

Elizaveta Kuznetsova, Yan-Fu Li, Carlos Ruiz , Enrico Zio, Graham Ault, Keith Bell Energy, Volume 59, 2013, Pages 133–146

Presenter: Elham Foruzan

Elham.foruzan@huskers.unl.edu

Overview Day One

- Goal & objectives
- System design
- Markov chain model for wind gen
- System Model

Reinforcement Learning at Customers

Overview Day Two

- Sensitivity analysis of learning parameters
- Simulation results and analysis
- Conclusion

- Goal & objectives
- System design
- Markov chain model for wind gen
- System Model

Reinforcement Learning at Customers

Battery storage

Source: http://engineeringinsightspodcast.com/episode002/

Goal & objectives

Paper goal: Increasing the utilization rate of the battery during high electricity demand, and increasing the utilization rate of the wind turbine for local use. **Customer:** Consuming electricity.

Wind Turbine: Renewable generation.

Main Grid: External grid.

Battery Storage: Charge and discharge electricity.

Method: Two steps-ahead reinforcement learning algorithm to plan the battery scheduling.

Main Grid Source: energy.gov

Source: www.betterworldsolutions.eu/

Residential

Nebraska

Microgrid and Battery

Source: http://www.energiestro.net/applications/

Overview

- Goal & objectives
- System design
- Markov chain model for wind gen
- System Model

***** Reinforcement Learning at Customers

System Design

The algorithm integrates two blocks:

- 1. A forecasting step: design for stochasticity of the wind speed conditions.
- 2. An optimization: design for adaptive task for finding the strategy of battery scheduling optimal
- The time step for the energy system optimization is set to be 1 h.

Microgrid design

The external grid imposes technical constraints and sets the market electricity price Pt.

Source: ww.hydrogencarsnow.com

Power output P_{wt}

Nebraska

Overview

- Goal & objectives
- System design
- Markov chain model for wind gen
- System Model

Reinforcement Learning at Customers

Model of the wind generator

- The amount of electricity output from the wind depends on :
 - Availability of the wind source.
 - Random mechanical failures of the wind generator components.
- Describe the dynamics of stochastic transition among different levels of wind speed conditions and mechanical states.

severe mechanical

Wind power curve

□ Wind power based on available wind

$$P(v) = \begin{cases} 0, & v \le v_{ci} \text{ or } v > v_{co} \\ P_N, & v_N \le v \le v_{co} \\ f(v), & v_{ci} < v < v_N \end{cases} \qquad v_{ci}, \text{ cut-in} \\ v_{co}, \text{ cut-out} \\ v_N, \text{ nominal wind speed} \end{cases}$$

Obtaining wind power distribution function

Nebraska

MCMC for Wind Power Simulation

* Markov chain is define:

A set of state S and transition probability from any two states. $Pr(X_i = i | X_{i-1} = n_i) = n_i$

$$\Pr(X_t = j | X_{t-1} = i) = p_{ij}$$

Transition Probability

$$\mathbf{P} = \begin{array}{cccc} S_t \to \\ \mathbf{P} = \\ S_{t-1} \downarrow \end{array} \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1m} \\ p_{21} & p_{22} & \dots & p_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ p_{m1} & p_{m2} & \dots & p_{mm} \end{bmatrix}$$

- States are discretized wind speeds values.
- ♦ Two extra discrete states, namely $P \equiv 0$ and $P \equiv P_N$

Example

The maximum recorded wind speed is 34.4 m/s
Wind speed between 0-35 is divided to 35 states

Model of the wind generator

Markov chain for modelling:

- Describe the dynamics of stochastic transition among different levels of wind speed conditions and mechanical states.
- \Box Discrete wind speed width is 3 m/s.
- □ States 7-12 represent the wind turbine failure states.

