A COMPREHENSIVE SURVEY OF MULTIAGENT REINFORCEMENT LEARNING

BY: BUSONIU, L., R. BABUSKA, AND B. DE SCHUTTER

Leen-Kiat Soh

Reference

Busoniu, L., R Babuska, and b. De Schutter (2008).
 A Comprehensive Survey of Multiagent
 Reinforcement Learning, IEEE Transactions on
 Systems, Man, and Cybernetics—Part C: Applications and Reviews, 38(2):156-172.

Introduction

- A reinforcement learning (RL) agent learns by trial-anderror interaction with its dynamic environment
- Well-understood algorithms with good convergence and consistency properties are available for solving the single-agent RL task
 - Both when the agent knows the dynamics of the environment and the reward function (the task model), and when it does not
- Together with the simplicity and generality of the setting, this makes RL attractive also for RL in multiagent systems

Introduction: Challenges

- Difficult to define a good learning goal for the multiple RL agents
- Most of the times each learning agent must keep track of the other learning (and therefore nonstationary) agents
 - Only then will it be able to coordinate its behavior with heirs, such that a coherent joint behavior results
 - Nonstationarity also invalidates the convergence properties of most single-agent RL algorithms
- Scalability of algorithms to realistic problem sizes is an even greater cause for concern in multiagent reinforcement learning (MARL)

Background: Reinforcement Learning

 \square Recall: states (X), actions (U), reward functions (ρ)

Background: MARL

- □ The joint action set: $U = U_1 \times ... \times U_n$
- □ The state transition probability function: $f: X \times U \times X \rightarrow [0,1]$
- \square The reward function of agent i: ρ_i : $X \times U \times X \rightarrow Real$
 - Together, they form the collection of reward functions
- In MARL, the state transitions are the result of the joint action of ALL the agents
- Consequently, the rewards and the returns also depend on the joint action
- □ The policies are: h_i : $X \times U_i \rightarrow [0,1]$ (all \rightarrow joint policy h)
- □ The Q-function of each agent depends on the joint action and is conditioned on the joint policy, $Q_{h,i}$: $X \times U \rightarrow Real$

Background: MARL 2

- □ If $\rho_1 = ... = \rho_n$, then all the agents have the same goal (to maximize the same expected return), and the system is **fully cooperative**
- □ If n = 2 and $\rho_1 = -\rho_2$, then all the two agents have opposite goals, and the system is **fully competitive**
- Mixed-game systems are stochastic systems that are neither fully cooperative nor fully competitive

Benefits of MARL

- A speedup of MARL can be realized (thanks to parallel computation) when the agents exploit the decentralized structure of the task
- Experience sharing can help agents with similar task to learn faster and better
- When one or more agents fail in a MAS, the remaining agents can take over some of their tasks; robustness

Challenges in MARL

- Curse of dimensionality
 - Complexity of MARL is exponential in the number of agents, because each agent adds its own variables to the joint state-action space
- Specifying a good MARL goal in the general stochastic setup is a difficult challenge, as the agents' returns are correlated and cannot be maximized independently
- Non-stationarity of the multiagent learning problem arises because all the agents in the system are learning simultaneously
- Need for coordination as actions by agents depend on others' actions

Challenges in MARL, 2

- The exploration-exploitation tradeoff requires online RL algorithms to strike a balance between the exploitation of the agent's current knowledge, and exploratory, information-gathering actions taken to improve that knowledge
 - In MARL, further complications arise due to presence of multiple agents
 - Exploring agents do not just obtain info about the environment, but also about the other agents
 - Too much exploration can destabilize the learning dynamics of the other agents (WHY?)

MARL Goal

- Specifying a good MARL goal is, in general, a difficult problem
 - Especially in situations where agents are not fully cooperative
- Goals incorporate two key factors:
 - Stability of the learning dynamics of the agent
 - Convergence to a stationary policy
 - Adaptation to the dynamic behavior of the other agents
 - Performance is maintained or improved as the other agents are changing their policies

MARL Goal, 2

- Convergence to equilibria is a basic stability requirement
 - Agents' strategies should eventually converge to a coordinated equilibrium
 - Nash equilibria are most frequently used
- Rationality, an adaptation criterion, to add to stability
 - The requirement that the agent converges to a best response when the other agents remain stationary

