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Overview

« Use MAS techniques to learn realistic
pedestrian behavior

— Control velocity
— Avoid obstacles/other agents
— Reach goal location

* Two proposed algorithms combining
vector quantization and Q-learning

 Evaluated in room and corridor scenarios
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Introduction and related work

» Application of pedestrian simulation:
— Architecture
— Civil engineering
— Game development
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Introduction and related work

» Two perspectives of pedestrian dynamics:

— Microscopic: individual features, local
perceptions, local interactions

— Macroscopic: global functions, flows,
densities

» Recent focus on microscopic perspective:

— Collective effects are direct consequence of
microscopic dynamics

— Allows high-level decision-making without
major changes to behavior model
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Introduction and related work

+ Benefits of a Multi-Agent Reinforcement
Learning (MARL) approach:

— Low computational cost associated to the
agents’ behavior

— The richness of the group behavior
— Model-free design of the problem
— Emergent collective behaviors
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Introduction and related work

* Previous non-RL approaches:
— Cellular automata models
— Force-based models
— Rule-based models
— Queueing models
— Psychological and cognitive models
— Crowd simulation
— Models calibrated from pedestrian video data
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Introduction and related work

* Previous RL approaches:
— Single agent navigation using learning

— Multi-agent navigation with learning for a
centralized control

— Basic microscopic learning framework
developed for small number of agents

9/29/2016



Introduction and related work

» Contributions of the paper:
— Analysis of knowledge transfer approaches
— Extensive performance analysis
— New learning and simulation scenario
— New micro and macro simulation metrics
— Comparison to Helbing model

9/29/2016
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Modeling pedestrian navigation

» Markov decision process (MDP)
— State space

S

— Action space
A
— Probabilistic transition function
P:SxAxS—]0,1]
— Reward function

R:SxA—=R
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Modeling pedestrian navigation

* Find a policy to maximize discounted
expected reward V(s) = E{> 2, y'r:}

* Q-learning to estimate the expected
rewards of each state-action pair

- Q table is updated using

QCst,ar) = QCst, ar) +alrp1 +y mélX{Q(s,_H, a)} — Q(s¢, ar)]
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Modeling pedestrian navigation

* Natural extension to multi-agent systems
are Markov games

» Actions become joint actions of all agents
- All agents receive their own rewards

* Difficult to use in practice due to explosion

of action space
* Instead, each agent learns independently

9/29/2016
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Modeling pedestrian navigation

* Scenario 1:
— Square room

— Filled with multiple
agents

— Single exit
— Exit becomes a
bottleneck
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Modeling pedestrian navigation

* Scenario 2:
— Narrow corridor

— Two groups of
agents at opposing
ends

— Must cross to
opposite to reach
the goal

— Must form lanes to
avoid collision

9/29/2016
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Modeling pedestrian navigation

 Environment is two dimensional
continuous plane

* Room: 15m x 15m with 0.8m wide door
e Corridor: 15m x 2m

» Pedestrians:
— Bounding circumference with radius 0.3m
— Maximum speed of 1.8m/s
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Modeling pedestrian navigation

« State Space

— Deictic representation: local or relative to
agent (e.g. nearest neighbors)

— Global state is too extensive to track
— Always track state of two nearest walls

— Vary the number of nearest neighbors to
track depending on scenario
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Modeling pedestrian navigation

« State Space

Sag
Av
Dgoal
Srel;

Module of the velocity of the agent.

Angle of the velocity vector relative to the reference line.

Distance to the goal.

Relative scalar velocity of the ith nearest neighbor.

Distance to the ith nearest neighbor.

Angle of the position of the ith nearest neighbor relative to the reference line.
Label to identify the group that the neighbor belongs to.

Distance to the jth nearest static object (walls).

Angle of the position of the jth nearest static object relative to the reference line.