ebraska

damages

Overview

- Goal & objectives
- System design
- Markov chain model for wind g

- System Model
- ***** Reinforcement Learning at Customers

Model of load

$$D_t = D^{\text{peak}} \cdot r_w^{\text{peak}} \cdot r_d^{\text{peak}} \cdot r_h^{\text{peak}}$$

D^{peak}: Is maximum hourly peak of power demand over a year

 r_w^{peak} : Is the weekly peak of power demand

 r_d^{peak} : Is the daily peak of power demand

 r_h^{peak} : Is the hourly peak defined for working days and weekends

Model of battery storage

 $R_t = R_{t-1} + R_t^{\text{stor,charge}} - R_t^{\text{stor,discharge}}$

 R_t : Level of the energy stored in the battery at time t (Wh)

 R_{t-1} : Level of the energy stored in the battery at time t_1 (Wh)

 $R_t^{\text{stor,discharge}}$: The power flows over time step interval t between battery and consumer (Wh)

 $R_t^{\text{stor,charge}}$: The power flows over time step interval t between wind generator and battery (Wh)

Overview

- Goal & objectives
- System design
- Markov chain model for wind gen
- **System Model**

Reinforcement Learning at Customers

Definition of scenarios and actions

State And Scenarios

- \bullet Sⁱ_t at time t is a set of [D_t, P^{WT}_t].
- Scenario $S_{l} = [S_{t}^{i}, S_{t+1}^{n}, S_{t+2}^{p}]$
- ✤ At time t, battery decide for action at time interval [t, t+1 and t+2]
- ♦ Battery States $R_t = [R^0, R^1, R^2, R^3, R^4, R^5, R^6]$

Actions

$$A_{j}^{t} = [a_{t}, a_{t+1}, a_{t+2}]$$

- a_t a0 Covering part of the consumer electricity demand by discharging the battery
 - Purchasing all the electricity demanded by the consumer from the external grid

Example

Nebraska

Problem Formulation

1-Initialize to 0 the Q-values of all possible actions sequences for each scenario and set time t =0.

2- Identify $s_t^i = [D_t, P^{WT}_t]$

Make the forecast of available wind power output P^{WT}_{t+1} , P^{WT}_{t+2} and load D_{t+1} , D_{t+2}

Identify Scenario S_{I} =[S_{t}^{i} , S_{t+1}^{n} , S_{t+2}^{p}]

Based on identified S_1 and battery charge R_t , define all possible actions sequences of battery scheduling for 2 steps ahead.

Apply the policy for selection of sequence of actions.

Perform the selected sequence A_j^t under real system conditions, simulated using the Markov chain model for real wind conditions. Update the value of the sequence performed.

3- Move to time step t+3; repeat step 2.

Algorithm

Reward functions

- Final Goal: Increase the consumer independence from the external grid
- i. Increasing the utilization rate of the battery during high electricity demand.
- ii. Increasing the utilization rate of the wind turbine for local use.

$$f_t(a_t) = \begin{cases} \frac{P_t^{\text{wt}}}{D_t} \left(D_t - R_t^{\text{stor,discharge}} \right), & \text{if } a_t = a^0 \\ k \cdot \left(P_t^{\text{wt}} - R_t^{\text{stor,charge}} \right), & \text{if } a_t = a^1 \& P_t^{\text{wt}} > 0 \\ 0, & \text{if } a_t = a_1 \& P_t^{\text{wt}} = 0 \end{cases}$$

Nebraska

Q learning and reward

Maximizing the reward of current and future by performing sequence of actions A_j^t =[a_t, a_{t+1}, a_{t+2}],

$$r\left(\text{Scenario}_{t}^{l}, A_{t}^{j}\right) = \gamma^{0} \cdot f_{t}(a_{t}) + \gamma^{1} \cdot f_{t+1}(a_{t+1}) + \gamma^{2} \cdot f_{t+2}(a_{t+2})$$

