	0.0*0.333	+	0.1*0	+	0*0.333]
=		0.2997	(un-normalized)

S1 S2 S3 S4

T	=	0 0.333 0.333 0 0.333

T	=	1
0.0667 (un-
normalized) ? ? ?

T	=	2

S1 S2 S3 S4

T	=	0 0.333 0.333 0 0.333

T	=	1
0.0667 (un-
normalized)

0.2997 (un-
normalized) ? ?

T	=	2



POMDP:	Example,	Cont’d

b’(s3)	=	O(s3,	EAST,	o)*[	T(s1,EAST,s3)b(s1)	+	T(s2,EAST,s3)b(s2)	+	T(s3,EAST,s3)b(s3)	+	
T(s4,EAST,s3)b(s4)	]		
=		0*[0.0*0.333	+	0.1*0.333	+	0.1*0	+	0.9*0.333]
=		0

S1 S2 S3 S4

T	=	0 0.333 0.333 0 0.333

T	=	1
0.0667 (un-
normalized)

0.2997 (un-
normalized) ? ?

T	=	2

S1 S2 S3 S4

T	=	0 0.333 0.333 0 0.333

T	=	1
0.0667 (un-
normalized)

0.2997 (un-
normalized) 0 ?

T	=	2



POMDP:	Example,	Cont’d

b’(s4)	=	O(s4,	EAST,	o)*[	T(s1,EAST,s4)b(s1)	+	T(s2,EAST,s4)b(s2)	+	T(s3,EAST,s4)b(s3)	+	
T(s4,EAST,s4)b(s4)	]		
=		1*[0.0*0.333	+	0.0*0.333	+	0.9*0	+	0.9*0.333]
=		0.2997	(un-normalized)

S1 S2 S3 S4

T	=	0 0.333 0.333 0 0.333

T	=	1
0.0667 (un-
normalized)

0.2997 (un-
normalized) 0 ?

T	=	2

S1 S2 S3 S4

T	=	0 0.333 0.333 0 0.333

T	=	1
0.0667 (un-
normalized)

0.2997 (un-
normalized) 0

0.2997 (un-
normalized)

T	=	2



POMDP:	Example,	Cont’d

Now	to	normalize:
• Sum	the	values	Pr(o|a,b)	=	0.0667	+	0.2997	+	0	+	0.2997	=	0.6667

S1 S2 S3 S4

T	=	0 0.333 0.333 0 0.333

T	=	1
0.0667 (un-
normalized)

0.2997 (un-
normalized) 0

0.2997 (un-
normalized)

T	=	2

S1 S2 S3 S4

T	=	0 0.333 0.333 0 0.333

T	=	1 0.1 0.45 0 0.45

T	=	2



POMDP:	Example,	Cont’d

If	we	take	action	EAST	again

How	the	belief	states	evolve	depends	on	our	choice	of	actions
• How	should	we	explore	our	actions?

S1 S2 S3 S4

T	=	0 0.333 0.333 0 0.333

T	=	1 0.1 0.45 0 0.45

T	=	2 ? ? ? ?

S1 S2 S3 S4

T	=	0 0.333 0.333 0 0.333

T	=	1 0.1 0.45 0 0.45

T	=	2 0.1 0.167 0 0.736



POMDP:	Finding	an	Optimal	Policy

Estimating	…



POMDP:	Finding	an	Optimal	Policy

The	reward	function:	the	agent	appears	to	be	
rewarded	for	merely	believing	that	it	is	in	good	
states
• However,	because	the	state	estimator	is	constructed	from	a	

correct	observation	and	transition	model	of	the	world,	the	
belief	state	represents	the	true	occupation	probabilities	for	
all	states	s
• And	therefore,	the	reward	function	represents	the	true	expected	

reward	to	the	agent

Reward	is	now	based	
on	belief	+	action,	not	

state	+	action



POMDP:	Finding	an	Optimal	Policy
Policy	Tree
When	an	agent	has	one	step	remaining,	all	it	can	do	
is	take	a	single	action
With	two	steps	to	go,	it	can	take	an	action,	make	an	
observation,	then	take	another	action,	perhaps	
depending	on	the	previous	observation
In	general,	an	agent’s	non-stationary	t-step	policy	
can	be	represented	by	a	policy	tree



