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Machine Learning
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¨ 3 Primary Types of Machine Learning
¤ Supervised Learning

n Learning how to prediction and classify
n Decision trees, neural networks, SVMs

¤ Unsupervised Learning
n Learning how to grouping and find relationships
n Clustering: k-Means, spectral

¤ Reinforcement Learning (RL)
n Learning how to act and make decisions
n Q-learning, Rmax, REINFORCE



Reinforcement Learning
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¨ Learn rewards based on environment feedback

Positive Rewards Negative Rewards



Single Agent Reinforcement Learning
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¨ Framework: Markov Decision Process
¤ States S – description of environment
¤ Actions A – action taken to change environment
¤ Transitions T(s, a, s’) – models dynamic changes in 

environment 
¤ Reward R(s,a) – numeric result of action



Single Agent Reinforcement Learning
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¨ Reinforcement Learning Problem
¤ Given S and A
¤ Need to learn R (and maybe T)

n Mapping of state/action pairs to:
n Reward values
n Probabilities of next states

n From history (state/action/reward sequence)
n H = s0, a0, r0, s1, a1, r1, s2, ….

¤ Use learned rewards to form policy π
n Plans of actions maximizing rewards
n Determines how agent acts, given current state



Examples
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¨ Web server allocation (Tesauro et. al, 2007)
¤ Learn how many servers to assign to applications based 

on incoming requests 
¤ Goal: maximize SLA revenue

Source: (Tesauro et al., 2007)



Examples
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¨ Ad hoc networks (Dowling et. al, 2005)
¤ Learn how to route packets through distributed network
¤ Goal: maximize packet delivery and adapt to 

changing network conditions (e.g., node failure)

Source: (Dowling et al., 2005)



Examples
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¨ Smart Grid (O’Neill et. al, 2010)
¤ Learn how to allocate energy to residences and 

optimize schedule of energy usage
¤ Goal: Reduce cost of energy usage

Source: (O’Neill et al., 2010)



Examples
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¨ Modular Robots (Varshavskaya et. al, 2008)
¤ Each robot module learns how to operate with a team
¤ Goal: move a robot consisting of multiple modules 

across an open space

Source: (Varshavskaya et al., 2008)



Examples
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¨ Poker Agents
¤ Learn how to play based on opponents’ behavior and 

available cards
¤ Goal: maximize winnings
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Types of RL

13

¨ Model-free RL
¤ Learn reward for controller
¤ Ignore model parameters
¤ Example: Riding a bicycle

¨ Model-based RL
¤ Learn underlying model of environment, then solve

n Often learn MDP

¤ Example: Playing poker



Types of RL
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¨ Use model-free RL when…
¤ Only care about rewards (and not dynamics)
¤ Very simple environment with fixed transitions…

…or very complex environment
¤ More concerned with fast learning than optimal 

performance 

¨ Use model-based RL when…
¤ Want to consider dynamics
¤ Moderately complex environment with stochastic transitions
¤ More concerned with optimal performance and can afford 

longer learning phase



Types of RL
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¨ Web server allocation (Tesauro et. al, 2007)
¤ Model-free (function approximation with SARSA rule)

¨ Ad hoc networks (Dowling et. al, 2005)
¤ Model-based (CRL)

¨ Smart Grid (O’Neill et. al, 2010)
¤ Model-free (Q-Learning)

¨ Modular Robots (Varshavskaya et. al, 2008)
¤ Model-free (but assume know dynamics a priori)



Types of RL
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¨ Poker Agents
¤ Model-based (if opponent modeling)

n Want to determine how opponent will respond

¤ Model-free (if focused only on cards)

¨ Robotic Maze
¤ Model-free if perfect actuators
¤ Model-based if actuators can fail



Q-Learning
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¨ Q-Learning: classic model-free RL algorithm
(Watkins, 1989)
¤ Simple but powerful and effective
¤ Learns reward function as a table, based on current 

state and chosen action
¤ Guaranteed convergence to true reward function with 

enough exploration
¤ Assumes discrete state/action spaces



Q-Learning
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¨ Learned rewards stored as a Q-table

¨ Initialize table
¤ Equal values
¤ Random values
¤ A priori information

Actions

St
at

es Reward Values 
Q(s,a)



