
REINFORCEMENT LEARNING

ADAM ECK (SUPPLEMENTED BY LEEN-KIAT SOH)

CSCE 990: Advanced MAS

Machine Learning

2

¨ 3 Primary Types of Machine Learning
¤ Supervised Learning

n Learning how to prediction and classify
n Decision trees, neural networks, SVMs

¤ Unsupervised Learning
n Learning how to grouping and find relationships
n Clustering: k-Means, spectral

¤ Reinforcement Learning (RL)
n Learning how to act and make decisions
n Q-learning, Rmax, REINFORCE

Reinforcement Learning

3

¨ Learn rewards based on environment feedback

Positive Rewards Negative Rewards

Single Agent Reinforcement Learning

4

¨ Framework: Markov Decision Process
¤ States S – description of environment
¤ Actions A – action taken to change environment
¤ Transitions T(s, a, s’) – models dynamic changes in

environment
¤ Reward R(s,a) – numeric result of action

Single Agent Reinforcement Learning

5

¨ Reinforcement Learning Problem
¤ Given S and A
¤ Need to learn R (and maybe T)

n Mapping of state/action pairs to:
n Reward values
n Probabilities of next states

n From history (state/action/reward sequence)
n H = s0, a0, r0, s1, a1, r1, s2, ….

¤ Use learned rewards to form policy π
n Plans of actions maximizing rewards
n Determines how agent acts, given current state

Examples

6

¨ Web server allocation (Tesauro et. al, 2007)
¤ Learn how many servers to assign to applications based

on incoming requests
¤ Goal: maximize SLA revenue

Source: (Tesauro et al., 2007)

Examples

7

¨ Ad hoc networks (Dowling et. al, 2005)
¤ Learn how to route packets through distributed network
¤ Goal: maximize packet delivery and adapt to

changing network conditions (e.g., node failure)

Source: (Dowling et al., 2005)

Examples

8

¨ Smart Grid (O’Neill et. al, 2010)
¤ Learn how to allocate energy to residences and

optimize schedule of energy usage
¤ Goal: Reduce cost of energy usage

Source: (O’Neill et al., 2010)

Examples

9

¨ Modular Robots (Varshavskaya et. al, 2008)
¤ Each robot module learns how to operate with a team
¤ Goal: move a robot consisting of multiple modules

across an open space

Source: (Varshavskaya et al., 2008)

Examples

10

¨ Poker Agents
¤ Learn how to play based on opponents’ behavior and

available cards
¤ Goal: maximize winnings

11

Running Example

0.33

0.33

0

0

Example Comparison

12

Web Server
Allocation

Ad Hoc
Networks

Smart Grid Modular
Robots

Poker
Agents

Maze

States
S

incoming
requests

Have
packet?
Packet
transmitted?

Price of
energy, user
demand

Positions of
all robots

Cards,
opponent
model

Grid location

Actions
A

servers to
assign

Transmit, find
neighbors

Allocation of
energy

Move module Raise, check,
fold

Movement:
N, S, E, W

Transitions
T

Change in
requests over
time

Transmission
success
probability

Change in
price and
demand

Change in
team
configuration

Changes in
cards and
model

Change in
location

Rewards
R

Revenue
$$$

Cost of
sending,
decay in
learning

User’s utility
of allocation

+/- if move
in
correct/incor
rect direction

Chips won Inverse of
distance to
goal

Types of RL

13

¨ Model-free RL
¤ Learn reward for controller
¤ Ignore model parameters
¤ Example: Riding a bicycle

¨ Model-based RL
¤ Learn underlying model of environment, then solve

n Often learn MDP

¤ Example: Playing poker

Types of RL

14

¨ Use model-free RL when…
¤ Only care about rewards (and not dynamics)
¤ Very simple environment with fixed transitions…

…or very complex environment
¤ More concerned with fast learning than optimal

performance

¨ Use model-based RL when…
¤ Want to consider dynamics
¤ Moderately complex environment with stochastic transitions
¤ More concerned with optimal performance and can afford

longer learning phase

Types of RL

15

¨ Web server allocation (Tesauro et. al, 2007)
¤ Model-free (function approximation with SARSA rule)

¨ Ad hoc networks (Dowling et. al, 2005)
¤ Model-based (CRL)

¨ Smart Grid (O’Neill et. al, 2010)
¤ Model-free (Q-Learning)

¨ Modular Robots (Varshavskaya et. al, 2008)
¤ Model-free (but assume know dynamics a priori)

Types of RL

16

¨ Poker Agents
¤ Model-based (if opponent modeling)

n Want to determine how opponent will respond

¤ Model-free (if focused only on cards)

¨ Robotic Maze
¤ Model-free if perfect actuators
¤ Model-based if actuators can fail

Q-Learning

17

¨ Q-Learning: classic model-free RL algorithm
(Watkins, 1989)
¤ Simple but powerful and effective
¤ Learns reward function as a table, based on current

state and chosen action
¤ Guaranteed convergence to true reward function with

enough exploration
¤ Assumes discrete state/action spaces

Q-Learning

18

¨ Learned rewards stored as a Q-table

¨ Initialize table
¤ Equal values
¤ Random values
¤ A priori information

Actions

St
at

es Reward Values
Q(s,a)

