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Motivation: Better Reinforcement Learning

TD learning and Sarsa have to interact with the environment for a loooonnnnnggg
time before they learn an optimal policy.

Model the environment for faster learning.

Handle continuous state and action spaces.
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Gaussian Process Regression
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Regression

Given:

Independent Variables Observations:
X, x0, x1, X2,

X= |x,| = XO2 Xl2 X22
X XOn Xln x2n

Dependent Variable Observations:

Measurement error: Gy2

Predict y* for x*
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Figure 1: Given six noisy data points (error bars are indicated with vertical lines), we
are interested in estimating a seventh at x, = (.2.

Ebden (2008) Gaussian Processes for Regression: A Quick Introduction ®



Gaussian Process Regression
measurement error * Identity matrix

y, /

[y ]= Y,| =NO, K+ cyzl)

yn correlation between observations

y*

k(x,, x,) = Some symmetric function. Positive if x_and x, are close. ~0 if x_ and x, are far away.

k(x,x) k(x;,x,) ... k(x,x ) K, =E((x*,x1) k(x*.,x,) ... k(x*,xn)}
K= K K,T K= | k(x,,X,) k(x,.x,) ... k(x,,X )
k(x ,x,) k(x ,x,)... k(X X ) K.. =£k(x*,x*)]

large, but doesn't depend on x*

x* nearby X, — k(x*,x,) will be large — y* and y, will be highly correlated
by N0, K + GyZI) — y* will have a value similar to y,.



Plot of N(0, K + Gyzl)
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Williams, Rasmussen (1996) Gaussian Processes for Regression

pdf(y*)

Side Note:
E(y*) is biased toward 0,
because we set j to th%t.



Regression Algorithm

E(y*) = K,(K+c D)y

var(y*) = (K**-l-cyz) - K*(K-i—csyzl)'lK*

O(n’) operations to invert K.
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X

Figure 2: The solid line indicates an estimation of y, for 1,000 values of z.. Pointwise
95% confidence intervals are shaded.

Goto slide 55 Ebden (2008) Gaussian Processes for Regression: A Quick Introduction ?




Choosing k(x_, X, )

Squared Exponential: SE(x -x,) = o2 %K) T Xy) (Basic)
Cosine: cz(cos(2nf(xa-xb)) +1) (Eg. Seasonal data,
Traffic)

Wraparound: SE(tan™'(sin(x - x,)/cos(x - X,))) (Eg. Angles)

Choosing hyperparameters @=(c%,2, f, etc.):
Maximize log likelihood: log p(y|x,®) = -2y K™y -4 1dg|K] - Y2nlog(2n)

complexity penalty

data fit term

Conjugate Gradient Descent .



Extrapolation - not so good
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Extrapolation - maybe there's hope

Wilson et al. (2013) Gaussian Process Kernels for Pattern Discovery and Extrapolation
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Model-based
Reinforcement Learning
In a Discrete Environment



Reinforcement Learning System

Agent

Action

Reward, Next State

Environment
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Optimal Policy

Maximize expected cumulative future reward

h
1. Finite Horizon E() )
t=0
2. Infinite Horizon E(Y v'ry)
t=0
‘\ Discount Factor
1 h
3. Long-term Average lim E(_ Tt)
h—oco P

Kaelbling et al (1996) Reinforcement Learning: A Survey
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Value functions

Q(s,a): Expected cumulative future reward that results from taking action a in state
s, and taking an optimal policy afterwards.

V(s): max, _,(Q(s,a)): Maximum expected cumulative future reward that can be
achieved in a particular state. How valuable being in this state is.

Defined Recursively:
Q(s,a) =r(s,a) + yV(s'(s,a))

If we know these functions, then we can take the optimal action by maximizing
Q(s,a) over a.

16



Model-free RL

Wander around until you receive a reward. Incrementally update Q Table.

Action values increased Action values increased
Path taken by one-step Sarsa by Sarsa(\) with =0.9
: o s
. t
=4 )
% x| AN
A L

Figure 7.12: Gridworld example of the speedup of policy learning due to the use of eligibility traces.

1
Sutton, Barto (1998) Reinforcement Learning: An Introduction !



Model-based RL

Interact with the environment until you learn models of the reward function and the
transition function. Use these to compute the entire Q and V functions.
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Model Based RL Algorithm Pseudocode

Algorithm 1 classic DP, known transition dynamics f

1: input: f, App,Upp O(NSA)

2: V3 (Xbp) = Gierm(XDP) > terminal cost
3: fork=N—-1to0do For each time step in the horizon > recursively
4 for all x; € App do For each state > for all states
5 for all u; € Upp do For each action > for all actions
6 Qr (i, uy) = g(xi,05) + 7 Ex [V (K1) %45 05, f]