Q-Learning
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¨ Update Q-table after every action
¤ Q’(s,a) = (1 – α)Q(s,a) + α [R(s,a) + γ max Q(s’,a’)]

¨ α = learning rate
¤ Balances old knowledge with new information

¨ γ = discount rate
¤ Determines how “forward thinking” the agent is

n Myopic vs. non-myopic

¤ Accounts for uncertainty in future rewards

a’ ԑ A



Q-Learning
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¨ Policy for choosing actions
¤ Pick action with highest reward in current state
π(s) = argmax Q(s,a)

¤ Looks myopic, but is actually non-myopic
n Future rewards already considered in Q-table
n Assuming γ > 0

a ԑ A



RMax
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¨ RMax: popular model-based RL algorithm
(Brafman and Tennenholtz, 2002)
¤ Simple but powerful and effective
¤ Represents learned functions as tables
¤ Assumes discrete state/action spaces 

¤ Also learns state transitions
¤ Probably Approximately Correct (PAC) learning 

algorithm
¤ Converges in polynomial time



RMax
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¨ Maintain tables for both rewards and transitions
¤ Still based on states/action pairs, like in Q-Learning

¨ Initialization
¤ Assume all rewards equal to same value

n Value = maximum possible reward value (RMax)

¤ Assume fixed transitions to special state
n Don’t know in advance what states lead to other states



RMax
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¨ Update tables after k fixed number of interactions with 
the environment for a state/action pair
¤ Often k = 5, 10, 20, etc.

¨ Reward updates
¤ Store first reward experienced for a state/action
¤ Store expected reward over k iterations for a state/action
¤ Calculate probabilities of different rewards based on k

rewards

¨ Transition updates
¤ Count number of state transitions after state/action
¤ Calculate probabilities based on first k transitions



RMax
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¨ Policy for choosing actions
¤ Build a MDP model based on learning and solve
¤ Maximize current and future rewards from the current 

state, considering state transitions
n Discount future rewards since uncertain transitions

V(s) = max R(s, a) + γ∑T(s, a, s’)V(s’)

π(s) = argmax R(s, a) + γ∑T(s, a, s’)V(s’)

¤ Can limit forward search to n future actions

a ԑ A s’ԑ	S

a ԑ A s’ԑ	S



Exploration vs. Exploitation
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¨ Difficult problem: should I keep learning, or use 
what I’ve learned?
¤ Use what I’ve learned

n More current rewards, less future rewards
¤ Additional learning

n More future rewards, less current rewards

¨ Exploration: try to learn about uncertain 
state/action pairs

¨ Exploitation: maximize rewards based on learned 
information



Exploration vs. Exploitation

26

¨ Different methods to balance exploration and 
exploitation (Vermorel and Mohri, 2005):
¤ ε-greedy

n Explore	random	action	with	probability	ε	(e.g.,	10%)
n Exploit	best	action	with	probability	1-ε

¤ Softmax
n Choose actions with probabilities based on value of rewards

n Higher rewards = more likely to be chosen

: similar to humans (Daw et. al, 2006)



Continuous RL
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¨ Both Q-Learning and RMax assume discrete 
state/action spaces
¤ Valid assumption in many MAS

n Can convert continuous spaces into discrete 
n By assigning bins to ranges of continuous values

¨ What if continuous?
¤ Need to use function approximation 

n Learn a generic model of reward (and maybe transition) function 
output based on inputs

n No tables
¤ Common approach: neural networks



Neural Networks
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Continuous RL
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¨ REINFORCE (Williams, 1992)
¤ Train neural network to learn both reward function R 

and policy π
n Reward function predicts rewards based on current state 

and action inputs
n Policy probabilistically chooses actions given current state 

input based on learned rewards
n Similar to Softmax, but done implicitly within the neural network

¤ Use eligibility backpropagation to train the policy
n Different from neural network use in supervised learning



Summary
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¨ Use RL to learn how to act and make decisions
¤ Maximize rewards learned from interactions with the 

environment
¨ Different types of algorithms

¤ Model-free: focus just on rewards
n e.g., Q-Learning

¤ Model-based: learn full model of environment, then 
solve the model
n e.g., RMax

