
Gaussian Process Dynamic
Programming

Marc Peter Deisenroth, Carl Edward Rasmussen,
Jan Peters

2009
Presented by Evan Beachly

1

Motivation: Better Reinforcement Learning
TD learning and Sarsa have to interact with the environment for a loooonnnnnggg
time before they learn an optimal policy.

Model the environment for faster learning.

Handle continuous state and action spaces.

2

Outline
● Day 1: Background

○ Gaussian Process Regression
○ Reinforcement Learning

● Day 2: Gaussian Process Dynamic Programming

3

Gaussian Process Regression

4

Multivariate Gaussian Probability Distribution
PDF of N(μ,Σ) = μ = mean Σ = covariance matrix

-½(x-μ)TΣ-1(x-μ)

2π|Σ-1|
 1 e

Σ = | 1 0.9 |
| 0.9 1 |

Σ = | 1 0.3 |
| 0.3 1 |

Σ = | 1 0 |
| 0 1 |

Σ = | σ1
2 σ1σ2

|
| σ1σ2 σ2

2 |

variance

covariance

5

Regression

Ebden (2008) Gaussian Processes for Regression: A Quick Introduction

Given:
Independent Variables Observations:

 x1 x01 x11 x21
X = x2 = x02 x12 x22

 xn x0n x1n x2n

Dependent Variable Observations:
 y1

y = y2
 ...
 yn

Measurement error: σy
2

Predict y* for x* 6

Gaussian Process Regression
 y1

 y = y2 = N(0, K + σy
2I)

 y* ...
 yn
 y*

k(xa, xb) = Some symmetric function. Positive if xa and xb are close. ~0 if xa and xb are far away.

 k(x1,x1) k(x1,x2) ... k(x1,xn) K* = k(x*,x1) k(x*,x2) ... k(x*,xn)
K = K K*

T K = k(x2,x1) k(x2,x2) ... k(x2,xn)
K* K**

 k(xn,x1) k(xn,x2) ... k(xn,xn) K** = k(x*,x*)

x* nearby x1 ⟶ k(x*,x1) will be large ⟶ y* and y1 will be highly correlated
by N(0, K + σy

2I) ⟶ y* will have a value similar to y1.

correlation between observations

measurement error * Identity matrix

large, but doesn't depend on x*

7

Plot of N(0, K + σy
2I)

y* y*

y1 pdf(y*)

1 standard deviation

Williams, Rasmussen (1996) Gaussian Processes for Regression

known value of y1

y1=y*

Expected
value of y*

Side Note:
E(y*) is biased toward 0,
because we set μ to that.

8

Regression Algorithm
E(y*) = K*(K+σy

2I)-1y

var(y*) = (K**+σy
2) - K*(K+σy

2I)-1K*
T

O(n3) operations to invert K.

Ebden (2008) Gaussian Processes for Regression: A Quick Introduction 9
Goto slide 55

Choosing k(xa, xb)
Squared Exponential: SE(xa-xb) = σ2e (Basic)

Cosine: σ2(cos(2πf(xa-xb)) + 1) (Eg. Seasonal data,
Traffic)

Wraparound: SE(tan-1(sin(xa- xb)/cos(xa- xb))) (Eg. Angles)

Choosing hyperparameters Θ=(σ2,Σ, f, etc.):
Maximize log likelihood: log p(y|x,Θ) = -½yTK-1y -½ log|K| - ½nlog(2π)

Conjugate Gradient Descent

-½(xa-xb)
TΣ-1(xa-xb)

data fit term
complexity penalty

10

Extrapolation - not so good

11

Extrapolation - maybe there's hope

Blue = training data

Green = testing data

Black = Spectral Mixture kernel

Red = Squared Exponential kernel

Cyan, Magenta, Orange = Other kernels

Wilson et al. (2013) Gaussian Process Kernels for Pattern Discovery and Extrapolation

12

Model-based
Reinforcement Learning

in a Discrete Environment

13

Reinforcement Learning System

Agent Environment

Action

Reward, Next State

14

Optimal Policy
Maximize expected cumulative future reward

1. Finite Horizon

2. Infinite Horizon

3. Long-term Average

Kaelbling et al (1996) Reinforcement Learning: A Survey

Discount Factor

15

Value functions
Q(s,a): Expected cumulative future reward that results from taking action a in state
s, and taking an optimal policy afterwards.

