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Motivation
Robots that can learn how their motors move their body

2Complexity Unanticipated Environments Degradation
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Outline
● Background: Controllers
● Modelling

○ Model Types
○ Learning Architectures

● Challenges of applying machine learning to Robotics
● Machine Learning Methods
● 3 Examples of ways model learning has been applied to robotics

○ Simulation-based optimization
○ Approximation-based inverse dynamics control
○ Learning operational space control

● Future Directions
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Background: Controllers
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Open Loop Control
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Example: Microwave Oven



Closed Loop Control
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Example: Thermostat, Cruise Control



A model describes how the system is expected to react
It might be implicitly coded into the rules of the controller

Implicit Models
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Explicit Models
We will discuss more advanced control algorithms that explicitly model the 
system's behavior
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Modelling
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Preview: Examples of Model Learning Controllers
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Learning Architecture

Direct Indirect Distal Teacher

Model 
Type

Forward Self-tuning regulator
Model Reference Adaptive Control
Model Predictive Control

N/A N/A

Inverse Arm Joint Torque Controller Feedback Error Learning N/A

Mixed Multi Module Switching Controller Gated network of experts Distal Teacher

Multi-Step ARX, ARMAX variants N/A N/A



Model Types
● Forward

○ Given the current state and an action, predicts the next state

● Inverse
○ Given the current state and the desired state, predicts the action

● Mixed
○ Pairs a forward and inverse model together

● Multi-step prediction
○ Predicts multiple future states/actions
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Forward Model
Given the current state and an action, predict the next state
Corresponds to the state transfer function of the environment

● Model Reference Adaptive Control (MRAC): Uses forward model to choose 
the action that gets it closest to the destination

● Model Predictive Control (MPC): Uses forward model to choose the sequence 
of N actions that gets it closest to the destination
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Problems with Forward Models
There may be many possible next states. Forward Models return the mean of the 
distribution, even if it is unlikely.
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Likelihood of next states of the 
unstable inverted pendulum

Inverted Pendulum Example



Inverse Model
Given the current state and the next state, what is the action?

Easy and Fast policy: take the action given by the inverse model
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PD-controller that helps stabilize the robot. 
Not necessary if the inverse model is good



Problems with Inverse Models
An action that will get you from the current state to the desired state may not exist.
Ill Posedness: Multiple actions from the current state to the desired state.
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Robot Arm Example

Θ2 = 90

Θ1 = 60

Θ2 = 270

Θ1 = 90

Θ2 = 180

One way to grip the desired position Another way The average
Link to Direct Modelling



Mixed Model
Use a forward model to resolve ill-posedness of the 
inverse model

In figure: Use forward model to estimate a "latent" 
state variable zk from the previous state, previous 
action, and current state. Use zk to disambiguate 
multiple possible ak's in the inverse model for sk and 
sk+1.

Distral Teacher: Use forward model to resolve 
ill-posedness when training the inverse model.
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Multi-step Prediction Model
Uses a different model for each time step. 

Avoids accumulating prediction error
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True path for the planned actions

Path Predicted by Model Predictive Control 
with a forward model biased to the left

Path Predicted by the last model in a 
multi-step model



Learning Architectures
● Direct Modelling
● Indirect Modelling
● Distal Teacher Learning
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Direct Modelling
Use observed input/output pairs to train 
the model

Can be done off-line or on-line
● If on-line, use a feedback controller to 

guide the robot during learning

Difficult to train inverse models in ill-posed 
problems unless:
● the data is generated in an intelligent 

way
● local models are used. 19Link to Robot Arm Example



Indirect Modelling
Minimizes an error signal on-line, and 
therefore the inverse model converges to a 
single action in ill-posed problems.

In Figure: Feedback Error Model Learning
● Train an open-loop inverse model 

controller using the output of a 
feedback controller. 

● As the model gets better, the output of 
the feedback controller will tend toward 
zero.
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Distal Teacher Learning
Forward Model is trained directly to predict 
the next state.

Compose the Inverse and Forward models, 
and train the composed model while holding 
the Forward model fixed.

Advantage of adding the Forward model is 
that it results in a globally consistent inverse 
model instead of local on-policy optimization

21

Inverse 
Model

Forward 
Model

sd[n] action sp[n]

s[n-1]

sd[n] - s[n]

Training the Inverse Model:
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Outline Day 1
● Background: Controllers
● Modelling

○ Model Types
■ Forward
■ Inverse
■ Mixed
■ Multistep

○ Learning Architectures
■ Direct
■ Indirect
■ Distal Teacher
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Outline Day 2
● Challenges of applying machine learning to Robotics
● Machine Learning Methods

○ Global Methods
■ Artificial Neural Networks
■ Linear Regression

○ Local Methods
■ Locally Weighted Linear Regression

● 3 Examples of ways model learning has been applied to robotics
● Future Directions
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Challenges of Applying Machine 
Learning to Robotics
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Data Challenges
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● Need to sample a large region of the state space
○ Make random movements

● Robotics may not have smooth dynamics (Static Friction to Kinetic Friction)
○ Use kernel methods that allow for unsmooth functions
○ Switch between local models (discontinuous at boundaries)

● High dimensionality
○ Dimensionality reduction

● Redundant data
○ Filter

● Noise and outliers
○ Estimate noise level in the data, and fit a model of appropriate complexity



Algorithmic Constraints
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● Needs to run in real time
○ Don't use Ω(n3) algorithms
○ Reduce data set size
○ Parallel computation

● Incorporate prior knowledge
○ Training data may be sparse or difficult to get
○ Specify apriori probability in probabilistic frameworks

● Online learning
○ May not know the important region of the state space beforehand