MARL Goal, 3

- An alternative to rationality is the concept of no-regret
 - The requirement that the agent achieves a return that is at least as good as the return of any stationary strategy
 - Prevents the learner from "being exploited" by the other agents
- Targeted optimality/compatibility/safety are adaptation requirements expressed in the form of average reward bounds
 - E.g., targeted optimality demands an average reward, against a targeted set of algorithms, which is at least the average reward of a best response

MARL Goal, 4

Stability Property	Adaptation Property
Convergence	Rationality
Convergence	No-Regret
	Targeted optimality, compatibility, safety
Opponent-independent	Opponent-aware
Equilibrium learning	Best-response learning
Prediction	Rationality

Taxonomy of MARL Algorithms

Task Type

	Cooperative	Competitive	Mixed
Independent	Coordination-free	Opponent-independent	Agent-independent
Tracking	Coordination-based		Agent-tracking
Aware	Indirect coordination	Opponent-aware	Agent-aware

Breakdown of MARL Algorithms by Task Type and Degree of Agent Awareness

Taxonomy of MARL Algorithms, 2

Task Type	Static or Dynamic?	Algorithms
Fully Cooperative	Static	Joint Action Learners (JAL), Frequency Maximum Q-value (FMQ)
	Dynamic	Team-Q, Distributed-Q, Optimal Adaptive Learning (OAL)
Fully Competitive	NA	Minimax-Q
Mixed Static Dynam	Static	Fictitious Play, MetaStrategy, Infinitesial Gradient Ascent (IGA), Win-or-Learn-Fast-IGA (WoLF-IGA), Generalized IGA (GIGA), GIGA-WoLF, AWESOME, Hyper-Q
	Dynamic	Single-agent RL, Nash-Q, Correlated Equilibrium Q- learning (CE-Q), Asymmetric-Q, Non-Stationary Converging Policies (NSCP), WoLF-Policy Hill Climbing (WoLF-PHC), PD-WoLF, EXORL

Taxonomy of MARL Algorithms, 3

Task Type	Open Issues
Fully Cooperative	 Rely on exact measurements of the state Many also require exact measurements of the other agents' actions Communication might help relax these strict requirements Most suffer from the curse of dimensionality
Mixed	 Static, repeated games represented a limited set of applications Most static game algorithms assume the availability of an exact task model, which is rarely the case in practice Many suffer from the curse of dimensionality Many are sensitive to imperfect observations

- Mostly in simulation but also to some real-life tasks
- Simulation domains dominate because:
 - Results in simpler domains are easier to understand and to use for gaining insight
 - In real life, scalability and robustness to imperfect observations are necessary, and few MARL algorithms exhibit these properties
 - In real-life applications, more direct derivations of singleagent RL are preferred

- Distributed Control
 - A set of autonomous, interacting controllers act in parallel on the same process
 - Cooperative in nature
 - E.g., process control, control of traffic signals, control of electrical power networks

- Robotic Teams
 - Most popular application domain
 - Many MARL researchers are active in the robotics field
 - Real and simulation
 - E.g., navigation, area sweeping (object recovery), search-and-rescue, exploration and target tracking, predator-and-prey games, object transportation, Robocup (soccer, disaster response, ...)
 - Cooperative, competitive

- Automated Trading
 - Software trading agents exchange goods on e-markets on behalf of a company or a person, using mechanisms such as auctions and negotiations
 - Trading Agent Competition (TAC): plane tickets, goods, and hotel bookings
 - Cooperative, self-interested

- Resource Management
 - Agents form a cooperative team, and they can be one of:
 - Managers of resources
 - Clients of resources
 - Network routing, elevator scheduling, load balancing
 - Performance measures include average job processing times, minimum waiting time for resources, resource usage, and fairness in serving clients

Outlook

- Scalability is the central concern for MARL as it stands today
 - Approximate solutions are sought
- Providing domain knowledge to the agents can greatly help them in learning solutions to realistic tasks
 - Approximations, informative reward functions, human teaching agents, pre-programed reflex behaviors, hierarchical RL, task-model-based initialization of Qfunctions

Outlook, 2

- MARL goals are typically formulated in terms of static games; their extension to dynamic tasks is not always clear or even possible
 - Stability and adaptation are needed
 - MARL algorithms should neither be totally independent of the other agents, nor just track their behavior without concerns for convergence

Outlook, 3

- The stagewise application of game-theoretic techniques to solve dynamic multiagent tasks is a popular approach
 - May not be the most suitable, given that both the environment and the behavior of learning agents are generally dynamic processes
 - So far, game-theory-based analysis has only been applied to the learning dynamics of the agents, while the dynamics of the environment have not been explicitly considered