The reference line joins the agent’s position with its goal position
4 This feature is used in the crossing experiment only

9/29/2016

18



Modeling pedestrian navigation

* Action Space
— Modify the agent’s velocity vector
— Increase/reduce speed

{_17_%7_i7_%7+07+%7+i7 | %7 Il} 09%

— Adjust the orientation
clockwise/counterclockwise

{_17 _%7 _ia _%7+07+%7+i7+%7+1} ) 450
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Modeling pedestrian navigation

* Action Space
— Minimum speed: 0 m/s
— Maximum speed: 1.8 m/s
— Some overlap in velocity actions due to limits

0 V/16 V/8 via Vi2 v

Action O
] Actionl

1 Action 2
/0 Action 3

(8] vi2 IV 7V 15V/16

I I I

I | | | | |
Action 4

ActHon S
Action 6 )

Action 7 3
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Modeling pedestrian navigation
- Rewards

First scenario (agents in a room)

Crash against other agent —0.1
Crash against a wall —2.0
Reach the goal +100.0
Default 0.0
Second scenario (crossing)

Reach the goal +100.0
Default 0.0

9/29/2016

21



Modeling pedestrian navigation

» Kinematic model
— Discretized time steps of configurable size

— At each step:
 Provide state for each agent
* Accept action from each agent

- Simulate movements using constant velocities
unless there is a crash

9/29/2016

22



Modeling pedestrian navigation
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State space generalization

* The state space is too large as-is

» Vector Quantization (VQ) can be used to
discretize the state space to any desired
resolution

» Map states from k-dimensional Euclidean
space to a finite set of states
_ Sensorized state: 1 € RF”
— Prototypes states: (

Vo(x) = argminycc{dist(x, y)}
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State space generalization

* Generalized Lloyd
Algorithm (GLA)

— Used to generate
the prototype
states

— Operates on
Voronoi regions of
the state space

-
By Balu Ertl - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=38534275
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State space generalization

* Generalized Lloyd Algorithm (GLA)

— Input: a set of points in the space

— Qutput: a set of points defining a Centroidal
Voronoi Tessellation

By RuppertsAlgorithm - Own work, CCO, https://commons.wikimedia.org/w/index.php?curid=9867802
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State space generalization

* Generalized Lloyd Algorithm (GLA)

— lteratively perturbs points towards the
centroids of the Voronoi regions

1st 2nd 3rd 15th

By Dominik Moritz - Own work, CCO, https://commons.wikimedia.org/w/index.php?curid=26443219
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State space generalization

 Vector quantization for Q-learning (VQQL)

Single-agent VQQL algorithm

1.

2.

Generate the set T of samples of the state space S interacting with the environment using an
exploratory policy.
Discretize the state space

(a) Use GL A to obtain a state space discretization C € § from the sample set 7'.
(b) Let VQ : § — C be the function that, given any state in S, returns the discretized value in C.
Learn the Q-table
While the final condition is not reached
1. Get an experience tuple < s1, a, 59, r > by interacting with the environment.

1. Map the states of the experience tuple using V Q. Each adquired tuple of experience
< s1,a,s8,r >1ismapped to < VQ(s1),a, VQ(sp),r >
iii. Apply the Q-learning update function defined in Eq. 1 to learn a tabular value function Q:
C x A — N, using the mapped experience tuple.
Return Q and V Q
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State space generalization

 Vector quantization for Q-learning (VQQL)

— Requires two elements

* An input dataset, T, collected to represent the
whole state space

A desired resolution (number of prototype points)

— Random walks performed to obtain initial
sensorized data

— Resolution tested in 6 experiments using:
k = {512, 1024, 2048, 4096, 8192, 16384}
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State space generalization
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Fig. 3 Learning curves for the first scenario using the VQQL algorithm and vector quantizers with different
numbers of prototypes. The curves are the means of 18 learning processes (18 agents)
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State space generalization

 Vector quantization for Q-learning (VQQL)

— Doubling number of prototypes also doubles
the computation time for GLA

— Best trade-off between performance and
computational cost:
* Room scenario: 4096 prototypes
 Corridor scenario: 8192 prototypes
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Algorithms

* Three challenges:

1. How many agents should learn from scratch
and should they be introduced gradually?

2. How to handle different state spaces with
different numbers of agents present?

3. How to generate a representative dataset
for use in generating prototype states?

* Propose two iterative learning schemes to
address these challenges
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Algorithms

* |terative vector quantization for Q-learning
(ITVQAQL)

* Incremental vector quantization for Q-
learning (INVQQL)

* Both

— perform iterations of VQQL
— conduct a policy and learning transfer

* Differ in how they handle number and
placement of agents
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Algorithms

Multi-agent ITVQQL/INVQQL schemas

Entry: the number of iterations N
Return: the sets Q) and Vy (the value table of Q-learning and the vector quantizer respectively).
. i<«1
2. Set p to the initial number of agents in the environment
3. Foreach agent, k (1 <k < p) set:
- its initial vector quantizer, V(';‘ (s) =0
- its initial policy Jr(])‘ = random
4. Repeat:
(a) Decide whether or not to include new agents. Set p consequently.
(b) Foreach agent, k (1 < k < p) do:
i. Collect a dataset Tik for agent k using the policies Jl'l-k_l with Vik_1