7 end for

8 Tr(X;) € arg mingg, Q% (X5, w)

9 Vi (%) = Qf (i, 7 (xs))

10: end for
11: end for
12: return 7*(Xpp) = 75 (App) > return optimal controls for App




Model-based RL Algorithm Basics

Q and V are defined recursively

Use Dynamic Programming to compute Q(s,a) and V(s) for all s,a
Finite Horizon gives a base case so you don't recurse forever.
Need to model:

e r(s,a): Reward function that depends on state and action

e r_.(s) Terminal Reward function (Reward at the end of the horizon)

e s'(s,a): Transition function (Forward Model)

If you don't know r,__(s), just set it to 0 and use a large horizon

20



How do you model the reward and transition function?
Interpolate between observations of gy s

inputted state action pairs and their 4
outputted rewards and next states.

Example ANN Function Approximator

Function Approximators:
e Linear Regression !
e Artificial Neural Network
e (Gaussian Process Regression

21



Model-based RL Dynamic Programming Example

Input:
y=0.5
N=3

rterm(s)

22



Model-based RL Dynamic Programming Example

Initialization:
Q(s,a)=0

V(s)=r

term(

s)

23



Model-based RL Dynamic Programming Example

lteration 1a
Q(s,a) =r(s,a) + yV(s'(s,a))

Q(s,a) V(s)
0|l 0| 8
0 0 0
000 000 040 O O O
0 0 0
ooo 000 ooo O O O
0 0 0




Model-based RL Dynamic Programming Example

lteration 1b
V(s) = max__,(Q(s,a), V(s))

Q(s,a) V(s)
ooo 004 ooo O 4 8
0 0 0
000 000 040 O O 4
0 0 0
000 000 000 O O O
0 0 0




Model-based RL Dynamic Programming Example

lteration 2a
Q(s,a) =r(s,a) + yV(s'(s,a))

Q(s,a) V(s)
0Ol 4| 8
0 0 2
000 022 040 O O 4
0 0 0
ooo 000 020 O O O
0 0 0




Model-based RL Dynamic Programming Example

lteration 2b
V(s) = max__,(Q(s,a), V(s))

Q(s,a) V(s)
214 | 8
0 0 2
000 022 040 O 2 4
0 0 0
ooo 000 020 O O 2
0 0 0




Model-based RL Dynamic Programming Example

lteration 3a
Q(s,a) =r(s,a) + yV(s'(s,a))

Q(s,a) V(s)
214 | 8
0 1 2
011 022 140 O 2 4
0 0 1
ooo 011 020 O O 2
0 0 0




Model-based RL Dynamic Programming Example

lteration 3b
V(s) = max__,(Q(s,a), V(s))
m(s)=a__
Q(s,a) V(s)
0 ° 2 | 1 ’ 4 | 2 ° 0 2 4 8
0 1 2
0 1 110 : 2 | 1 * 0 1 2 4
0 0 1
0 ° 0|0 1 110 ’ 0 O 1 2
0 0 0




Outline

Day 2:
e Gaussian Process Dynamic Programming
e "Online Learning"

30



Gaussian Process Dynamic
Programming

31



High-level algorithm
Move randomly and observe reward and transition functions

Stop
Compute optimal policy

Execute optimal policy until we reach the goal.

32



Model-based RL in continuous domains

Need to represent Q(s,a), V(s), and 11(s).

Instead of dividing the domain into discrete chunks, choose a finite set S of states
and A of actions.

4 8
Compute Q and V for these points, and interpolate ® ® ]
between for the rest using GPR.
1 2 4
O o O
Q(s,a) = r(s,a) + yV(s'(s,a))
V(S) = maxa(Q(Saa)! V(S)) 'yz 1 2
m(s) = a C) ) )

max

Use gradient descent to find max_(Q(s,a))

33



Gaussian Process Dynamic Programming (GPDP)

Algorithm 2 GPDP, known deterministic system dynamics
1: input: f, X, U

2 V(X)) = grerm(X) + w0y O(|S||A]P+|S|?) > terminal cost
3: V() ~ @GP, > GP model for V5
4: for k=N —1to0do Foreach time step in the horizon > recursively
B: for all x; € X do For each state > for all support states
6: for all u; € Y do For each action > for all support actions
7e Qr (x5, 15) = g(xi,u;) +wy + v Ey [V, (f (x4, 15))]

8: end for Need to build GP models of Q and V

9: Qi (x;, - ) ~ GP, > GP model for Q%
10: 7 (X;) € arg mingegrna QF (X3, 1)

11: Vi(x;) = Qf (xi, mi(x5))

12: end for

13: V() ~GP, > GP model for V}*
14: end for

15: return GP,, X, 7*(X) = 7} (X)