POMDP:	Finding	an	Optimal	Policy
Policy	Tree	2



POMDP:	Finding	an	Optimal	Policy
Policy	Tree	3



POMDP:	Finding	an	Optimal	Policy
Policy	Tree	4



POMDP:	Finding	an	Optimal	Policy
Policy	Tree	5

Now	we	have	the	value	of	executing	the	policy	tree	p	in	every	
possible	belief	state.		To	construct	an	optimal	t-step	policy,	
however,	it	will	generally	be	necessary	to	execute	different	
policy	trees	from	different	initial	belief	states.		Let	P be	the	
finite	set	of	all	t-step	policy	trees.	Then



The	Tiger	Problem

Imagine	an	agent	standing	in	front	of	two	closed	doors
• Behind	one	door:	a	tiger;	behind	the	other:	a	large	
reward

• If	the	agent	opens	the	door	with	the	tiger,	then	a	large	
penalty	is	received.

• Or	the	agent	can	listen,	in	order	to	gain	some	
information	about	the	location	of	the	tiger.	
• not	free	
• not	entirely	accurate

• There	is	a	chance	that	the	agent	will	hear	a	tiger	behind	the	left-
hand	door	when	the	tiger	is	really	behind	the	right-hand	door,	and	
vice	versa.



The	Tiger	Problem	2

States	S:
• {	s0,	s1	}		s0	=	tiger	is	on	the	left,	s1	=	tiger	is	on	the	right
Actions	A:
• {	OPEN-LEFT,	OPEN-RIGHT,	LISTEN	}
Rewards	R:		
• Open	correct	door	=	+	10,	Open	wrong	door	=	-100,	Cost	of	

listening	=	-1		
Two	possible	observations	O:		
• {	TIGER-LEFT,	TIGER-RIGHT	}
Immediately	after	the	agent	opens	a	door	and	receives	a	
reward/penalty,	the	problem	resets,	randomly	relocating	
the	tiger	behind	one	of	the	two	doors



The	Tiger	Problem	2

Transitions	T:
• The	LISTEN	action	does	not change	the	state	of	the	world.

– T(s0,	LISTEN,	s0)	=	1
– T(s0,	LISTEN,	s1)	=	0
– T(s1,	LISTEN,	s0)	=	0
– T(s1,	LISTEN,	s1)	=	1

• The	OPEN-LEFT	and	OPEN-RIGHT	actions	cause	a	transition	to	
world	state	s0	with	probability	0.5	and	to	state	s1	with	
probability	0.5	(after	observation	&	reward)
– essentially	resetting	the	problem
– T(s0,	OPEN-LEFT,	s0)	=	0.5,	T(s0,	OPEN-LEFT,	s1)	=	0.5
– T(s1,	OPEN-LEFT,	s0)	=	0.5,	T(S1,	OPEN-LEFT,	s1)	=	0.5
– T(s0,	OPEN-RIGHT,	s0)	=	0.5,	T(s0,	OPEN-RIGHT,	s1)	=	0.5
– T(s1,	OPEN-RIGHT,	s0)	=	0.5,	T(S1,	OPEN-RIGHT,	s1)	=	0.5



The	Tiger	Problem	3

Observations	O:
• When	the	world	is	in	s0,	LISTEN	à Observation	of	TIGER-LEFT	with	

probability	0.85	and	observation	of	TIGER-RIGHT	with	probability	0.15;	
and	vice	versa	for	s1
– O(	s0,	LISTEN,	TIGER-LEFT)	=	0.85,	O	(	s0,	LISTEN,	TIGER-RIGHT)	=	0.15
– O(	s1,	LISTEN,	TIGER-LEFT)	=	0.15,	O	(	s1,	LISTEN,	TIGER-RIGHT)	=	0.85

