Strategies for simulating pedestrian
navigation with multiple
reinforcement learning agents

Francisco Martinez-Gil, Miguel Lozano,
Fernando Fernandez

Presented by: Daniel Geschwender

9/29/2016

Overview

« Use MAS techniques to learn realistic
pedestrian behavior

— Control velocity
— Avoid obstacles/other agents
— Reach goal location

* Two proposed algorithms combining
vector quantization and Q-learning

 Evaluated in room and corridor scenarios

9/29/2016

Outline

Day 1: Day 2:
* |ntroduction and « Algorithms

related work Experimental set-up
* Modeling pedestrian . | earning results

navigation Simulation results

State Space Conclusion
generalization

9/29/2016

Outline

Day 1:
* |Introduction and
related work

* Modeling pedestrian
navigation

« State space
generalization

9/29/2016

Introduction and related work

» Application of pedestrian simulation:
— Architecture
— Civil engineering
— Game development

9/29/2016

Introduction and related work

» Two perspectives of pedestrian dynamics:

— Microscopic: individual features, local
perceptions, local interactions

— Macroscopic: global functions, flows,
densities

» Recent focus on microscopic perspective:

— Collective effects are direct consequence of
microscopic dynamics

— Allows high-level decision-making without
major changes to behavior model

9/29/2016

Introduction and related work

+ Benefits of a Multi-Agent Reinforcement
Learning (MARL) approach:

— Low computational cost associated to the
agents’ behavior

— The richness of the group behavior
— Model-free design of the problem
— Emergent collective behaviors

9/29/2016

Introduction and related work

* Previous non-RL approaches:
— Cellular automata models
— Force-based models
— Rule-based models
— Queueing models
— Psychological and cognitive models
— Crowd simulation
— Models calibrated from pedestrian video data

9/29/2016

Introduction and related work

* Previous RL approaches:
— Single agent navigation using learning

— Multi-agent navigation with learning for a
centralized control

— Basic microscopic learning framework
developed for small number of agents

9/29/2016

Introduction and related work

» Contributions of the paper:
— Analysis of knowledge transfer approaches
— Extensive performance analysis
— New learning and simulation scenario
— New micro and macro simulation metrics
— Comparison to Helbing model

9/29/2016

10

Modeling pedestrian navigation

» Markov decision process (MDP)
— State space

S

— Action space
A
— Probabilistic transition function
P:SxAxS—]0,1]
— Reward function

R:SxA—=R

9/29/2016

11

Modeling pedestrian navigation

* Find a policy to maximize discounted
expected reward V(s) = E{> 2, y'r:}

* Q-learning to estimate the expected
rewards of each state-action pair

- Q table is updated using

QCst,ar) = QCst, ar) +alrp1 +y mélX{Q(s,_H, a)} — Q(s¢, ar)]

9/29/2016 12

Modeling pedestrian navigation

* Natural extension to multi-agent systems
are Markov games

» Actions become joint actions of all agents
- All agents receive their own rewards

* Difficult to use in practice due to explosion

of action space
* Instead, each agent learns independently

9/29/2016

13

Modeling pedestrian navigation

* Scenario 1:
— Square room

— Filled with multiple
agents

— Single exit
— Exit becomes a
bottleneck

9/29/2016

14

Modeling pedestrian navigation

* Scenario 2:
— Narrow corridor

— Two groups of
agents at opposing
ends

— Must cross to
opposite to reach
the goal

— Must form lanes to
avoid collision

9/29/2016

15

Modeling pedestrian navigation

 Environment is two dimensional
continuous plane

* Room: 15m x 15m with 0.8m wide door
e Corridor: 15m x 2m

» Pedestrians:
— Bounding circumference with radius 0.3m
— Maximum speed of 1.8m/s

9/29/2016 16

Modeling pedestrian navigation

« State Space

— Deictic representation: local or relative to
agent (e.g. nearest neighbors)

— Global state is too extensive to track
— Always track state of two nearest walls

— Vary the number of nearest neighbors to
track depending on scenario

9/29/2016 17

Modeling pedestrian navigation

« State Space

Sag
Av
Dgoal
Srel;

Module of the velocity of the agent.

Angle of the velocity vector relative to the reference line.

Distance to the goal.

Relative scalar velocity of the ith nearest neighbor.

Distance to the ith nearest neighbor.