Updating the Q value

$$Q\left(\text{Scenario}_{t}^{l}, A_{t}^{j}\right)_{p} = Q\left(\text{Scenario}_{t}^{l}, A_{t}^{j}\right)_{p-1} + \alpha\left[r\left(\text{Scenario}_{t}^{l}, A_{t}^{j}\right)_{p} - Q\left(\text{Scenario}_{t}^{l}, A_{t}^{j}\right)_{p-1}\right]$$

Recap

- ***** Introduction & background to Batteries
- ***** System design
- ***** Markov chain model for wind gen
- ***** Reinforcement Learning at Customers

Overview Day Two

Sensitivity analysis of learning parameters

Simulation results and analysis

Sensitivity analysis

* To understand the role of the learning parameters:

- \succ The weight coefficient k
- > The discounted rate γ
- > The learning rate α

Two scenarios

Two scenarios

- Scenario 1 : low wind power output, and medium and high values of load
- Scenario 2 : high wind power output and low load.
- ✤ Initial battery size is 3000 W

Parameters	Time ste	Time steps	
	t	t + 1	<i>t</i> + 2
Scenario 1 with initial battery charge $R_t - 300$	0 Wh		
Wind power output (P_t^{wt}) , Wh	1200	1200	1200
Load (D_t) , Wh	4400	5200	5200
Scenario 2 with initial battery charge $R_t - 300$	0 Wh		
Wind power output (P_t^{wt}) , Wh	6000	4800	4800
Load (D_t) , Wh	2800	2800	2800
Possible sequences of actions $[a_t, a_{t+1}, a_{t+2}]$	a ^o	a^{0}	a^0
	a^0	a^0	a^1
	a^{0}	a^1	a^0
	a^{0}	a^1	a^1
	a^1	a^{0}	a^0
	a^1	a^{0}	a^1
	a^1	a^1	a^0
	a^1	a^1	<i>a</i> ¹

Possible values of the weight k

- The possible scenarios can be divided into three groups, depending on which of the following conditions is met.
- $\texttt{*} \mathbf{f}_{\mathsf{t}}(a_0) > \mathbf{f}_{\mathsf{t}}(a_1)$
 - ➢ High loads and low wind power outputs.
- $\texttt{ f}_{t}(a_{0}) < f_{t}(a_{1})$

Low loads and high wind power outputs.

$$\bullet f_t(a_0) = f_t(a_1),$$

> Where both actions a_0 and a_1 are equally valuable.

Possible values of the weight k

 $f_t(a_0)$: grey-coloured surface $f_t(a_1)$: white-coloured surface

a) k = 1
b) k =
$$2^{\frac{1200}{P_t^W}}$$

c) k = 6

Influence of the weight k on the optimal sequence of actions

✤ Use sensitivity analysis to pick k:

 $\gamma = .8, \ \alpha = 0.6$

- > large k increase the selection of action a_1
- > Small k favors actions a_0
- For long term benefits, they consider the potential of absence of wind

 \succ k=6

Value of weight coefficient k	Scenario 1	Scenario 2
1 2 ^{1200/P} ^{wt} 6	$[a^{0}, a^{0}, a^{0}]$ $[a^{0}, a^{0}, a^{0}]$ $[a^{1}, a^{1}, a^{1}]$	$egin{array}{cccccccccccccccccccccccccccccccccccc$

Discounted rate γ

 $k = 6, \alpha = 0.6$

If set to zero : values of actions undertaken at time steps t + 1 and t + 2 are neglected and only the first action at time step t is valuable

γ For the range 0.2 to 1: do not influence the sequence of actions with highest Q*-value.
 Final Value set to 0.8

Value of discounted rate γ	Scenario 1/Scenario 2
0	$[a^1, a^1, a^1], [a^1, a^1, a^0], [a^1, a^0, a^1], [a^1, a^0, a^0]$
0.2	$[a^1, a^1, a^1]$
0.4	$[a^1, a^1, a^1]$
0.6	$[a^1, a^1, a^1]$
0.8	$[a^1, a^1, a^1]$
1	$[a^1, a^1, a^1]$

Learning rate

- The value of the learning rate a influences the speed of convergence to Q*-values but not to the final highest Q*-values.
- The α close to zero slowdown the convergence of Q values.