34



Continuous Dynamic Programming RL Example

Input:

y=0.5

N =1

r(s,a) o (S)

oo e
0--0 0-0 o0-fo0 + +
0 0 0 0 0 0
0-f0 00 0-}-0 ¥ + *
0 0 0
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Continuous Dynamic Programming RL Example

Initialization:
Q(s,a)=0
V(S) = rterm(S)
Q(s,a)
0 0 0
oog)‘o o-g).o o.é.o
0 0 0
0-f0 00 0-}-0
0 0 0
0 0 0
0o-f+0  0-}0 0-}-0

V(s)&

36



Continuous Dynamic Programming RL Example

lteration 1a
Q(s,a) =r(s,a) + yV(s'(s,a))

Q(s,a) V(s)
ST TN A &
S
0 0 0 0 0 0



Continuous Dynamic Programming RL Example

lteration 1b
V(s) = max__,(Q(s,a), V(s))
(s)=a

max

Q(s,a) TI(S)
0 1 6 0
o.g)‘o 0%4 3?6 + / /
0 0 1 0
0<-I—>0 O«I—»O 0<—I—>1 + S
0 0 0
0 0 0 0 0 0
0o-f+0  0-}0 0-}-0 + ¥ ¥
0
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Problems

Discontinuous value functions
Discontinuous policy 0.5

~0.05 0 0.05

Wikipedia, Azar et al (2012) Dynamic Policy Programming 39



Discontinuous Value Function

5 v,
N\

goal position

ang.vel. inrad/s

ang.vel. in rad/s
o

\

) -2 0 2
angle in rad angle in rad

-5 :?'3.
(a) Optimal DP value function. (b) Mean of value function model (GPDP).

Smoothed value function may trick Dynamic Programming during the iterations 0



Continuous Policy
5]

-

>

Optimal
controls may be
discontinuous.

high pos.
1low pos.

ineutral

ang.vel. inrad/s

low neg.

high neg.

0 1

angle in rad

-3 -1

41



Discontinuous policy.

Need a classifier to
high pos. jecide which

policy to use.
- {low pos.

+ {neutral

ang.vel. in rad/s

low neg.

high neg.

angle inrad

42



Switching between Policies

Xk

|

classifier

select policy model fe

T (Xe)

43



Gaussian Process Classification

Set one class to have a value of +1, the other -1.
Do GPR on the data.

Squash it through a sigmoid function:
s(-»)=0
s(0)=10.5
S() =1

Use that as the predictive probability

Ebden (2008) Gaussian Processes for Classification: A Quick Introduction

Predictive probability
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Evaluation

45



Underactuated Pendulum

Motor has insufficient torque to directly swing the
pendulum up.

Must swing back and forth first to build up energy.

5 Hz control.

2-D State (angular position and velocity)
1-D Action (torque)

At each step, receive penalty that is a function of
distance from goal + small noise.

goal position

Weight

46



GPDP Configuration

v =1 (undiscounted)
N = 10 steps (2 seconds)
k(xi,xj) - SE(xi,xj) + oy(ifi ==)
-They did not specify 2 or g, SO | assume they did some kind of optimization.
400 states randomly selected as support points

Tried Continuous policy and Switching policy

47



"Optimal" Configuration: Discrete DP

v =1 (undiscounted)
N = 10 steps (2 seconds)
620,000 States.

121 possible control inputs.

48



Results

49



Example Trajectory: Switching GPDP vs DP

action

4t
ol ——GPDP
-+-DP
0
R > 3 4 5
5. b
" ~ ——GPDP
0 «-DP
A 2 3 4 5

timeins 50



Switching GPDP vs DP

Switching GPDP:
incurred 15% higher cost than DP on average
iS more aggressive
reaches upright angle earlier
sometimes needed an additional swing (incurring a substantially higher cost)
always succeeded within the time limit

51



Continuous GPDP vs Switching GPDP

Continuous GPDP:;

ang.vel. in rad/s

incurred 20% higher cost than DP on average
almost identical global performance to Switching GPDP

performs poorly when state trajectory reaches boundary of discontinuity

angle in rad

high pos.

low pos.
neutral

low neg.

high neg.

-T

—=—si¥itch policies
——single policy

-Tt/2

52



Discussion

Most interested in Q(s,a) near optimal a. Use these a's as support
points in the GP.

When maximizing Q(s,a) over a, subtract a fraction of the
predictive variance to penalize uncertain actions.

Might not always be intuitive to divide actions into + and -

Placing support points randomly in state space might not be the
best idea. Goal of next section is to place support points
intelligently.

