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aused by fossil fuels

Source: http://theearthproject.com/




Source: http://blog.livedoor.jp Source: http://blog.livedoor.jp



Motivation: why microgrid?

With distributed generation and storage, electric power

can be provided when the grid is down
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https://www.youtube.com/watch?v=EhkdYgNU-ac
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*» Goal & objectives




Paper goal: Dynamic pricing and energy scheduling in microgrid.

Customer: consuming electricity
Utility: electricity Generators
Service Provider: Buy electricity from Utilities and sell to customer.

Method: Reinforcement learning implementation that allow costumers and service
providers (SP) to strategically learn without prior information.

Service Provider

Source: energy.gov

Residential
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< System Model




System Time Slot

< To consider the variable load consumption of customer

and retail price of electricity during a day, the set of
period H={1,2,3,..,H-1} was introduced.

< Each time-slot t maps to period h from set H using equation

h=mod(t,H)
“ At each time slot, SP change the retail price.




Service Provider design

Utility Energy Cost
Function: c'(.)

Service Provider
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Energy consumption of
customers : Zgi

i
el .

The SP buys the electricity from the utility with the price of ct (.)
chosen from finite set C.
The price ¢! is a function of time t and loads consumption Y;; e/




SP and Customers

Reta|I Price :

Service Provider
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“ In the microgrid system, the system provider determine the
retail price function of the system ( a' can be a second order
equation of customer consumption.

< The set of SP action, or retail price options are limited to a
set A with n member A={a,,a,,...,a_}.

< SP charge any customer a'(e:'), where e.!' denote customer
1/ 1
energy consumption at time ft.




Model of Customer Response

Load
model

Condition

1) Satis 5 Di -
2) Dissatisty ty:u(d' —¢;)

3) qbf(d§, e?) = Mi(df - e?) T a[("/’?)
4) dt = o(df — &) + el + DI




Electricity Cost of Service Provider

<+ The SP buys the electricity from the utility with the price of ¢t ,
chosen from finite set C.

% Transition probability from ¢! at time t to ct*!
1.t gt
p C (C |C ’ h )

* We denote the SP cost as:

i) - £a) - St

icl iel

< where the first term denotes the electricity cost of the service provider
and the second term denotes the service provider’s revenue from
selling energy to the customers.




Timeline of interaction among the microgrid
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Problem Formulation

< In this section, they first formulate a dynamic pricing
problem in the framework of MDP.

< Then, by using reinforcement learning, They develop an
efficient and fast dynamic pricing algorithm which does not
require the information about the system dynamics and
uncertainties.




MDP Formulation

% First consider customer as deterministic and myopic. Then
for now, customer decision 1s to choose least possible cost:

¢i = argmin  ¢;(dj, e)

0<e<min (e?’a"‘,df)

< MDP problem was defined with
» 1- Set of decision makers actions
» 2- Set of system states
» 3- System states transition

» 4- System cost Function




< SP 1s a decision maker.
I. The SP actions 1s choosing a retail price from set A.

II. The microgrid states 1f function of customers demand
vector, time and electricity price

st = (d, I, S = [lieg Di x H x C

I1I. The transition from state §° = (d', h', ") next state
SI—I—] _ (dH_l, hH_l,CH_l)

pS(SH_l {Sr’ af) :pc(ct—H {Ci‘, hr) o l_[pdi (dgﬂ{dg, W ar)

icl




Continue

“ System cost 1s defined as weighted sum of Sp and Customer
cost:

(s d) = (1= ! (@, ¢ d) +p Y ¢! (d, )

=vA

< In which choosing p € [0, 1]ves priority on SP or customer
cost.




<» The objective 1s to find the stationary policy that:
1) maps states to action

S — A, ie., d = w(s)

2) minimize expected discount value

0
: : tt( ot t
P .H:rgglAE ;(y) r (s ,n(s ))




< The optimal stationary policy 7* can be well defined by using the
optimal action-value function O* : § X A — R which satisfies the
following Bellman optimality equation:

Q*(s.a) =r(s,a) +y » p(s
s'eS
< In whick v*(s') 1s optimal state-value function.