V(s): maxa∈A(Q(s,a)): Maximum expected cumulative future reward that can be
achieved in a particular state. How valuable being in this state is.

Defined Recursively:
Q(s,a) = r(s,a) + ᶕV(s'(s,a))

If we know these functions, then we can take the optimal action by maximizing
Q(s,a) over a.

16

Model-free RL
Wander around until you receive a reward. Incrementally update Q Table.

Sutton, Barto (1998) Reinforcement Learning: An Introduction
17

Model-based RL
Interact with the environment until you learn models of the reward function and the
transition function. Use these to compute the entire Q and V functions.

*
18

Model Based RL Algorithm Pseudocode

O(NSA)

For each time step in the horizon
For each state

For each action

19

Model-based RL Algorithm Basics
Q and V are defined recursively

Use Dynamic Programming to compute Q(s,a) and V(s) for all s,a

Finite Horizon gives a base case so you don't recurse forever.

Need to model:
● r(s,a): Reward function that depends on state and action
● rterm(s): Terminal Reward function (Reward at the end of the horizon)
● s'(s,a): Transition function (Forward Model)

If you don't know rterm(s), just set it to 0 and use a large horizon 20

How do you model the reward and transition function?
Interpolate between observations of
inputted state action pairs and their
outputted rewards and next states.

Function Approximators:
● Linear Regression
● Artificial Neural Network
● Gaussian Process Regression

21

Model-based RL Dynamic Programming Example
Input:
ᶕ = 0.5
N = 3

 r(s,a) rterm(s)
0

0 0
0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0 0 8

0 0 0

0 0 0
22

Model-based RL Dynamic Programming Example
Initialization:
Q(s,a) = 0
V(s) = rterm(s)

 Q(s,a) V(s)
0

0 0
0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0 0 8

0 0 0

0 0 0
23

Model-based RL Dynamic Programming Example
Iteration 1a
Q(s,a) = r(s,a) + ᶕV(s'(s,a))

 Q(s,a) V(s)
0

0 0
0

0
0 4

0

0
0 0

0

0
0 0

0

0
0 0

0

4
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0 0 8

0 0 0

0 0 0
24

Model-based RL Dynamic Programming Example
Iteration 1b
V(s) = maxa∈A(Q(s,a), V(s))

 Q(s,a) V(s)
0

0 0
0

0
0 4

0

0
0 0

0

0
0 0

0

0
0 0

0

4
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0 4 8

0 0 4

0 0 0
25

Model-based RL Dynamic Programming Example
Iteration 2a
Q(s,a) = r(s,a) + ᶕV(s'(s,a))

 Q(s,a) V(s)
0

0 2
0

0
0 4

0

0
2 0

2

0
0 0

0

2
0 2

0

4
0 0

0

0
0 0

0

0
0 0

0

2
0 0

0

0 4 8

0 0 4

0 0 0
26

Model-based RL Dynamic Programming Example
Iteration 2b
V(s) = maxa∈A(Q(s,a), V(s))

 Q(s,a) V(s)
0

0 2
0

0
0 4

0

0
2 0

2

0
0 0

0

2
0 2

0

4
0 0

0

0
0 0

0

0
0 0

0

2
0 0

0

2 4 8

0 2 4

0 0 2
27

Model-based RL Dynamic Programming Example
Iteration 3a
Q(s,a) = r(s,a) + ᶕV(s'(s,a))

 Q(s,a) V(s)
0

0 2
0

0
1 4

1

0
2 0

2

1
0 1

0

2
0 2

0

4
1 0

1

0
0 0

0

1
0 1

0

2
0 0

0

2 4 8

0 2 4

0 0 2
28

Model-based RL Dynamic Programming Example
Iteration 3b
V(s) = maxa∈A(Q(s,a), V(s))
π(s) = amax

 Q(s,a) V(s)
0

0 2
0

0
1 4

1

0
2 0

2

1
0 1

0

2
0 2

0

4
1 0

1

0
0 0

0

1
0 1

0

2
0 0

0

2 4 8

1 2 4

0 1 2
29

Outline
Day 1:
● Background

○ Gaussian Process Regression
○ Model-based Reinforcement Learning in discrete state and action spaces

Day 2:
● Gaussian Process Dynamic Programming
● "Online Learning"

30

Gaussian Process Dynamic
Programming

31

High-level algorithm

32

Move randomly and observe reward and transition functions

Stop

Compute optimal policy

Execute optimal policy until we reach the goal.