Q-Learning

19

¨ Update Q-table after every action
¤ Q’(s,a) = (1 – α)Q(s,a) + α [R(s,a) + γ max Q(s’,a’)]

¨ α = learning rate
¤ Balances old knowledge with new information

¨ γ = discount rate
¤ Determines how “forward thinking” the agent is

n Myopic vs. non-myopic

¤ Accounts for uncertainty in future rewards

a’ ԑ A

Q-Learning

20

¨ Policy for choosing actions
¤ Pick action with highest reward in current state
π(s) = argmax Q(s,a)

¤ Looks myopic, but is actually non-myopic
n Future rewards already considered in Q-table
n Assuming γ > 0

a ԑ A

RMax

21

¨ RMax: popular model-based RL algorithm
(Brafman and Tennenholtz, 2002)
¤ Simple but powerful and effective
¤ Represents learned functions as tables
¤ Assumes discrete state/action spaces

¤ Also learns state transitions
¤ Probably Approximately Correct (PAC) learning

algorithm
¤ Converges in polynomial time

RMax

22

¨ Maintain tables for both rewards and transitions
¤ Still based on states/action pairs, like in Q-Learning

¨ Initialization
¤ Assume all rewards equal to same value

n Value = maximum possible reward value (RMax)

¤ Assume fixed transitions to special state
n Don’t know in advance what states lead to other states

RMax

23

¨ Update tables after k fixed number of interactions with
the environment for a state/action pair
¤ Often k = 5, 10, 20, etc.

¨ Reward updates
¤ Store first reward experienced for a state/action
¤ Store expected reward over k iterations for a state/action
¤ Calculate probabilities of different rewards based on k

rewards

¨ Transition updates
¤ Count number of state transitions after state/action
¤ Calculate probabilities based on first k transitions

RMax

24

¨ Policy for choosing actions
¤ Build a MDP model based on learning and solve
¤ Maximize current and future rewards from the current

state, considering state transitions
n Discount future rewards since uncertain transitions

V(s) = max R(s, a) + γ∑T(s, a, s’)V(s’)

π(s) = argmax R(s, a) + γ∑T(s, a, s’)V(s’)

¤ Can limit forward search to n future actions

a ԑ A s’ԑ	S

a ԑ A s’ԑ	S

Exploration vs. Exploitation

25

¨ Difficult problem: should I keep learning, or use
what I’ve learned?
¤ Use what I’ve learned

n More current rewards, less future rewards
¤ Additional learning

n More future rewards, less current rewards

¨ Exploration: try to learn about uncertain
state/action pairs

¨ Exploitation: maximize rewards based on learned
information

Exploration vs. Exploitation

26

¨ Different methods to balance exploration and
exploitation (Vermorel and Mohri, 2005):
¤ ε-greedy

n Explore	random	action	with	probability	ε	(e.g.,	10%)
n Exploit	best	action	with	probability	1-ε

¤ Softmax
n Choose actions with probabilities based on value of rewards

n Higher rewards = more likely to be chosen

: similar to humans (Daw et. al, 2006)

Continuous RL

27

¨ Both Q-Learning and RMax assume discrete
state/action spaces
¤ Valid assumption in many MAS

n Can convert continuous spaces into discrete
n By assigning bins to ranges of continuous values

¨ What if continuous?
¤ Need to use function approximation

n Learn a generic model of reward (and maybe transition) function
output based on inputs

n No tables
¤ Common approach: neural networks

Neural Networks

28

X1

X2

X3

f(X1,X2,X3)

Inputs

Output

Hidden Layer

Weights

…

Continuous RL

29

¨ REINFORCE (Williams, 1992)
¤ Train neural network to learn both reward function R

and policy π
n Reward function predicts rewards based on current state

and action inputs
n Policy probabilistically chooses actions given current state

input based on learned rewards
n Similar to Softmax, but done implicitly within the neural network

¤ Use eligibility backpropagation to train the policy
n Different from neural network use in supervised learning

Summary

30

¨ Use RL to learn how to act and make decisions
¤ Maximize rewards learned from interactions with the

environment
¨ Different types of algorithms

¤ Model-free: focus just on rewards
n e.g., Q-Learning

¤ Model-based: learn full model of environment, then
solve the model
n e.g., RMax

¨ Exploration vs. Exploitation
¤ Control learning vs. using learning

More on RL: Model-free vs. Model-
based

31

¨ the main difference between model-free and model-
based RL is that
¤ model-based also learns the underlying dynamics of the

environment (the stochastic T function in fully observable
environments), whereas …

¤ that knowledge is ignored in model-free
n T is very rarely deterministic in the real-world, but learning

updates do not happen until s' is known in Q-learning, so there is
no need to consider T

¨ The other advantage of learning T explicitly is that the
agent can actually do planning in model-based RL
¤ with T, it can project possible future states during planning
¤ That isn't explicitly possible with model-free algorithms such

as Q-learning

More on RL: Model-free vs. Model-
based

32

¨ In Shoham's book, belief-based learning is when the agent
considers the probabilities of each possible action of the
other agents
¤ This is an improvement because often the total reward (and thus

the Q function) depends not just on the agent's own action, but on
the actions of the other agents.