V*(s') _HélﬂQ (s.a),Vs € S

< Since (s, a) 1s the expected discounted system cost with action a 1n
state s, we can obtain the optimal stationary policy as:

7 *(s) = argmin Q™ (s, a)
ac A
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Energy Consumption-Based approximation State

< Two drawback Of their model:
> 1-large number of states
» 2- can’t access customer states due to privacy

< To solve problems, they came up with new states:

¥ = (diy, i) € X

X =ExXAxHxC

Where d}, = (qg(Ze’ 1), ")
i€l




Energy Consumption-Based Approximation State

» Since D/ is set of independent variable, by the law of
t
large number the ZiD"/, gose to expected value .

> In the practical microgrid system with a large number
of customers, a (v, ¢!« provides enough
information for the service provider to infer the D* .




Overview

< Virtual Experience for Accelerating Learning
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Virtual Experience Definition

d Definition: Experience tuple 1s define as

+1

o I—I—l)

= O, d,r, x

< Update multiple state-action pair at each time.

> set of equivalent tuple:
oltl o, d, r, xH—l) st — &, a7, it+1)
> If we have these two conditions:

pr(XTX, @) = pe(d TN, d), @ = d

 Set of equivalent tuple which are statistically equivalent

Q(JH_l)




Virtual Experience in The System

a Assumption:
v SP has a transition probability of p.(ct*!|ct, ht)

d Set of equivalent experience tuple:

It I
dﬂ’PP o dﬂ’PP

ht
(9(0‘“) _stlg =g H =
De (~l‘—|—1| ]’l)

=n,

(¢ )

[
I-I-l |C1‘, ht)




Algorithm 1 Q-Learning Algorithm With Virtual Experience

l
2
.
3

=

. Imtialize Q arbitrarily, 1 =0
. for each time-slot 7

Choose a' according to policy m(x)

Take action ', observe system cost r(x', a')

next state x'*!

Obtain experience tuple o't = (X', &', /, xX'+1)

and

Generate set of virtual experience tuples (o 't!)
for each virtual experience tuple 6'7! € 9(o')

v=r@ a) 4y max,ca Q(-’*H_] a’)
Q(A,(?)<—( — )0, d'y + ev

end Computational
end complexity

Memory complexity

-learnin ith
Q-learning w O(|A])

original state

O([Licz IP:lIHIICIIAl

Q-learning with EAS O(|A])

O(I€]H]IC]IAT®)

Q-learning with EAS .
and virtual experience O(|6(4)|-Al)

O(l€[IH][CI|-A])




% Introduction to Microgrid

+» SP and Load Model
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*» MDP formulation for SP to minimize system cost

< Presenting two methods for reducing space of Q-learning
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Customers Problem Formulation

< Q-learning for customer
1- Set of decision makers actions ¢} = a!(d!)

> A set of finite energy consumption function  A; = {a; 1, a;2, - ,aj4;}
2- Set of system states si=(d, W, d)eS
» A set of customer I’s states Si=D;xHxA

3- System cost Function
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Post Decision State Learning Definition

< By mtroducing the PDS, we can factor the transition probability
function into known and unknown components,

< Where the known component accounts for the transition from the
current state to the PDS, 5 —. ;

< And the unknown component accounts for the transition from the PDS
to the next state s — s’ .

p(s'[s.a)=> p.(s|5a)p(5]sa)




Dynamics

c(sja.): p(s’\sza.)
s 7 ™
State State
(time n) (time n+1)

Decision (time n)

— (b h. P
’ ( ; x) “ a = (BEP.,-y.,z)

V* cs) -

State-value function

Known dynamics

e (5,0), P (5| s,a)
A

> s’ = (b, h,

z')
V= (3")

State-value function

Unknown dynamics

¢, (8,a), py (SF | ‘E’:?U‘)