 γ = .8, **k**=6

• They select $\alpha = 1$

Nebraska

Overview Day Two

Sensitivity analysis of learning parameters

Simulation results and analysis

Simulation results and analysis

- The values of D_t , P^{WT}_t , and R_t are divided to six discrete values.
- Wind Power : [0, 1200, 2400, 3600, 4800, 6000] Wh
 Load: [2000, 2800, 3600, 4400, 5200, 6000] Wh
 Battery: [0, 1000, 2000, 3000, 4000, 5000, 6000] Wh
 Charging or discharging at each time step is : 1000 Wh

Wind turbine parameter

✤ Wind power output is proportional to the rated power of the wind generator

$$P_t^{\mathsf{wt}} = \begin{cases} 0, & \text{if } v < v_{\mathsf{ci}} \\ P^r \cdot \frac{(v_t - v^{\mathsf{ci}})}{(v^r - v^{\mathsf{ci}})} \cdot \Delta t, & \text{if } v_{\mathsf{ci}} \le v < v_1 \\ P^r \cdot \Delta t, & \text{if } v_r \le v < v_{\mathsf{ci}} \\ 0, & \text{if } v > v_{\mathsf{co}} \end{cases}$$

Parameters	P^r	ν_{ci}	v _r	v_{co}
Values	6000 W	3 m/s	12 m/s	20 m/s

Nebraska

Available wind power output

- Method of eigen-vectors : Numerical Value
- Markov chain model : Analytical Value

Wind Output for 40 years

↔ Wind power output was calculated with the Markov chain

- ✤ The threshold for learning each scenario is set to 16.
- After 10 years of learning, number of new scenarios is less than 1.5% of available scenario at that year.
- ✤ Number of learned scenarios are 87% in the year 40
- Still large number of unlearned scenarios

Nebraska

Three indexes for analyzing the performance of reinforcement learning:

$$V_{0} = \frac{\sum R_{t}^{\text{stor,discharge}}}{\sum D_{t}},$$
$$V_{1} = \frac{\sum R_{t}^{\text{stor,charge}}}{\sum P_{t}^{\text{wt}}},$$
$$E = \left(\sum D_{t} - \sum R_{t}^{\text{stor,discharge}}\right) \cdot P_{t}$$

- \clubsuit Where P_t is assumed to be constant
- The values all are calculated as a cumulative values in a year

- *Ns* =50 independent simulation runs are executed.
- ✤ For each run, wind profile for a year was generated.
- * Through 50 independent simulation runs, they evaluate the estimated V_1 and V_2 :

$$\widehat{V}_0 = \frac{\sum_{j=1}^{N_s} V_0^j}{N_s}$$
$$\widehat{V}_1 = \frac{\sum_{j=1}^{N_s} V_1^j}{N_s}$$

* The convergence of V_0 and V_1 for five randomly selected years.

Nebraska

v_0^{av}

- The average values of the performance indicators for each year :
- v_0^{av}, v_1^{av} , and E^{av}
- * Performance indicator v_0^{av} increases

Nebraska

• Performance indicator v_1^{av} increases

 $\frac{11}{11}$

• Progressive decrease of the E^{av}

Case study for k

It is more valuable for the consumer to adopt the strategy illustrated by the case study 1 with weight coefficient k = 6

		Case study 1. $k = 6$	Case study 2. $k = 2^{1200/P_t^{wt}}$
Average improvement	V ₀	3.93%	2.72%
of performance indicators	V ₁	5.37%	0.96%
after convergence	E	0.47% ^a	0.26% ^a

Battery scheduling process for a day of operation

Overview Day Two

- Sensitivity analysis of learning parameters
- Simulation results and analysis
- Discussion & Conclusions

Nebraska

- The microgrid energy management is done for the benefit of the consumer, i.e. to maximize her or his personal objectives.
- i. The paper used a two step ahead approach for learning and decision making using Q-learning for customers.
 Therefore, based on the current time and knowledge of system about current scenario, it will get a decision.
 Therefore system states needed to be learned increase significantly.
- ii. It would be nice if we have a comparison between this framework and the regular q-learning.