.. . k . k . .
ii. Build V" using 7;" for agent k following a transfer learning strategy

(c) Learn Q{.‘ Vk,1 < k < p and hence the policies Jl'ik using Q-Learning (with the option of using
transfer of value functions).
(di<«i+1

Untili = N

5. Return Qp and Vy

The bold statements mean different options in each schema as explained in the text
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Algorithms

Feature ITVQQL INVQQL
Number of prototypes Fixed Variable
Number of features per prototype Fixed Variable
Number of agents per iteration Fixed Variable
Inter-iteration policy transfer Yes Yes
Inter-iteration prototype transfer No Yes
Inter-iteration value function transfer Yes Yes

9/29/2016
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Algorithms

 Policy Transfer

— Uses a policy learned in previous iteration to
generate the initial dataset of current iteration

— Dataset become progressively more
reflective of actual use

— States of differing dimensionality handled by
projection
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Algorithms

* Prototype Transfer

— INVQQL prototypes have higher
dimensionality through the first 8 iteration

— Lower dimensional prototypes are preserved
and passed on through each iteration
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Algorithms

* Value Function Transfer

— Initialize the Q-table with values learned in
previous iterations

— Prototypes change between iterations so
map to the nearest prototype from prior
iteration

— Only transfer between tables of the same
dimension
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Algorithms

 Performance Metrics

— Jumpstart: improvement in initial performance
of an agent

— Asymptotic performance: improvement in the
final performance of an agent

— Time to threshold: learning steps needed to
reach a pre-specified performance threshold
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Experimental set-up

» Perform four categories of experiments:
— Room scenario, corridor scenario
— Evaluating learning performance, evaluating

final performance

» Comparing several algorithm variants:

TVQQL
TVQQL w/ transfer
NVQQL
NVQQL w/ transfer

B V€ [

9/29/2016
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Experimental set-up

* Experiments conducted through a series
of ‘episodes’
— 1 episode = 150 actions
(or all agents reach goal)
— Environment resets for each episode

— Learning is preserved across episodes

» Learning algorithms use multiple iterations
— 1 iteration = thousands of episodes

— Learning resets across iterations
(but may be transferred)
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Learning results — room

+ Settings for learning in room scenario:

Key ITVQQL INVQQL VQQL
Episodes 50000 50000 900000
Iterations 18 18 1
Prototypes 4096 From 4096 to 32768 4096
Features per prototype 28 From 7 to 28 28
Agents per iteration 18 From 1 to 18 18
Inter-iteration 0 4096 0

prototype transfer

9/29/2016
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Learning results — room

Standardized distance to the goal
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Fig.4 Visualization of the prototypes calculated for the first iteration (left) and the last iteration (right) of the
ITVQQL schema in the room scenario. The speed (in the x-axis) and the distance of the agent to the goal (in
the y-axis) features are displayed. The prototypes of the left graphic are calculated using data collected from
a random policy. The prototypes of the right graphic are calculated using data collected with a learned policy
correspondent to the penultimate iteration
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Performance in simulation (%)

Learning results — room

» Performance during learning:
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Performance ([x100] %)

Learning results — room

- Effect of knowledge transfer:
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Learning results — corridor

» Settings for learning in corridor scenario:

Key ITVQQL INVQQL VQQL

Episodes 50,000 50,000 400, 000
Iterations 8 8 1
Prototypes 8, 192 From 8,192 to 40,960 8, 192
Features per prototype 24 From 8 to 24 24
Agents per iteration 8 From 1 to 8 8
Inter-iteration 8182 0

prototype
transfer

9/29/2016
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Learning results — corridor

* Policy Reuse to provide bias (advice)
— T, always drives agent to the opposite end of

the corridor 1
0.8
w
2 06}
%
4 choose the mp policy S o
(I —)e choose an aleatory action a

(1 —v¥)(1 —€) choose the greedy policy 00 .

