FROM FACTORS TO ACTORS: COMPUTATIONAL SOCIOLOGY AND AGENT-BASED MODELING

Macy, M. W and R. Willer (2002). From Factors to Actors: Computational Sociology and Agent-Based Modeling, Annual Review of Sociology, **28**:143-166.

> Leen-Kiat Soh December 6-8, 2016 CSCE990 Advanced Multiagent Systems

Introduction

- A flock of geese flying in tight formation ...
 - No "group mind", no "leader bird"
 - But ... graceful dancelike movement of the flock ... clearly patterned yet also highly nonlinear
 - Very difficult to model at a global level
- But, when the movement is modeled using local interactions ...
 - Separation: don't get too close to any object, including other birds
 - *Alignment*: try to match the speed and direction of nearby birds
 - Cohesion: Head for the perceived center of mass of the birds in your immediate neighborhood

Agent-based modeling!

Introduction 2

- Agent-based models (ABMs) of human social interaction are based on the same theory-building strategy
- Sociologists have traditionally understood social life as a hierarchical system of institutions and norms that shape individual behavior from the top down
- Growing interest in the possibility that human groups may be highly complex, non-linear, path-dependent, and selforganizing
 - To understand these dynamics much better ... by trying to model them as emergent properties of local interaction among adaptive agents

Historical Development of Agent-Based Models

- Three periods in the development of social simulation:
 - *Macrosimulation*: differential equation that predict population distributions as a holistic function of other systemic factors
 - Microsimulation: bottom-up strategy for modeling the interacting behavior of decision makers within a larger system
 - Resemble macrosimulation but they model *changes to each element of the population distribution* rather than *changes to the distribution at the population level*
 - Do not permit individuals to directly interact or to adapt
 - Agent-based models:
 - Like microsimulation, bottom-up models explored the microfoundations of global patterns
 - But: the agents now interact interdependently

Historical Development of Agent-Based Models 2

- ABMs impose four key assumptions
 - Agents are autonomous
 - Agents are interdependent
 - Agents follow simple rules
 - Agents are adaptive and backward-looking
 - Agents adapt by moving, imitating, replicating, or learning, but not by calculating the most efficient action
 - Individual level: individuals learn through processes like reinforcement, Bayesian updating, ANN
 - Population level: populations learn through evolutionary processes of selection, imitation, and social influence

Historical Development of Agent-Based Models 3

- Most applications congregated around two problems:
 - The self-organization of social structure
 - Emergent structure
 - Agents may start out undifferentiated and then change location or behavior so as to avoid becoming different or isolated
 - Rather than producing homogeneity ... produce global patterns of cultural differentiation, stratification, and clustering in social networks
 - Or, starting with a heterogeneous population and ending in convergence
 - Coordination, diffusion, and sudden collapse of norms, institutions, beliefs, innovations, standards, etc.
 - The emergence of social order
 - Emergent social order
 - How egoistic adaptation can lead to successful collective action without either altruism or global (top-down) imposition of control

Social influence and the Paradox of Mimetic Divergence

- The ecological assumption that adaptation occurs through a struggle of survival is appropriate if the agents are organizations competing for resources or members
- If agents are individuals in a modern welfare state ... adaptation occurs through imitation of the fittest
 - Agents are not replaced by better performers; they simply copy their observed behavior
- From a random start, a population of mimics might be expected to converge on a single profile
 - Leading to the conclusion that cultural diversity is imposed by factors that counteract the effects of conformist tendencies
 - However, the surprising result: "the system achieved stable diversity. The minority was able to survive, contrary to the belief that social influence inexorably leads to uniformity"

Emergent Structure

Social influence and the Paradox of Mimetic Divergence 2

- Another set of models couple local influence and homophily
 - *Local influence*: the tendency for people who interact frequently to become more similar overtime
 - · Homophily: the tendency to interact more frequently with similar agents
- The more agents interact, the more similar they become, and the more similar they become, the more likely they are to interact ...
 - Interaction, in turn, reduces remaining differences
 - This self-reinforcing dynamic would lead inexorably to cultural convergence and homogeneity
 - But: Iocal convergence can lead to global polarization

Emergent Structure

Diffusion of Innovation

- Social influence models can also lead to study self-reinforcing dynamics that lead to convergence
 - Start with some distribution of practices and a rule by which agents decide whether to abandon current practice in favor of one used by another agent
 - Positive feedback loop where adoptions by some actors increase the pressure to adopt for other actors
 - Influence weighted by reputations of other agents in the population

Emergent Structure

Models of Collective Action, Trust, and Cooperation

- Models of emergent order focus attention on the ways in which network structures affect the viability of prosocial behavior
- Four network properties shown to promote/inhibit cooperation and participation in collective action
 - Relational stability: On-going relationships lengthen the "shadow of the future"
 - it-for-tat, reciprocity, etc.
 - *Network density:* The coordination complexity of cooperation increases with the number of social ties
 - Homophily: Agents tend to interact with partners who use similar strategies
 - Transitivity: An agent's partners tend to interact with each other. This in turn affects:
 - Diffusion of reputations
 - Bandwagons caused by threshold effects
 - Monitoring and enforcement of conformity to prosocial norms (social pressure)

Emergent Order

Conclusion

- Computational sociology has traditionally used simulation to forecast social trajectories based on *statistical associations*, using models that are highly *realistic, empirically grounded*, and *holistic*
- Agent-based models use simulation to search for causal mechanisms that may underlie statistical associations, using models that are highly abstract and microsocial
- A series of recommendations for realizing the rich sociological potential of ABM approach
 - Start it simple
 - Avoid reliance on biological metaphors
 - Experiment, don't just explore
 - Test robustness
 - Test external validity (test identified causal mechanisms in lab or natural conditions)
 - Test domain validity
 - Bring factors back in

Comments

- Most of your final project proposals stated that there are some desired emergent properties
- Emergent structure or emergent order, or both?
- Only one group's hypotheses would test both emergent structure and emergent order
- Think about your final project: are you leveraging the advantages of a multiagent solution?
 - Local interactions (or decisions) vs. global coherence (or emergent behaviors)