Angle of the position of the ith nearest neighbor relative to the reference line.
Label to identify the group that the neighbor belongs to.

Distance to the jth nearest static object (walls).

Angle of the position of the jth nearest static object relative to the reference line.

The reference line joins the agent’s position with its goal position
4 This feature is used in the crossing experiment only

9/29/2016

18

Modeling pedestrian navigation

* Action Space
— Modify the agent’s velocity vector
— Increase/reduce speed

{_17_%7_i7_%7+07+%7+i7 | %7 Il} 09%

— Adjust the orientation
clockwise/counterclockwise

{_17 _%7 _ia _%7+07+%7+i7+%7+1}) 450

9/29/2016 19

Modeling pedestrian navigation

* Action Space
— Minimum speed: 0 m/s
— Maximum speed: 1.8 m/s
— Some overlap in velocity actions due to limits

0 V/16 V/8 via Vi2 v

Action O
] Actionl

1 Action 2
/0 Action 3

(8] vi2 IV 7V 15V/16

I I I

I | | | | |
Action 4

ActHon S
Action 6)

Action 7 3

9/29/2016 20

Modeling pedestrian navigation
- Rewards

First scenario (agents in a room)

Crash against other agent —0.1
Crash against a wall —2.0
Reach the goal +100.0
Default 0.0
Second scenario (crossing)

Reach the goal +100.0
Default 0.0

9/29/2016

21

Modeling pedestrian navigation

» Kinematic model
— Discretized time steps of configurable size

— At each step:
 Provide state for each agent
* Accept action from each agent

- Simulate movements using constant velocities
unless there is a crash

9/29/2016

22

Modeling pedestrian navigation

ENVIRONMENT

3

Leaming Algorithm

Genoralization module

ODE = Slituation Awareness & — ':'
Phﬁii s Module Reward Function Renarcs Communication
1__: p Reaw Sersonzalion Module]
3 " l i
£ - . Actions
- | -
== = ‘h‘:’
Action
Reward+
AGENT Sensonz.
Action - B
| i
et LA bl (3arer Slate + Reward| Fealure extraciion
Valuc Function == | module
48 - . = | Communication

Maodule

9/29/2016

23

State space generalization

* The state space is too large as-is

» Vector Quantization (VQ) can be used to
discretize the state space to any desired
resolution

» Map states from k-dimensional Euclidean
space to a finite set of states
_ Sensorized state: 1 € RF”
— Prototypes states: (

Vo(x) = argminycc{dist(x, y)}

9/29/2016 24

State space generalization

* Generalized Lloyd
Algorithm (GLA)

— Used to generate
the prototype
states

— Operates on
Voronoi regions of
the state space

-
By Balu Ertl - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=38534275

9/29/2016 25

State space generalization

* Generalized Lloyd Algorithm (GLA)

— Input: a set of points in the space

— Qutput: a set of points defining a Centroidal
Voronoi Tessellation

By RuppertsAlgorithm - Own work, CCO, https://commons.wikimedia.org/w/index.php?curid=9867802

9/29/2016 26

State space generalization

* Generalized Lloyd Algorithm (GLA)

— lteratively perturbs points towards the
centroids of the Voronoi regions

1st 2nd 3rd 15th

By Dominik Moritz - Own work, CCO, https://commons.wikimedia.org/w/index.php?curid=26443219

9/29/2016 27

State space generalization

 Vector quantization for Q-learning (VQQL)

Single-agent VQQL algorithm

1.

2.

Generate the set T of samples of the state space S interacting with the environment using an
exploratory policy.
Discretize the state space

(a) Use GL A to obtain a state space discretization C € § from the sample set 7'.
(b) Let VQ : § — C be the function that, given any state in S, returns the discretized value in C.
Learn the Q-table
While the final condition is not reached
1. Get an experience tuple < s1, a, 59, r > by interacting with the environment.