● Active learning
○ Labelling data may be time consuming

○ Figure out which regions of the state space need to be explored, and only ask the human to 
label those



Real-world challenges
● Safety

○ Fail safe

● Robustness and Reliability
○ Feature selection to avoid overfitting

● Measurement Errors & Missing Data
○ Probabilistic learning methods

● Time-varying systems
○ Online learning
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Machine Learning Methods
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Global Regression Algorithms
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● Estimate the form of the entire function
● Parametric Algorithms (model complexity is fixed):

○ Artificial Neural Network
○ Linear Regression

■ Fit a polynomial to the data

● Nonparametric Algorithms (model complexity depends on data):
○ Self-reconfiguring Artificial Neural Networks
○ Gaussian Process Regression
○ Sparse Gaussian Process Regression
○ Support Vector Regression
○ Incremental Support Vector Machine
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Artificial Neural Network
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Perceptron
Computes a weighted sum of inputs

Sigmoid function:

The zero of the weighted sum is a hyperplane that divides the space.
On one half of the space, the sigmoid returns a value near 1, on the other, 0 32
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Sigmoid function image: https://qph.ec.quoracdn.net/main-qimg-05edc1873d0103e36064862a45566dba
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Backpropagation
An iterative method to set the weights in the network

1. Initialize all of the weights to random values
2. Select a training sample
3. Plug the training input into the network, and compute the error between the 
output and training sample's value
4. Compute the gradient of the error with respect to the weights of the network
5. Slightly change each weight along the gradient
6. If the network's performance is not good enough, goto 2

Gradient descent can run into local minima. Try many different initial weights
33



ANN as a function approximator
The sigmoid function constrains the 
output between 0 and 1. Use a linear 
transfer function at the output layer 
instead.

Network learns to use nonlinearities of 
the sigmoid function to fit the training 
data.

Image shows output from a network 
with 5 neurons in the input layer and no 
hidden layers.
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Linear Regression Basics
y is the variable you are trying to predict
x1 ... xP are the variables you are using to predict y
You have N samples of y and x1 ... xP

Linear Regression fits a linear model:
ypredicted=ᶔ1x1 + ᶔ2x2 + ... + ᶔPxP

It finds coefficients ᶔ1...ᶔP that minimizes the sum of squared errors: ᶋ(yi - 
ypredicted,i)

2
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Linear Regression Algorithm
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y1
y2
y3
...
yN

x1,1 x1,2 ... x1,P
x2,1 x2,2 ... x2,P
x3,1 x3,2 ... x3,P
...   ...       ...
xN,1 xN,2 ... 
xN,P

ᶔ1
ᶔ2 
... 
ᶔP

ᶗ1
ᶗ2
ᶗ3
...
ᶗN

= +

Y = Xᵚ+ᷧ

Magic Formula:
ᵚ = (XTX)-1XTY

ᶇ(P2N)



Linear Regression with more complex Models
x1 ... xP don't have to be the variables you 
measured, they can be a function of them.

Suppose m is the measured variable

To fit a parabola:
x1 = 1           x2 = m           x3 = m2
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Local learning
● Estimate the form of the function near the point we're interested in (xq)
● Model complexity is not fixed
● Local Algorithms:

○ Locally Weighted Linear Regression
○ Locally Weighted Projection Regression
○ Local Gaussian Process Regression

● Semi-local (combine both global and local methods):
○ Gaussian Mixture Model
○ Bayesian Committee Machine
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Weighted Linear Regression
Minimize the weighted sum of squared errors: ᶋ wi(yi - ypredicted,i)

2

W = 

Magic Formula:
       ᵚ = (XTWX)-1XTWY

       ᶇ(P2N)

Useful for accomodating Heteroskedasticity: measurement variance
wi = 1/σi

2 39

i=0
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w1 0  0  ... 0
0  w2 0  ... 0
0  0  w3 ... 0
..  ..  ..   ..  ..
0  0  0  ... wN



Locally Weighted 
Linear Regression

Weight samples according to 
how close they are to the point 
of interest.

Gaussian distribution of 
weights works well
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Problems with Local Learning Methods
● Need to determine a distance function d(xk,xq) = (xk - xq) / h
● Methods for choosing h:

○ Minimize cross validation error
○ Adaptive bandwidth selection

● Speed Optimization:
○ Partition space, and only consider points in the query point's partition

● Problems:
○ Notions of locality break down in high-dimensional space

■ Project data to lower dimensional space
■ Combine with a probabilistic regression to exploit its strengths in high dimensional space

○ Sensitive to noise
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3 Examples of Ways Model Learning
has been Applied to Robotics
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Simulation Based Optimization
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Learn a forward model and use it for planning



Approximation Based Inverse Dynamics Control
Model learning accounts for nonlinearities that physics models don't account for.
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Learning Operational Space Control
● Learn how to follow trajectories in operational space (not joint space)
● Normally this is ill-posed, but there are several ways this has been tackled

○ Local linearizations aren't ill-posed. Use local models
○ Learn the forward kinematics, then invert it, and combine it with an inverse dynamics model
○ Use a neural network to jointly learn the forward and inverse kinematics
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Future Directions
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Dealing with uncertainty in the environment
Transfer learning between tasks
Semi-supervised learning
Approximation based control needs more stability analysis
Learning nonunique mappings



Summary
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● There are many benefits of robots that can learn how to control their body
● Controllers use a model of the system to determine what action to take
● Forward models are well-defined
● Inverse models have a simple policy
● Models can be trained directly from observations,                                           

or indirectly from error signals
● Learning a model is a regression problem
● Model learning in robotics has several challenges that general machine 

learning doesn't