• With	no	knowledge	of	the	world	state,	OPEN-LEFT	à either	
observation	with	probability	0.5;	OPEN-RIGHT	à either	observation	
with	probability	0.5
– Essentially	any	observation	without	the	listen	action	is	uninformative
– O(	s0,	OPEN-LEFT,	TIGER-LEFT)	=	0.5,	O	(	s0,	OPEN-LEFT,	TIGER-RIGHT)	=	0.5
– O(	s0,	OPEN-RIGHT,	TIGER-LEFT)	=	0.5,	O	(	s0,	OPEN-RIGHT,	TIGER-RIGHT)	=	

0.5
– O(	s1,	OPEN-LEFT,	TIGER-LEFT)	=	0.5,	O	(	s1,	OPEN-LEFT,	TIGER-RIGHT)	=	0.5
– O(	s1,	OPEN-RIGHT,	TIGER-LEFT)	=	0.5,	O	(	s1,	OPEN-RIGHT,	TIGER-RIGHT)	=	

0.5



The	Tiger	Problem	4

Rewards	R:
• R(s0,	LISTEN)	=	-1
• R(s1,	LISTEN)	=	-1
• R(s0,	OPEN-LEFT)	=	-100	
• R(s1,	OPEN-LEFT)	=	+10
• R(s0,	OPEN-RIGHT)	=	+10
• R(s1,	OPEN-RIGHT)	=	-100



The	Tiger	Problem
Finite	Horizon	Policies
If	only	one	step
• If	the	agent	believes	with	high	probability	that	the	
tiger	is	on	the	left	à best	action	=	OPEN-RIGHT;	
and	vice	versa

• But	what	if	the	agent	is	highly	uncertain	about	
the	tiger’s	location?
– Best	action	=	LISTEN	(-1)
– Why?	

• Guessing	correctly	=	+10;	guessing	incorrectly	=	-100
• Expected	reward	=	(-100	+	10)/2	=	-45!



The	Tiger	Problem
Finite	Horizon	Policies	2
Horizon	=	1	step

The	belief	interval	is	specified	in	terms	of	b(s0)	only	since	b(s1)	=	1-
b(s0)

open open



The	Tiger	Problem
Finite	Horizon	Policies	3
If	only	two	steps
• LISTEN?		Or	opening	a	door?
• Opening	a	door	at	t	=	2,	the	tiger	would	be	
randomly	placed	behind	one	of	the	doors	à
agent’s	belief	state	=	(0.5,	0.5)
– Then	with	only	one	step	left	=	LISTEN	would	be	the	best	action

• Best	action	=	LISTEN	(-1)



The	Tiger	Problem
Finite	Horizon	Policies	4
Horizon	=	2	steps

open open



The	Tiger	Problem
Finite	Horizon	Policies	5
Horizon	=	3	steps

The	optimal	nonstationary policy	for	t	=	3	also	
consists	solely	of	policy	trees	with	the	LISTEN action	
at	their	roots.	If	the	agent	starts	from	the	uniform	
belief	state,	b =	(0.5,	0.5),	listening	once	does	not	
change	the	belief	state	enough	to	make	the	expected	
value	of	opening	a	door	greater	than	that	of	listening.	
The	argument	for	this	parallels	that	for	the	t	=	2	case.



The	Tiger	Problem
Finite	Horizon	Policies	6
Horizon	=	4	
steps



The	Tiger	Problem
Finite	Horizon	Policies	7
Policy	trees
Choose	actions	based	on	observations
• Conditional	plans
Define	value	function	over	trees
• Expected	utility	of	following	tree
• Optimize	to	build	plan
One	tree	per	state

a2

o1

a3a1

a3

o2
o3



The	Tiger	Problem
Discounted	Infinite	Horizon
Finite	Approximation
• Approximate	with	many	step	policy	tree
• Stop	when	adding	a	new	step	offers	little	improvement

Plan	Graph
• Policy	tree	
converges	to	
stationary	policy

• Similar	to	Finite	
State	
Machines/Automata



Discussion

• Problem:	difficult	to	plan	in	partially	
observable,	nondeterministic	environments

• Solution:	state	estimation,	probabilistic	
transitions,	utility	maximization

• MDPs	work	great	if	environment	is	fully	
observable

• POMDPs	handle	“hidden”	states	but	are	
harder	to	solve
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