Model-based RL in continuous domains
Need to represent Q(s,a), V(s), and π(s).

Instead of dividing the domain into discrete chunks, choose a finite set S of states
and A of actions.

Compute Q and V for these points, and interpolate
between for the rest using GPR.

Q(s,a) = r(s,a) + ᶕV(s'(s,a))
V(s) = maxa(Q(s,a), V(s))
π(s) = amax
Use gradient descent to find maxa(Q(s,a))

2 4 8

1 2 4

½ 1 2

33

Gaussian Process Dynamic Programming (GPDP)

34

O(|S||A|3+|S|3)

For each time step in the horizon
For each state

For each action

Need to build GP models of Q and V

0
+

0
+

8
+

0
+

0
+

0
+

0
+

0
+

0
+

Continuous Dynamic Programming RL Example
Input:
ᶕ = 0.5
N = 1

 r(s,a) rterm(s)

35

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

Continuous Dynamic Programming RL Example
Initialization:
Q(s,a) = 0
V(s) = rterm(s)

 Q(s,a) V(s)

36

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
+

0
+

8
+

0
+

0
+

0
+

0
+

0
+

0
+

Continuous Dynamic Programming RL Example
Iteration 1a
Q(s,a) = r(s,a) + ᶕV(s'(s,a))

 Q(s,a) V(s)

37

0
0 0

0

1
0 1

0

6
3 6

3

0
0 0

0

0
0 0

0

1
0 1

0

0
0 0

0

0
0 0

0

0
0 0

0

0
+

0
+

8
+

0
+

0
+

0
+

0
+

0
+

0
+

Continuous Dynamic Programming RL Example
Iteration 1b
V(s) = maxa∈A(Q(s,a), V(s))
π(s) = amax

 Q(s,a) V(s) π(s)

38

0
0 0

0

 1 1½
0 1

0

 6 7½
3 6

3

0
0 0

0

0
0 0

0

 1 1½
0 1

0

0
0 0

0

0
0 0

0

0
0 0

0

0
+

1½
+

8
+

0
+

0
+

1½
+

0
+

0
+

0
+

Problems

Discontinuous value functions
Discontinuous policy

39Wikipedia, Azar et al (2012) Dynamic Policy Programming

Reverse

Forward

x
-1.5 -1 -0.5 0 0.5

Discontinuous Value Function

40Smoothed value function may trick Dynamic Programming during the iterations

Continuous Policy
Optimal
controls may be
discontinuous.

41

Discontinuous policy.
Need a classifier to
decide which
policy to use.

42

Switching between Policies

43

Gaussian Process Classification
Set one class to have a value of +1, the other -1.

Do GPR on the data.

Squash it through a sigmoid function:
s(-∞) = 0
s(0) = 0.5
s(∞) = 1

Use that as the predictive probability

44Ebden (2008) Gaussian Processes for Classification: A Quick Introduction

Evaluation

45

Underactuated Pendulum

46

Motor has insufficient torque to directly swing the
pendulum up.

Must swing back and forth first to build up energy.

5 Hz control.

2-D State (angular position and velocity)
1-D Action (torque)

At each step, receive penalty that is a function of
distance from goal + small noise.

Motor

Weight

GPDP Configuration
ᶕ = 1 (undiscounted)
N = 10 steps (2 seconds)
k(xi,xj) = SE(xi,xj) + σy(if i == j)

-They did not specify Σ or σy, so I assume they did some kind of optimization.
400 states randomly selected as support points

Tried Continuous policy and Switching policy

47

"Optimal" Configuration: Discrete DP
ᶕ = 1 (undiscounted)
N = 10 steps (2 seconds)
620,000 States.
121 possible control inputs.