1. Map the states of the experience tuple using V Q. Each adquired tuple of experience
< s1,a,s8,r >1ismapped to < VQ(s1),a, VQ(sp),r >
iii. Apply the Q-learning update function defined in Eq. 1 to learn a tabular value function Q:
C x A — N, using the mapped experience tuple.
Return Q and V Q

9/29/2016 28

State space generalization

 Vector quantization for Q-learning (VQQL)

— Requires two elements

* An input dataset, T, collected to represent the
whole state space

A desired resolution (number of prototype points)

— Random walks performed to obtain initial
sensorized data

— Resolution tested in 6 experiments using:
k = {512, 1024, 2048, 4096, 8192, 16384}

9/29/2016 29

State space generalization

0.8 | T T T

0.7

0.6

0.5

0.4

0.3

Performance ([x100] %)

0.2

0.1

0 1 | 1 1
0.0x10° 1.0x10% 2.0x10% 3.0x10% 4.0x10% 5.0x10%

Trials

512 prototypes 4096 prototypes
1024 prototypes 8192 prototypes
2048 prototypes 16384 prototypes

Fig. 3 Learning curves for the first scenario using the VQQL algorithm and vector quantizers with different
numbers of prototypes. The curves are the means of 18 learning processes (18 agents)

9/29/2016 30

State space generalization

 Vector quantization for Q-learning (VQQL)

— Doubling number of prototypes also doubles
the computation time for GLA

— Best trade-off between performance and
computational cost:
* Room scenario: 4096 prototypes
 Corridor scenario: 8192 prototypes

9/29/2016 31

Outline

Day 1:
* |Introduction and
related work

* Modeling pedestrian
navigation

« State space
generalization

9/29/2016

Day 2:

 Algorithms
Experimental set-up
* Learning results
Simulation results
Conclusion

32

Outline

9/29/2016

Day 2:

 Algorithms
Experimental set-up
Learning results
Simulation results
Conclusion

33

Algorithms

* Three challenges:

1. How many agents should learn from scratch
and should they be introduced gradually?

2. How to handle different state spaces with
different numbers of agents present?

3. How to generate a representative dataset
for use in generating prototype states?

* Propose two iterative learning schemes to
address these challenges

9/29/2016 34

Algorithms

* |terative vector quantization for Q-learning
(ITVQAQL)

* Incremental vector quantization for Q-
learning (INVQQL)

* Both

— perform iterations of VQQL
— conduct a policy and learning transfer

* Differ in how they handle number and
placement of agents

9/29/2016 35

Algorithms

Multi-agent ITVQQL/INVQQL schemas

Entry: the number of iterations N
Return: the sets Q) and Vy (the value table of Q-learning and the vector quantizer respectively).
. i<«1
2. Set p to the initial number of agents in the environment
3. Foreach agent, k (1 <k < p) set:
- its initial vector quantizer, V(';‘ (s) =0
- its initial policy Jr(])‘ = random
4. Repeat:
(a) Decide whether or not to include new agents. Set p consequently.
(b) Foreach agent, k (1 < k < p) do:
i. Collect a dataset Tik for agent k using the policies Jl'l-k_l with Vik_1

.. . k . k . .
ii. Build V" using 7;" for agent k following a transfer learning strategy

(c) Learn Q{.‘ Vk,1 < k < p and hence the policies Jl'ik using Q-Learning (with the option of using
transfer of value functions).
(di<«i+1

Untili = N

5. Return Qp and Vy

The bold statements mean different options in each schema as explained in the text

9/29/2016 36

Algorithms

Feature ITVQQL INVQQL
Number of prototypes Fixed Variable
Number of features per prototype Fixed Variable
Number of agents per iteration Fixed Variable
Inter-iteration policy transfer Yes Yes
Inter-iteration prototype transfer No Yes
Inter-iteration value function transfer Yes Yes

9/29/2016

37

Algorithms

 Policy Transfer

— Uses a policy learned in previous iteration to
generate the initial dataset of current iteration

— Dataset become progressively more
reflective of actual use

— States of differing dimensionality handled by
projection

9/29/2016 38

Algorithms

* Prototype Transfer

— INVQQL prototypes have higher
dimensionality through the first 8 iteration

— Lower dimensional prototypes are preserved
and passed on through each iteration

9/29/2016 39

Algorithms

* Value Function Transfer

— Initialize the Q-table with values learned in
previous iterations

— Prototypes change between iterations so
map to the nearest prototype from prior
iteration

— Only transfer between tables of the same
dimension

9/29/2016 40

Algorithms

 Performance Metrics

— Jumpstart: improvement in initial performance
of an agent

— Asymptotic performance: improvement in the
final performance of an agent

— Time to threshold: learning steps needed to
reach a pre-specified performance threshold

9/29/2016 41

Experimental set-up

» Perform four categories of experiments:
— Room scenario, corridor scenario
— Evaluating learning performance, evaluating

final performance

» Comparing several algorithm variants:

TVQQL
TVQQL w/ transfer
NVQQL
NVQQL w/ transfer

B V€ [

9/29/2016

42

Experimental set-up

* Experiments conducted through a series
of ‘episodes’
— 1 episode = 150 actions
(or all agents reach goal)
— Environment resets for each episode

— Learning is preserved across episodes

» Learning algorithms use multiple iterations
— 1 iteration = thousands of episodes

— Learning resets across iterations
(but may be transferred)

9/29/2016 43

Learning results — room

+ Settings for learning in room scenario:

Key ITVQQL INVQQL VQQL
Episodes 50000 50000 900000
Iterations 18 18 1
Prototypes 4096 From 4096 to 32768 4096
Features per prototype 28 From 7 to 28 28
Agents per iteration 18 From 1 to 18 18
Inter-iteration 0 4096 0

prototype transfer

9/29/2016

44

Learning results — room

Standardized distance to the goal

2.5

1

1.5 f a0

0.5 s

TR T A

++b¢%
A

Standardized speed

Standardized distance to the goal

4
3.5
3
2.5
2
1.5
1
0.5
0

T

0 0.5 1
Standardized speed

Fig.4 Visualization of the prototypes calculated for the first iteration (left) and the last iteration (right) of the
ITVQQL schema in the room scenario. The speed (in the x-axis) and the distance of the agent to the goal (in
the y-axis) features are displayed. The prototypes of the left graphic are calculated using data collected from
a random policy. The prototypes of the right graphic are calculated using data collected with a learned policy
correspondent to the penultimate iteration

9/29/2016

45

Performance in simulation (%)

Learning results — room

» Performance during learning:

— 100 —r————F——F————————————

95 95 X

90 90 |

85 85 1

0 |

759 75 ‘

70 | 70 F L -

65 - o : 1 e | .

60 . 60 -

55 = 55 -

BO L Lo B L
123 4567 891011121314 151617 18 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18

Number of Iteration Number of lteration

ITVQQL with transfer vQaL ———
INVQQL with transfer

9/29/2016 46

ITvQaL

INVQQL

vQaL

Performance ([x100] %)

Learning results — room

- Effect of knowledge transfer:

1 I 1 I I 1

0.9F . 0.9F
0.8} s 0.8}
0.7 ® 07
(@]
0.6} © 06}
>,
0.5} > 05F
2
4 c 0.4¢+
° £
0.3F S 03}
(]
0.2+ o ool
0.1 0.1k
0 1 1 1 1 O 1 1 1 1
0.0x10° 1.0x10* 2.0x10* 3.0x10* 4.0x10* 5.0x10* 0.0x10° 1.0x10* 2.0x10* 3.0x10* 4.0x10* 5.0x10*
Trials Trials
INVQQL —— INVQQL with transfer ITVQQL — ITVQAQL with transfer

9/29/2016 47

Learning results — corridor

» Settings for learning in corridor scenario:

Key ITVQQL INVQQL VQQL

Episodes 50,000 50,000 400, 000
Iterations 8 8 1
Prototypes 8, 192 From 8,192 to 40,960 8, 192
Features per prototype 24 From 8 to 24 24
Agents per iteration 8 From 1 to 8 8
Inter-iteration 8182 0

prototype
transfer

9/29/2016

48

Learning results — corridor

* Policy Reuse to provide bias (advice)
— T, always drives agent to the opposite end of

the corridor 1
0.8
w
2 06}
%
4 choose the mp policy S o
(I —)e choose an aleatory action a

(1 —v¥)(1 —€) choose the greedy policy 00 .

0 ""-‘— | 1 1 1
0 10000 20000 30000 40000 50000
Trials

9/29/2016 49

Learning results — corridor

» Performance during learning:

9/29/2016

Performance in simulation (%)

100

95
90 |
85
80 |
75
70}

65,

60+

55

50"
1

2 3 4 5 6 7
Number of lteration

INVQQL with transfer vQQL ——
ITVQQL with transfer

50

Simulation results

* Trained performance is evaluated in three
categories:
1. Local interactions: velocity vs. collision dist
2. Macro-dynamics: fundamental diagram and

density maps

3. Performance: path length, # of failures

» Each experiment is conducted over 100

episodes of 700 decisions each

9/29/2016 51

Simulation results - room

» Each experiment is conducted over 100
episodes of 700 decisions each

« Scalability is addressed by using 18, 36,
94, 72, 90 agents

9/29/2016

52

Simulation results - room

* Local Interactions:

9/29/2016

ITVQQL

INVQQL

m/s (speed) or m (dist.)

m/s (speed) or m (dist.)