¨ Belief-based learning could be considered model-based
learning if the agent learns the Pr_i function while it
operates in the environment
¤ If Pr_i is fixed from the start (e.g., to a uniform distribution, or

some informed prior), then it wouldn't be model-based learning
¤ Although, some might argue that any RL is model-based if the

agent has a model of the environment, not necessarily only if it
learns that model …

More on RL: Model-free vs. Model-
based

33

¨ Even more philosophical …
¨ In a stochastic game setting (Shoham’s book), the transition

function represents which normal-form game (i.e., which
payout table) appears next after the agents choose and
execute their actions

¨ In single agent learning, the agent is really playing a game
against nature (so there is only one column in the payout
table for the agent itself), and nature determines the
stochastic next game (i.e., state of the environment).

¨ So in that case, learning the T function in a single agent
learning problem is equivalent to learning the Pr_i
function—might be “altogether”—describing what nature
will play

¨ Model-based?

More on RL

34

¨ Videos of AlphaGo: explanatory clips before it
beat the Go world champion—Lee Sedol
¤ https://deepmind.com/alpha-go

¨ Videos of Deep Mind playing Atari games earlier,
before it moved on to Go
¤ https://www.youtube.com/watch?v=V1eYniJ0Rnk
¤ https://www.youtube.com/watch?v=r3pb-ZDEKVg
¤ http://www.theverge.com/2016/6/9/11893002/goo

gle-ai-deepmind-atari-montezumas-revenge

More on RL: Learning vs. Planning?

35

¨ Difference between RL and planning (specifically Q-
Learning vs. MDP or POMDP planning)?

¨ The internal math looks very similar:
¤ for both, we create a Q-table (also the Value network

learned by AlphaGo) …
¤ from which we determine a policy of actions to take (also

the Policy network learned by AlphaGo) …
¤ As they work longer and longer, both improve over time

¨ The difference between the two is what powers the
improvement, and which direction through time they gain
that improvement

More on RL: Learning vs. Planning?

36

¨ Mitchell's definition of learning: A computer program is said to learn from
experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves with
experience E

¨ In RL, the tasks T are whatever the agent is trying to do, the performance
measure P is usually discounted cumulative rewards, and the experience E
are the (s', r) pairs of state transitions and rewards the agent observes
after it takes action a in state s. The more experience E, the better the
agent performs by learning how the environment changes and how it is
rewarded for those changes

¨ In planning, T and P are the same, but the experience E isn't necessary --
the agent already knows what (s', r) it can get after taking action a in state
s. Instead, the agent improves from having more *time* to consider future
(s', r) pairs -- that is, more contingencies of what it what it might encounter

¨ So the difference is planning for more possible experiences *in the future*,
rather than gaining information from the experiences *it recently saw in the
past*

More on RL: Learning vs. Planning?

37

¨ So the difference is planning for more possible
experiences *in the future*, rather than gaining
information from the experiences *it recently saw
in the past*

More Information

38

Great general reference:

Sutton, R.S. and Barto, A.G. 1998. Reinforcement
learning: an introduction. MIT Press:Cambridge, MA.

Available online free at:
http://webdocs.cs.ualberta.ca/~sutton/book/the-
book.html

References

39

¨ Brafman, R.I. and Tennenholtz, M. 2002. R-max – A general polynomial time
algorithm for near-optimal reinforcement learning. Journal of Machine Learning
Research. 3. 213-231.

¨ Daw, N.D. et. al, 2006. Cortical substrates for exploratory decisions in humans,
Nature. 441. 876-879.

¨ Dowling, J., et al. 2005. Using Feedback in Collaborative Reinforcement Learning to
Adaptively Optimize MANET Routing”, IEEE Transactions on SMC, Part A, 35(3).
360-372.

¨ O’Neill, D. et. al. 2010. Residental demand response using reinforcement learning.
Proc. of SmartGridComm’10. 409-414.

¨ Tesauro et. al. 2007. On the user of hybrid reinforcement learning for autonomic
resource allocation, Cluster Computing, 10. 287-299.

¨ Vermorel, J. and Mohri, M. 2005. Multi-armed bandit algorithms and empirical
evaluation, Proc. of ECML’05, 437-448.

¨ Varshavskaya, P. et. al. 2008. Automated Design of Adaptive Controllers for
Modular Robots Using Reinforcement Learning. IJRR. 27. 505-526.

¨ Watkins, C.J. 1989. Learning from delayed rewards. Ph.D thesis, Cambridge
University.

¨ Williams, R.J. 1992. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8, 229-256.