A

- N ™y
tiState Post-decision state | State
(time: 1) (time 1) | (time n+1)
51 = {bj 3 h? I j O“-—E_EECIS';OH (ti i
@ — ;——'m |
L= ff;‘_‘g:ﬁ“-iﬂa :
1> 4, 2 ) '“‘“-h-,______%
e :(ﬁs}lsﬁ) O : PO
2 . ﬂ.g = (BEFE-_. E)',E:g -)fp_f_-f"_ :i; _ [:E} o f—_h._ If:] SJ’ — {b}' h.-li,, IJ’)
_—REP:Y
s = (bhz) O—g, = (B |
Vies) - V*(5) - Vv (s"}

State-value function

Postdecision state-value function

State-value function



PDS and Conventional Q Relationship

< The optimal PDS value function and conventional Q
learning relation

V5(3) = (3)+7) (8 [3)V(5),

V* (s> = ming,e 4 {ck(s,a) + ngk (5|sa)V* (5)}.

Given the optimal PDS value function, the optimal policy can be
computed as

Tpps (§) = Min, - 4 {Ck(s., a) + ZS pe(S]s a')ﬁ (5)}




PDS for Learning

< Proposition 1: 7pps and 7w are equivalent.

% Therefore, 1t can use the PDS value function to learn the
optimal policy.

< While Q-learning uses a sample average of the action-value
function to approximate Q* , PDS learning uses a sample
average of the PDS value function to approximate 77* .

V* (b)—mlﬂaeA{Ck(bCL —I—Z (3] sa)V b)}




Post Decision State Learning

Table 4.Post-decision state-based learning algorithm.

Initialize: At time 72 = 0. initialize the PDS value function VU as described in Section VLE.

Take the greedy action: At time 72 . take the greedy action

a" = arg min{ck(sn,a) - Z-pk (5]s",a)V" (5)}-

acA

Observe experience: Observe the PDS experience tuple " = ( s" a", 5" ¢l s ) .

Evaluate the state-value function: Compute the value of state sl

\vad (3'?1-+1 ) — min { Ck(Sn—H 3a-) + Z Px (§ ‘ gt ; a-)l}n (5) ]’

ac A

Update the PDS value function: At time 72 . update the PDS value function using the information from steps 3 and 4.

I}-nJr'l (,§'”‘ ) . (1 —a” )I'j'rn (:9"'”' ) L a” [CIJ': s ,}_..V'n- (8-n.+1 ”

Lagrange multiplier update: Update the Lagrange multiplier [/ using (34).

Repeat: Update the time index, i.e. 7 «— n + 1. Go to step 2.




Post Decision State Learning

% States definition
o State at time-slot 7: st = (d!, h', d)
e PDS at time-slot #: 5% = (&', h'*!, d)
o State at time-slot 7 + 1: 5r+l (d”rl WL gt

s Costumer i have information about its consumptions and its cost
=ttt 1y gt t
pr(sils;, a;) = pald;"|d;, a;)
LN o (gt ot t t t( t
(sila;) = i (d;. ef) = ui(d — €}) + d'(¢})

s State transition probability

Ds, (S§+1|S§, aﬁ) — Z i (5i s}, Clﬁ)Pu(SEH‘Ef)

5; €S




«»» State value function of customer I's state and PDS

VG =y ) pulsilsi a)V¥(s))
SQESI'

Vi) = min | ¢(si,a) + ) pe(Silsi ai)) V6D
A 5;€8;

% PDS optimal policy

7 (si) = min |:¢')(Si, a) + Y prGilsi.anV*G5) |-

a,‘EA;‘ E'ES‘
i i




PDS Learning Algorithm

Algorithm 2 PDS Learning Algorithm

: Initialize V arbitrarily, = 0

2: for each time-slot ¢

3:  Choose a' according to policy 7 (s!)