¨ Exploration vs. Exploitation
¤ Control learning vs. using learning



More on RL: Model-free vs. Model-
based
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¨ the main difference between model-free and model-
based RL is that 
¤ model-based also learns the underlying dynamics of  the 

environment (the stochastic T function in fully observable 
environments), whereas …

¤ that knowledge is ignored in model-free
n T is very rarely deterministic in the real-world, but learning 

updates do not happen until s' is known in Q-learning, so there is 
no need to consider T

¨ The other advantage of learning T explicitly is that the 
agent can actually do planning in model-based RL
¤ with T, it can project possible future states during  planning
¤ That isn't explicitly possible with model-free algorithms such 

as Q-learning



More on RL: Model-free vs. Model-
based
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¨ In Shoham's book, belief-based learning is when the agent 
considers the probabilities of each possible action of the 
other agents
¤ This is an improvement because often the total reward (and thus 

the Q function) depends not just on the agent's own action, but on 
the actions of the other agents. 

¨ Belief-based learning could be considered model-based 
learning if the agent learns the Pr_i function while it 
operates in the environment
¤ If Pr_i is fixed from the start (e.g., to a uniform distribution, or 

some informed prior), then it wouldn't be model-based learning
¤ Although, some might argue  that any RL is model-based if the 

agent has a model of the environment, not necessarily only if it 
learns that model …



More on RL: Model-free vs. Model-
based
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¨ Even more philosophical …
¨ In a stochastic game setting (Shoham’s book), the transition 

function represents which normal-form game (i.e., which 
payout table) appears next after the agents choose and 
execute their actions 

¨ In single agent learning, the agent is really playing a game 
against nature (so there is only one column in the payout 
table for the agent itself), and nature determines the 
stochastic next game (i.e., state of the environment).  

¨ So in that case, learning the T function in a single agent 
learning problem is equivalent to learning the Pr_i
function—might be “altogether”—describing what nature 
will play

¨ Model-based?



More on RL
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¨ Videos of AlphaGo: explanatory clips before it 
beat the Go world champion—Lee Sedol
¤ https://deepmind.com/alpha-go

¨ Videos of Deep Mind playing Atari games earlier, 
before it moved on to Go
¤ https://www.youtube.com/watch?v=V1eYniJ0Rnk
¤ https://www.youtube.com/watch?v=r3pb-ZDEKVg
¤ http://www.theverge.com/2016/6/9/11893002/goo

gle-ai-deepmind-atari-montezumas-revenge



More on RL: Learning vs. Planning?
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¨ Difference between RL and planning (specifically Q-
Learning vs. MDP or POMDP planning)?

¨ The internal math looks very similar:
¤ for both, we create a Q-table (also the Value network 

learned by AlphaGo) … 
¤ from which we determine a policy of actions to take (also 

the Policy network learned by AlphaGo) …
¤ As they work longer and longer, both improve over time  

¨ The difference between the two is what powers the 
improvement, and which direction through time they gain 
that improvement



More on RL: Learning vs. Planning?
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¨ Mitchell's definition of learning: A computer program is said to learn from 
experience E with respect to some class of tasks T and performance 
measure P, if its performance at tasks in T, as measured by P, improves with 
experience E

¨ In RL, the tasks T are whatever the agent is trying to do, the performance 
measure P is usually discounted cumulative rewards, and the experience E
are the (s', r) pairs of state transitions and rewards the agent observes 
after it takes action a in state s.  The more experience E, the better the 
agent performs by learning how the environment changes and how it is 
rewarded for those changes

¨ In planning, T and P are the same, but the experience E isn't necessary --
the agent already knows what (s', r) it can get after taking action a in state 
s.  Instead, the agent improves from having more *time* to consider future 
(s', r) pairs -- that is, more contingencies of what it what it might encounter

¨ So the difference is planning for more possible experiences *in the future*, 
rather than gaining information from the experiences *it recently saw in the 
past*



More on RL: Learning vs. Planning?
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¨ So the difference is planning for more possible 
experiences *in the future*, rather than gaining 
information from the experiences *it recently saw 
in the past*



More Information
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Great general reference:

Sutton, R.S. and Barto, A.G. 1998. Reinforcement 
learning: an introduction. MIT Press:Cambridge, MA.

Available online free at:
http://webdocs.cs.ualberta.ca/~sutton/book/the-
book.html
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