11%

/

17
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"Online Learning”

54



Challen®gs of Online Learning

Want to learn as fast ggossible, with limited prior understangg of task.
Minimize interactions with S&ggronment.
Exploration vs Exploitation
Restrict state space to task-relevantggion fo

gPced while maintaining accuracy

s traini t . .
o raining se Iy goal state
initial state : \@
. “‘:'..!-""-’-r

————— relevant reg®

Figure 7: Startipg®rom an initial state, the algorithm iteratively . a solution to
the RL pro without searching the entire state space, but by placing Vg training
set in rel®ant regions (shaded area) of the state space only. >



High Level Algorithm

Move randomly and observe reward and transition functions

Stop
S (support states) = set of states visited (one of which is the current state)

A (support actions) = random set of Actions
For each time step in the horizon:
Requires a
Look at what states are reachable from S / time machine
Try reaching a few of the more useful ones.
Add resulting states to S
Compute Q(S,A) based on the previous time step's V(S)

Compute V(S) and 11(S) based on Q(S,A)
Update reward and transition function with observation

56



Active Learning GPDP (ALGPDP)

Algorithm 4 Online Learning with GPDP

1: train GP; around initial states Xy > initialize dynamics model Select initial support states
2 Vi (AN) = gterm(Xn) + wy > terminal cost

3 Va(-) ~GP, > GP model for V3

4: for k=N —1to 0 do > DP recursion (in time)

5 |determine X} through Bayesian active learning Add new support states
6: update GP; > GP transition model Update Transition Model
(i for all x; € A} do > for all support states

8: for all u; € U do > for all support actions

9: Qr(xi, u;) = g(xi, w;j) + wy + v E[V'; (Xe+1) %, u;, GPy]
10: end for
11: Qr(xi, - ) ~ GP, > GP model for @}
12 7 (X;) € arg maxyern @5 (x;, 1)
L3: Vi (%) = Q (xi, ()
14: end for
15; Vii(-) ~gP, > GP model for V
16: end for

17 return GP,, X, 7 (Xp) = w5(Ab) 57




Bayesian Active Learning

Determines the expected utility (outcomes or information gain) of an experiment.

Don't take explorative actions that aren't likely to give you new information, or
have great cost.

Solely maximizing an expected information gain tends to just select states far
away from the current state set.

Use Bayesian Active Learning to determine which parts of the state space are
relevant.

58



Bayesian Active Learning

S = initial support states (from random movement)
For each time step
S = Candidate Support States = all states reachable from S by action set A
Fori=1..1
s* = the state in S with the highest U(s)
Take the action that is supposed to reach s* «— Elggf( ?r? t\i';/fe%o
Observe the state we ended up in, and add itto S
Use S as support points in this step's Q and V

,Is this state valuable?
U(s) = pE[V,(s)IS,] + 0.5 B log(var[V,(s)|S,])
s this state unique?

59



V(s'(s,a)) with uncertainty about s'
Previously, we assumed the transition model was known and deterministic.

GPR gives you a probability distribution of next states:
Gaussian with analytically computable mean and variance.
',Expected Future Value
Q(s,a) =r(s,a) + yE[V(s'(s,a)|)]

Y<This is no longer a single next state

In a discretized case we do a weighted sum of all possible next states and the
probability of seeing them.

In a continuous case we would have to do a weighted integral.

60



How to solve: E[V(s'(s,a))]
Some math known, - GP
deterministic s'(s,a)
s'(s,a)
known V(s) V(s'(s,a)) | V(s'(s,a))p(s')ds'
GP V(s) mean(V(s'(s,a))) 1

If you use Gaussian Processes for V(s) and s'(s,a), you can compute the integral.

Goto Slide 9

p
E(V(s*)) = K, (K+o ")y
\Replace this with I

L= J k (s, S'(Si,aj)) p(s'(si,aj)) ds'(si,aj) «—Depends on your choice of k(xi,xj)
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Evaluation

62



goal position
Underactuated pendulum

Maximize reward.instead of Minimize Cost

r(s,a) depends only on state:
upright =0
straight down = -1
everything else € (-1,0)

p=1 B=2
Observe two trajectories of 10 random actions
[=13

V(s) initialized with two training points: one at start and one at goal. 63



ang.vel. in rad/s

ang.vel. in rad/s

0
angle in rad

ang.vel. in rad/s

angle in rad

angle in rad

0 1 2 3

=4

= new
.5 support
points
=2
O= old
o Support
_, points
-4
-6
-8
=10
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Comparison of final policy

—— ALGPDP 0
-+-DP

——ALGPDP
-+-DP
~~- NFQ

TE!Z . . . .. .......... _Turz

, ——ALGPDP
= -+-DP

action

-

(a) Angle trajectories. (b) Angular velocities and applied actions.
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Comparison of final policy

DP
Neural Fitted Q Iteration

ALGPDP

Reward
-9.60
-9.66

-10.25

Computation Time
??7?s
1560 s

256 s
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Conclusion

"A major shortcoming of ALGPDP is that it cannot directly be applied to a
dynamic system: If we interact with a real dynamic system such as a robot, it is
often not possible to experience arbitrary state transitions." - page 32
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