
Strategies for simulating pedestrian 

navigation with multiple 

reinforcement learning agents 

Francisco Martinez-Gil, Miguel Lozano,

Fernando Fernández 

9/29/2016 1

Presented by: Daniel Geschwender



Overview

• Use MAS techniques to learn realistic 

pedestrian behavior

– Control velocity 

– Avoid obstacles/other agents

– Reach goal location

• Two proposed algorithms combining 

vector quantization and Q-learning

• Evaluated in room and corridor scenarios

9/29/2016 2



Outline

Day 1:

• Introduction and 

related work

• Modeling pedestrian 

navigation

• State space 

generalization

Day 2:

• Algorithms

• Experimental set-up

• Learning results

• Simulation results

• Conclusion

9/29/2016 3



Outline

Day 1:

• Introduction and 

related work

• Modeling pedestrian 

navigation

• State space 

generalization

Day 2:

• Algorithms

• Experimental set-up

• Learning results

• Simulation results

• Conclusion

9/29/2016 4



Introduction and related work

• Application of pedestrian simulation:

– Architecture

– Civil engineering

– Game development

9/29/2016 5



Introduction and related work

• Two perspectives of pedestrian dynamics:

– Microscopic: individual features, local 

perceptions, local interactions

– Macroscopic: global functions, flows, 

densities

• Recent focus on microscopic perspective:

– Collective effects are direct consequence of 

microscopic dynamics

– Allows high-level decision-making without 

major changes to behavior model

9/29/2016 6



Introduction and related work

• Benefits of a Multi-Agent Reinforcement 

Learning (MARL) approach:

– Low computational cost associated to the 

agents’ behavior

– The richness of the group behavior

– Model-free design of the problem

– Emergent collective behaviors

9/29/2016 7



Introduction and related work

• Previous non-RL approaches:

– Cellular automata models

– Force-based models

– Rule-based models

– Queueing models

– Psychological and cognitive models

– Crowd simulation

– Models calibrated from pedestrian video data

9/29/2016 8



Introduction and related work

• Previous RL approaches:

– Single agent navigation using learning

– Multi-agent navigation with learning for a 

centralized control

– Basic microscopic learning framework 

developed for small number of agents

9/29/2016 9



Introduction and related work

• Contributions of the paper:

– Analysis of knowledge transfer approaches

– Extensive performance analysis

– New learning and simulation scenario

– New micro and macro simulation metrics

– Comparison to Helbing model

9/29/2016 10



Modeling pedestrian navigation

• Markov decision process (MDP)

– State space 

– Action space

– Probabilistic transition function

– Reward function

9/29/2016 11



Modeling pedestrian navigation

• Find a policy to maximize discounted 

expected reward 

• Q-learning to estimate the expected 

rewards of each state-action pair

• Q table is updated using 

9/29/2016 12



Modeling pedestrian navigation

• Natural extension to multi-agent systems 

are Markov games

• Actions become joint actions of all agents

• All agents receive their own rewards

• Difficult to use in practice due to explosion 

of action space

• Instead, each agent learns independently

9/29/2016 13



Modeling pedestrian navigation

• Scenario 1:

– Square room

– Filled with multiple 

agents

– Single exit

– Exit becomes a 

bottleneck

9/29/2016 14



Modeling pedestrian navigation

• Scenario 2:

– Narrow corridor

– Two groups of 

agents at opposing 

ends

– Must cross to 

opposite to reach 

the goal

– Must form lanes to 

avoid collision 

9/29/2016 15



Modeling pedestrian navigation

• Environment is two dimensional 

continuous plane

• Room: 15m x 15m with 0.8m wide door

• Corridor: 15m x 2m 

• Pedestrians:

– Bounding circumference with radius 0.3m

– Maximum speed of 1.8m/s

9/29/2016 16



Modeling pedestrian navigation

• State Space

– Deictic representation: local or relative to 

agent (e.g. nearest neighbors)

– Global state is too extensive to track

– Always track state of two nearest walls

– Vary the number of nearest neighbors to 

track depending on scenario

9/29/2016 17



Modeling pedestrian navigation

• State Space

9/29/2016 18



Modeling pedestrian navigation

• Action Space

– Modify the agent’s velocity vector

– Increase/reduce speed

– Adjust the orientation 

clockwise/counterclockwise

9/29/2016 19



Modeling pedestrian navigation

• Action Space

– Minimum speed: 0 m/s

– Maximum speed: 1.8 m/s

– Some overlap in velocity actions due to limits

9/29/2016 20



Modeling pedestrian navigation

• Rewards

9/29/2016 21



Modeling pedestrian navigation

• Kinematic model

– Discretized time steps of configurable size

– At each step:

• Provide state for each agent

• Accept action from each agent

• Simulate movements using constant velocities 

unless there is a crash

9/29/2016 22



Modeling pedestrian navigation

9/29/2016 23



State space generalization

• The state space is too large as-is

• Vector Quantization (VQ) can be used to 

discretize the state space to any desired 

resolution

• Map states from k-dimensional Euclidean 

space to a finite set of states

– Sensorized state:

– Prototypes states:

9/29/2016 24



State space generalization

• Generalized Lloyd 

Algorithm (GLA)

– Used to generate 

the prototype 

states

– Operates on 

Voronoi regions of 

the state space

9/29/2016 25

By Balu Ertl - Own work, CC BY-SA 4.0, 

https://commons.wikimedia.org/w/index.php?curid=38534275



State space generalization

• Generalized Lloyd Algorithm (GLA)

– Input: a set of points in the space

– Output: a set of points defining a Centroidal 

Voronoi Tessellation

9/29/2016 26

By RuppertsAlgorithm - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=9867802



State space generalization

• Generalized Lloyd Algorithm (GLA)

– Iteratively perturbs points towards the 

centroids of the Voronoi regions

9/29/2016 27

By Dominik Moritz - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=26443219

1st 3rd2nd 15th



State space generalization

• Vector quantization for Q-learning (VQQL)

9/29/2016 28



State space generalization

• Vector quantization for Q-learning (VQQL)

– Requires two elements

• An input dataset, T, collected to represent the 

whole state space

• A desired resolution (number of prototype points)

– Random walks performed to obtain initial 

sensorized data

– Resolution tested in 6 experiments using:

9/29/2016 29



State space generalization

9/29/2016 30



State space generalization

9/29/2016 31

• Vector quantization for Q-learning (VQQL)

– Doubling number of prototypes also doubles 

the computation time for GLA

– Best trade-off between performance and 

computational cost:

• Room scenario: 4096 prototypes

• Corridor scenario: 8192 prototypes



Outline

Day 1:

• Introduction and 

related work

• Modeling pedestrian 

navigation

• State space 

generalization

Day 2:

• Algorithms

• Experimental set-up

• Learning results

• Simulation results

• Conclusion

9/29/2016 32



Outline

Day 1:

• Introduction and 

related work

• Modeling pedestrian 

navigation

• State space 

generalization

Day 2:

• Algorithms

• Experimental set-up

• Learning results

• Simulation results

• Conclusion

9/29/2016 33



Algorithms

• Three challenges:

1. How many agents should learn from scratch 

and should they be introduced gradually?

2. How to handle different state spaces with 

different numbers of agents present?

3. How to generate a representative dataset 

for use in generating prototype states?

• Propose two iterative learning schemes to 

address these challenges

9/29/2016 34



Algorithms

• Iterative vector quantization for Q-learning 

(ITVQQL)

• Incremental vector quantization for Q-

learning (INVQQL)

• Both

– perform iterations of VQQL

– conduct a policy and learning transfer

• Differ in how they handle number and 

placement of agents

9/29/2016 35



Algorithms

9/29/2016 36



Algorithms

9/29/2016 37



Algorithms

• Policy Transfer

– Uses a policy learned in previous iteration to 

generate the initial dataset of current iteration

– Dataset become progressively more 

reflective of actual use

– States of differing dimensionality handled by 

projection

9/29/2016 38



Algorithms

• Prototype Transfer

– INVQQL prototypes have higher 

dimensionality through the first 8 iteration

– Lower dimensional prototypes are preserved 

and passed on through each iteration

9/29/2016 39



Algorithms

• Value Function Transfer

– Initialize the Q-table with values learned in 

previous iterations

– Prototypes change between iterations so 

map to the nearest prototype from prior 

iteration

– Only transfer between tables of the same 

dimension

9/29/2016 40



Algorithms

• Performance Metrics

– Jumpstart: improvement in initial performance 

of an agent

– Asymptotic performance: improvement in the 

final performance of an agent

– Time to threshold: learning steps needed to 

reach a pre-specified performance threshold

9/29/2016 41



Experimental set-up

• Perform four categories of experiments:

– Room scenario, corridor scenario

– Evaluating learning performance, evaluating 

final performance

• Comparing several algorithm variants:

– ITVQQL

– ITVQQL w/ transfer

– INVQQL

– INVQQL w/ transfer

– VQQL
9/29/2016 42



Experimental set-up

• Experiments conducted through a series 

of ‘episodes’

– 1 episode = 150 actions

(or all agents reach goal)

– Environment resets for each episode

– Learning is preserved across episodes

• Learning algorithms use multiple iterations

– 1 iteration ≈ thousands of episodes

– Learning resets across iterations

(but may be transferred)

9/29/2016 43



Learning results – room

• Settings for learning in room scenario:

9/29/2016 44



Learning results – room

9/29/2016 45



Learning results – room

• Performance during learning:

9/29/2016 46



Learning results – room

• Effect of knowledge transfer:

9/29/2016 47



Learning results – corridor

• Settings for learning in corridor scenario:

9/29/2016 48



Learning results – corridor

• Policy Reuse to provide bias (advice)

– π0 always drives agent to the opposite end of 

the corridor

9/29/2016 49



Learning results – corridor

9/29/2016 50

• Performance during learning:



Simulation results

9/29/2016 51

• Trained performance is evaluated in three 

categories:

1. Local interactions: velocity vs. collision dist

2. Macro-dynamics: fundamental diagram and 

density maps

3. Performance: path length, # of failures

• Each experiment is conducted over 100 

episodes of 700 decisions each



Simulation results - room

9/29/2016 52

• Each experiment is conducted over 100 

episodes of 700 decisions each

• Scalability is addressed by using 18, 36, 

54, 72, 90 agents



Simulation results - room

9/29/2016 53

• Local interactions:
18 agents 90 agents

IN
V

Q
Q

L
IT

V
Q

Q
L



Simulation results - room

9/29/2016 54

• Local interactions:
18 agents 90 agents

R
A

N
D

O
M

V
Q

Q
L



Simulation results - room

9/29/2016 55

• Local interactions:



Simulation results - room

9/29/2016 56

• Macro-dynamics:
IN

V
Q

Q
L

IT
V

Q
Q

L



Simulation results - room

9/29/2016 57

• Macro-dynamics:
H

e
lb

in
g

V
Q

Q
L



Simulation results - room

9/29/2016 58

• Performance:



Simulation results - room

9/29/2016 59

• Performance:



Simulation results - room

9/29/2016 60

https://www.uv.es/agentes/RL/itvqql.htm

https://www.uv.es/agentes/RL/invqql.htm

https://www.uv.es/agentes/RL/itvqql.htm
https://www.uv.es/agentes/RL/invqql.htm


Simulation results - corridor

• Less detailed results than the room 

scenario (only density maps and # of 

successes)

• Runs 100 episodes of 80 decisions each

• Only counts as a success if all agents 

cross the hallway

9/29/2016 61



Simulation results - corridor

9/29/2016 62

• Macro-dynamics:



Simulation results - corridor

9/29/2016 63

• Macro-dynamics:



Simulation results - corridor

9/29/2016 64

• Macro-dynamics:



Simulation results - corridor

9/29/2016 65

• Performance:



Simulation results - corridor

9/29/2016 66

https://www.uv.es/agentes/RL/crossingcorridor_iterative.htm

https://www.uv.es/agentes/RL/crossingcorridor_iterative.htm


Simulation results - other

9/29/2016 67

https://www.uv.es/agentes/RL/shortvsquick.htm

https://www.uv.es/agentes/RL/crossing_sarsa.htm

https://www.uv.es/agentes/RL/maze.htm

https://www.uv.es/agentes/RL/shortvsquick.htm
https://www.uv.es/agentes/RL/crossing_sarsa.htm
https://www.uv.es/agentes/RL/maze.htm


Conclusion

• MARL provides several advantages for 

pedestrian simulation:
1. Independent learning with unique behaviors

2. Offline learning and low computation execution

3. Avoids hand-coded domain knowledge

4. Allows for incorporating external knowledge through 

knowledge transfer techniques

9/29/2016 68



Conclusion

• Successfully addressed goals:
– Demonstrated that VQQL, ITVQQL, and INVQQL are 

convergent in two pedestrian scenarios

– Learned basic rules of pedestrian dynamics 

(confirmed from micro and macro perspective)

– Learned behaviors scale robustly in the first scenario

– Similarity to Helbing model supports behavior 

plausibility

9/29/2016 69



Conclusion

• Future work:
– Complex environments

– More realistic physics interactions (friction)

– Increased detail in the agent physical representation

– Additional state space generalization methods (tile 

coding)

9/29/2016 70