48

Results

49

Example Trajectory: Switching GPDP vs DP

50

Switching GPDP vs DP
Switching GPDP:

incurred 15% higher cost than DP on average
is more aggressive
reaches upright angle earlier
sometimes needed an additional swing (incurring a substantially higher cost)
always succeeded within the time limit

51

Continuous GPDP vs Switching GPDP
Continuous GPDP:

incurred 20% higher cost than DP on average
almost identical global performance to Switching GPDP
performs poorly when state trajectory reaches boundary of discontinuity

52

Has some
initial velocity

Initial State

Discussion
Most interested in Q(s,a) near optimal a. Use these a's as support
points in the GP.

When maximizing Q(s,a) over a, subtract a fraction of the
predictive variance to penalize uncertain actions.

Might not always be intuitive to divide actions into + and -

Placing support points randomly in state space might not be the
best idea. Goal of next section is to place support points
intelligently.

53

 1 1¼
 1½

0 1

0

"Online Learning"

54

Challenges of Online Learning

55

Want to learn as fast as possible, with limited prior understanding of task.
Minimize interactions with environment.
Exploration vs Exploitation
Restrict state space to task-relevant portion for speed while maintaining accuracy

High Level Algorithm
Move randomly and observe reward and transition functions
Stop
S (support states) = set of states visited (one of which is the current state)
A (support actions) = random set of Actions
For each time step in the horizon:

Look at what states are reachable from S
Try reaching a few of the more useful ones.
Add resulting states to S
Compute Q(S,A) based on the previous time step's V(S)
Compute V(S) and π(S) based on Q(S,A)
Update reward and transition function with observation

56

Requires a
time machine

Active Learning GPDP (ALGPDP)

57

Select initial support states

Add new support states
Update Transition Model

Bayesian Active Learning
Determines the expected utility (outcomes or information gain) of an experiment.

Don't take explorative actions that aren't likely to give you new information, or
have great cost.

Solely maximizing an expected information gain tends to just select states far
away from the current state set.

Use Bayesian Active Learning to determine which parts of the state space are
relevant.

58

Bayesian Active Learning
S = initial support states (from random movement)
For each time step

Ŝ = Candidate Support States = all states reachable from S by action set A
For i = 1 ... l:

s*i = the state in Ŝ with the highest U(s)
Take the action that is supposed to reach s*i
Observe the state we ended up in, and add it to S

Use S as support points in this step's Q and V

 Is this state valuable?
U(s) = ρE[Vk(s)|Sk] + 0.5 β log(var[Vk(s)|Sk])

Is this state unique? 59

How do we go
back in time?

V(s'(s,a)) with uncertainty about s'
Previously, we assumed the transition model was known and deterministic.

GPR gives you a probability distribution of next states:
Gaussian with analytically computable mean and variance.

 Expected Future Value
Q(s,a) = r(s,a) + ᶕE[V(s'(s,a))]

 This is no longer a single next state

In a discretized case we do a weighted sum of all possible next states and the
probability of seeing them.
In a continuous case we would have to do a weighted integral.

60

Some math

If you use Gaussian Processes for V(s) and s'(s,a), you can compute the integral.

 β
E(V(s*)) = K*(K+σy

2I)-1y
Replace this with l

li = ∫ kv(si, s'(si,aj)) p(s'(si,aj)) ds'(si,aj) ←Depends on your choice of k(xi,xj)
61

Goto Slide 9

How to solve: E[V(s'(s,a))]

known,
deterministic

s'(s,a)

GP
s'(s,a)

known V(s) V(s'(s,a)) ∫ V(s'(s,a))p(s')ds'

GP V(s) mean(V(s'(s,a))) lβ

Evaluation

62

Underactuated pendulum

63

Maximize reward.instead of Minimize Cost

r(s,a) depends only on state:
upright = 0
straight down = -1
everything else ∊ (-1,0)

ρ =1 β = 2

Observe two trajectories of 10 random actions
l = 13
V(s) initialized with two training points: one at start and one at goal.

 = new
support
points

 = old
support
points

64

Step 0 Step 2

Step 5 Step 10

Comparison of final policy

65

Comparison of final policy

66

Reward Computation Time

DP -9.60 ??? s

Neural Fitted Q Iteration -9.66 1560 s

ALGPDP -10.25 256 s

Conclusion
"A major shortcoming of ALGPDP is that it cannot directly be applied to a
dynamic system: If we interact with a real dynamic system such as a robot, it is
often not possible to experience arbitrary state transitions." - page 32

67