18 agents

T T

L L L L L

5 10 15 20 256 30 35 40 45

Number of decition
speed —— minimum distance

10 20 30 40 50 60 70
Number of decition
minimum distance

speed

m/s (speed) or m (dist.)

m/s (speed) or m (dist.)

2.5

0.5

90 agents

20 40 60 80 100 120
Number of decition

minimum distance

speed

s

5 10 15 20 25 30 35 40 45
Number of decition
speed ——— minimum distance

53

Simulation results - room

* Local Interactions:

18 agents 90 agents

25 2
~ 2r
] =
2 3
- Esp E
g 2 5
o i 3
2 1 o o8F
> o &
R w 06f
E o5t E g4l
0 . .)) L 0 . . .)) . .
0 5 10 15 20 25 30 0 5 10 15 20 25 30 35 40
Number of decition Number of decition
speed minimum distance speed minimum distance
35 4
3l 351
@ = 3l
= 35 25 z
O E g 251 1
o 5 2y 5 :
o — 2} 4
2 - (X ol % [¥
% g’_ 15 8 B A p! ‘ o
X . g 1% 1T ot |
@ 1+ @ i 4 # i1
£ = 1 [LR BT AR |2
E SR i
0.5 05 01 [1LEE (AP L
I il]!
0 VI P . ol Al Ry
0 10 20 30 40 50 60 70 0 50 100 150 200 250 300

Number of decition Number of decition

speed minimum distance

minimum distance ———

9/29/2016

Simulation results - room

* Local Interactions:

Table 10 Percentage of episodes in which the selected speed and distance to the nearest neighbor of an agent
have a correlation coefficient greater than +0.5

Ag. IT (%) IN (%) TF_IT (%) TF_IN (%) VQQL (%) RANDOM (%)
18 773 37.1 79 46.5 45.7 1.72
90 48.8 12.4 48.6 12.1 41.8 1.1

The data comes from the simulation of 100 episodes with 18 agents each (a total of 1800 episodes) in the first
row and with 90 agents (a total of 9000 episodes) in the second row

9/29/2016 55

Simulation results - room

* Macro-dynamics:

ITVQQL

INVQQL

velocity (m/s)

velocity (m/s)

14

12

08

0.6

0.4

02

08

06

0.4

02

. . L . L . L . L
0 02 04 06 08 1 12 14 15 18
density (1/m2)
L . L . L . L . .
0 02 04 06 08 1 12 14 16 18

density (1/m2)

¥ (counts)

My QL with 90 agams

Y (counts)

INVQQL with 90 agens

9/29/2016

56

Simulation results - room

* Macro-dynamics:

VQQL

Helbing

velocity (m/s)

velocity (m/s)

o
o

0.9

0.8

0.7

06

0.5

0.4

02 04 €6 CB8 1 1.2 14 16 1.8

density (1/m2)

0.5 1 15
density (1/m2)

VQQL with 90 agents

Y{counts)

35000
30000

=
0 e
2L R o
=TT e
e
...1--4?-.-."-_-‘_4'—
i

Helbing with 90 agents

Y(counts)

30000
25000
20000
15000
10000

5000

35000

30000
25000
20000
15000
10000
5000

9/29/2016

Y

Simulation results - room

 Performance:

Table 11 Averaged lengths and
standar deviation for the paths in
meters

The averages are over 100
episodes and for all the agents

Table 12 Average number and
standar deviation of decisions per
episode

The figures are averaged over 100
episodes and for all the agents

Ag. IT IN TE_IT TF_IN VQQL
18 14 +7 20£21 15+7 18 £ 10 I5£11
36 13£5 18 £15 15+7 18£8 15 £17
54 14+6 18 £13 16 8 19+ 10 15 £ 11
72 I5£6 18 £12 16 £8 19£11 I5£10
90 15+7 18 £ 11 17+9 2011 17+ 10
#Ag. IT IN TE_IT TF_IN VQQL

18 28 £ 56 41 =36 28 £ 56 63 £ 35 27+ 21

36 32 +£41 75 £52 67 £ 53 93 £ 58 43 1+ 60

54 51£55 118 £77 95+74 135+86 52 £60

72 6870 121478 12084 175£112 69 + 62

90 84 +85 144+£95 1454+£96 211131 105135

9/29/2016

58

Simulation results - room

 Performance:

Table 13 Medians and means (in parenthesis) for the agents that do not reach the door (fails) when scaling
up the number of agents

#Ag. IT IN TF_IT TE_IN VQQL P value
18 1b(2.4) 4c(4.2) 0a (1.0) 0a (2.9) 15 (2.8) 0

36 1 ab (6.5) 4c(4.8) 0a (2.8) 3.5 be (6.2) 0 ab (6.8) 4 %1072
54 1 a (6.4) 4b (6.0) 0a (3.6) 4D (6.4) 10 ab (15.7) 7 x 10710
72 1 ab (9.4) 45 (5.6) 1a (3.9) 4b (6.6) 4b(22.1) 4 %1078
90 1 ab (10.3) 4b (6.0) 1a (4.1) 35 (6.5) 18.5 ¢ (25.0) 4x 10710

The means are averaged over 100 episodes (N = 100) and are considered a measure of performance. Median
values separated by different letters for the same number of agents (within a row), are significantly different
(P < 0.05) according to Kruskal-Wallis test

9/29/2016 59

Simulation results - room

https://www.uv.es/agentes/RL/itvqql.htm

https://www.uv.es/agentes/RL/invqqgl.htm

9/29/2016

60

https://www.uv.es/agentes/RL/itvqql.htm
https://www.uv.es/agentes/RL/invqql.htm

Simulation results - corridor

* Less detailed results than the room
scenario (only density maps and # of
successes)

* Runs 100 episodes of 80 decisions each

* Only counts as a success if all agents
cross the hallway

9/29/2016 61

Simulation results - corridor

160
140
120
100
80
60
40
20

Macro-dynamics:

Corridor for TF_IT

Y(counts)

rr 1111711

Y{counts)

T T 1T 1T 1T T 711

Corridor for TF_IT

9/29/2016

62

Simulation results - corridor

* Macro-dynamics:

Y(counts)

200
150
100

50

9/29/2016

Corridor for TF_IN

200
150
100

50

Y{counts)

Corridor for TF_IN

200
150
100

50

63

Simulation results - corridor

* Macro-dynamics:

Corridor for VQQL Corridor for VQQL
Y{counts)

Y (counts) 160

140
120
100
80
60
40
20

L L L L

9/29/2016 64

Simulation results - corridor

 Performance:

Table 14 Mean of the number of episodes that end successfully from a series of 100 episodes

TE_IT TF_IN VQQL P value

8la 52b 63 ¢ 0.0000

A successful episode means that all the agents reach to the correspondent goal. Ten series have been carried out.
The data was analyzed with an ANOVA test. It proved that the means are significantly different (P < 0.05).
The letters classify the different groups according to the Duncan’s multiple range test

9/29/2016 65

Simulation results - corridor

https://www.uv.es/agentes/RL/crossingcorridor_iterative.htm

9/29/2016

66

https://www.uv.es/agentes/RL/crossingcorridor_iterative.htm

Simulation results - other

https://www.uv.es/agentes/RL/shortvsquick.htm

https://www.uv.es/agentes/RL/crossing_sarsa.htm
https://www.uv.es/agentes/RL/maze.htm

9/29/2016

67

https://www.uv.es/agentes/RL/shortvsquick.htm
https://www.uv.es/agentes/RL/crossing_sarsa.htm
https://www.uv.es/agentes/RL/maze.htm

Conclusion

 MARL provides several advantages for
pedestrian simulation:

1.

2
3.
4

9/29/2016

Independent learning with unique behaviors

. Offline learning and low computation execution

Avoids hand-coded domain knowledge

. Allows for incorporating external knowledge through

knowledge transfer techniques

68

Conclusion

» Successfully addressed goals:

— Demonstrated that VQQL, ITVQQL, and INVQQL are
convergent in two pedestrian scenarios

— Learned basic rules of pedestrian dynamics
(confirmed from micro and macro perspective)

— Learned behaviors scale robustly in the first scenario

— Similarity to Helbing model supports behavior
plausibility

9/29/2016 69

Conclusion

* Future work:
— Complex environments
— More realistic physics interactions (friction)
— Increased detail in the agent physical representation

— Additional state space generalization methods (tile
coding)

9/29/2016

70