4:  Take action d', observe cost ¢!(d;, et), PDS 5.,
and next state 5?“

5: V(SE_H) = min [qb(s?“,a,:)—l—

ﬂ'jEAf
> s PrGilsi L ap V)]
6 VG «— (1 —eVEh) +eyVisith
7: end
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Numerical Results

3

2.5+

5 10 15 20
Time-slot
Load profile

% H=24

s Total of 20 customers




Parameters

Backlog rate Aj = A {0,0.1,0.2, 0.3, 0.4, 0.5}

(. _ _tt
d'(e;) = x'e; 02,04, ---, 1.0}




Performance Comparison With Myopic Optimization

< Set cost coefficient p=0.5
< Set Q-learning discount factor y=0

1. The average system costs increase as 4 increases in both pricing algorithms.
2. The performance gap between two algorithms increases as A increases

35

— Reinforcement learning
| - - -Myopic optimization

)
o

-+ n [\S]
o1 o o
T T T

Average system cost ($)
>

&)

0 0.2 0.4 0.6 0.8 1
A

Performance comparison of our reinforcement learning algorithm
and the myopic optimization algorithm varying A




Impact of Weighting Factor p

% SetAi=1
2) As p increases, the cost of Customers decreases, and the cost of the service
provider increases

3) As p increases, the service provider reduces the average retail price.

» 100 . . . . 50 ©
> — Average cost of customers 3
£ a
2 3
3 50 S
S 3
2 05
© 0 ' ' ' ' 3

0 0.2 0.4 0.6 0.8 1 O

p (weight for customers)

1 T T T T
-
205 :
&

— Average retaiil price
00 0.2 0.4 0.6 0.8 1
p
Impact of the weighting factor p on the performances of customers and service provider.
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Vlrtual Experience Update

—With wr‘[ual experience
- - -Without virtual experience

2
O 30f -
(&
E /\/\-\‘/\/WV/\/’\/
Q&
w
=
w
S
© 25+
@
-
<L
20 1 1
0 5 10 15

Time—slot x 10"

» SetA=1andp=0.5
< They Claimed :

We can observe that our algorithm with virtual experience provides a significantly
improved learning speed compared to that of the conventional Q-learning algorithm.!!!
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Customers With Learning Capability

30
&
E 20 i
8
e 10t
b
2 0 —— Myopic customers
w - ——Customers with learning capability
_1 0 1 I I I
0 0.2 0.4 0.6 0.8 1
p (weight for customers)
& 80 . . . .
o \ —— Myopic customers
E 60 - - -Customers with learning capability H
O
W
3
O
©
g o
© 0.2 0.4 0.6 0.8 1
0:0 Set A =1 p (weight for customers)

¢ lower average system cost
“* lower customers’ average

¢ Acceptable performance for p =0




PDS Learning VS. Conventional Q Learning

dsetA=1and p=0.5

40
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Conclusion

¢ This paper formulate an MDP problem, where the service
provider observes the system states transmission and decide
the retail electricity price to minimize the total expected cost
of customer disutility.

s Each customer can decide its energy consumption based on
the observed retail price aiming at minimizing its expected
cost.

**The Q learning algorithm can be used to solve Bellman
optimality equation when we don’t have a prior knowledge
about system transition.

“*The type of customers and their disutility function can
change optimization results. Industrial loads may have a

high dissatisfying utility.

$3:N:




Conclusion

< System with high A has high system cost; High value for A
indicate that customers are shifting their extra loads to the next
hour. Since they shift their loads every time, they have almost the
same profile after demand response.

< The effect of virtual experience depends on the number of
different cost function in the set C.

< Q-learning with the big A show big system cost. However, when
loads have the learning ability, the big A will has less impact on
the system cost.

» Three presented methods Including Energy Consumption Based
Approximate State, Virtual Experience, and Post-Decision
Learning had an effective response on accelerate the Q-learning
algorithm.




< Customer learning capability, significantly reduced system and
customers’ cost.




Future Work

< Studying the strategic behaviors of the rational agents and
its impact on the system performance.

< Considering the impact of various type of energy in
dynamic pricing.
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