- i. I believe, analyzing the sensitivity of α after determining the actions is not consider as a sensitivity analysis.
- ii. I believe in this framework the battery charges always.
 The only case that it discharges is when wind output is zero. (they mentioned, they will choose maximum Q after training.)
- The proposed modelling framework is capable of accounting for generation uncertainty.
- i. They needed to talk more about method of eigen-vectors or they could not mention it at all.

- The optimization framework of reinforcement learning is analyzed through a sensitivity analysis aimed at understanding the role of the learning parameters.
- i. They final chosen value of k is in conflict with the paper sensitivity analysis, which is not proper.
- ii. One solution for k is to define a variable k based on their prediction for future wind power.
- For measuring the performance of the learning algorithm, three indicators have been introduced.
- i. There is a conflict in the results in Figs 11 and 13.
- ii. They need to define v_0^{av} , v_1^{av} , and E^{av} more carefully.

Future Work

- The improvement for the forecasting and learning capabilities
- The extension to multiple agents integrating, diverse renewable generators, and several intelligent consumers with limited access to information about the power available and limited communication capabilities within the microgrid.

References

- Kuznetsova, Elizaveta, et al. "Reinforcement learning for microgrid energy management." *Energy* 59 (2013): 133-146.
- 2) Papaefthymiou, George, and Bernd Klockl. "MCMC for wind power simulation." *IEEE Transactions on Energy Conversion* 23.1 (2008): 234-240.

- 1. Risk-Averse: Bid low to have HIGH acceptance
- 2. Risk-Indifferent : They are at MEAN
- 3. Risk-Taker : Bid high, they have LOW acceptance
- * To trade off between exploitation and exploration, the ϵ greedy chooses the action with maximum Q-value by the

1- ϵ probability and selects all possible actions with small probability ϵ .

- Risk-Averse (RA):
- The agent prefers to be greedy about new data and experience and pick the maximum immediate reward right away without exploring
 - > The discounted rate γ : Low value of discounted value since they don't care about future.
 - > The learning rate α : High value of learning factor to indicate a greedy feature
 - \succ ϵ : Low value

- Risk-Taker (RT)
- * in a risky situation, it likes to explore more (the high value of ε) to get new opportunities and is not greedy about new data.
 - > The discounted rate γ : High value since The expected future reward is valuable for this type of agent.
 - > The learning rate α : low value of learning factor to indicate a non-greedy feature
 - \succ ε : High value

- Risk-Indifferent (RI):
- * The normal values for the α , γ , ε parameters are suited for this strategy.

Tabular form of parameters and risk

AP: Acceptance probability

Agent	AP	α	γ	3
RA	High	High	Low	Low
RI	Mean	Mean	Mean	Mean
RT	Low	Low	High	High

References

- 1) Kuznetsova, Elizaveta, et al. "Reinforcement learning for microgrid energy management." *Energy* 59 (2013): 133-146.
- Papaefthymiou, George, and Bernd Klockl. "MCMC for wind power simulation." *IEEE Transactions on Energy Conversion* 23.1 (2008): 234-240.
- Rahimiyan, Morteza, and Habib Rajabi Mashhadi. "Modeling the supplier agent's risk strategy based on fuzzy logic combined with the Q-learning algorithm." 2006 International Conference on Computational Intelligence and Security. Vol. 1. IEEE, 2006.
- Rahimiyan, Morteza, and Habib Rajabi Mashhadi. "An Adaptive-Learning Algorithm Developed for Agent-Based Computational Modeling of Electricity Market." IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 40.5 (2010): 547-556.

Thank you very much