0 ""-‘— | 1 1 1
0 10000 20000 30000 40000 50000
Trials
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Learning results — corridor

» Performance during learning:

9/29/2016
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Simulation results

* Trained performance is evaluated in three
categories:
1. Local interactions: velocity vs. collision dist
2. Macro-dynamics: fundamental diagram and

density maps

3. Performance: path length, # of failures

» Each experiment is conducted over 100

episodes of 700 decisions each
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Simulation results - room

» Each experiment is conducted over 100
episodes of 700 decisions each

« Scalability is addressed by using 18, 36,
94, 72, 90 agents

9/29/2016
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Simulation results - room

* Local Interactions:

9/29/2016
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Simulation results - room

* Local Interactions:

18 agents 90 agents
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Simulation results - room

* Local Interactions:

Table 10 Percentage of episodes in which the selected speed and distance to the nearest neighbor of an agent
have a correlation coefficient greater than +0.5

# Ag. IT (%) IN (%) TF_IT (%) TF_IN (%) VQQL (%) RANDOM (%)
18 773 37.1 79 46.5 45.7 1.72
90 48.8 12.4 48.6 12.1 41.8 1.1

The data comes from the simulation of 100 episodes with 18 agents each (a total of 1800 episodes) in the first
row and with 90 agents (a total of 9000 episodes) in the second row
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Simulation results - room

* Macro-dynamics:

ITVQQL

INVQQL
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Simulation results - room

* Macro-dynamics:

VQQL
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Simulation results - room

 Performance:

Table 11 Averaged lengths and
standar deviation for the paths in
meters

The averages are over 100
episodes and for all the agents

Table 12 Average number and
standar deviation of decisions per
episode

The figures are averaged over 100
episodes and for all the agents

# Ag. IT IN TE_IT TF_IN VQQL
18 14 +7 20£21 15+7 18 £ 10 I5£11
36 13£5 18 £15 15+7 18£8 15 £17
54 14+6 18 £13 16 8 19+ 10 15 £ 11
72 I5£6 18 £12 16 £8 19£11 I5£10
90 15+7 18 £ 11 17+9 2011 17+ 10
#Ag. IT IN TE_IT TF_IN VQQL

18 28 £ 56 41 =36 28 £ 56 63 £ 35 27+ 21

36 32 +£41 75 £52 67 £ 53 93 £ 58 43 1+ 60

54 51£55 118 £77 95+74 135+86 52 £60

72 6870 121478 12084 175£112 69 + 62

90 84 +85 144+£95 1454+£96 211131 105135

9/29/2016
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Simulation results - room

 Performance:

Table 13 Medians and means (in parenthesis) for the agents that do not reach the door (fails) when scaling
up the number of agents

#Ag. IT IN TF_IT TE_IN VQQL P value
18 1b(2.4) 4c(4.2) 0a (1.0) 0a (2.9) 15 (2.8) 0

36 1 ab (6.5) 4c(4.8) 0a (2.8) 3.5 be (6.2) 0 ab (6.8) 4 %1072
54 1 a (6.4) 4b (6.0) 0a (3.6) 4D (6.4) 10 ab (15.7) 7 x 10710
72 1 ab (9.4) 45 (5.6) 1a (3.9) 4b (6.6) 4b(22.1) 4 %1078
90 1 ab (10.3) 4b (6.0) 1a (4.1) 35 (6.5) 18.5 ¢ (25.0) 4x 10710

The means are averaged over 100 episodes (N = 100) and are considered a measure of performance. Median
values separated by different letters for the same number of agents (within a row), are significantly different
(P < 0.05) according to Kruskal-Wallis test
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Simulation results - room

https://www.uv.es/agentes/RL/itvqql.htm

https://www.uv.es/agentes/RL/invqqgl.htm

9/29/2016
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Simulation results - corridor

* Less detailed results than the room
scenario (only density maps and # of
successes)

* Runs 100 episodes of 80 decisions each

* Only counts as a success if all agents
cross the hallway
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Simulation results - corridor
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Simulation results - corridor

* Macro-dynamics:
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Simulation results - corridor

* Macro-dynamics:

Corridor for VQQL Corridor for VQQL
Y{counts)
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80
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40
20

L L L L
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Simulation results - corridor

 Performance:

Table 14 Mean of the number of episodes that end successfully from a series of 100 episodes

TE_IT TF_IN VQQL P value

8la 52b 63 ¢ 0.0000

A successful episode means that all the agents reach to the correspondent goal. Ten series have been carried out.
The data was analyzed with an ANOVA test. It proved that the means are significantly different (P < 0.05).
The letters classify the different groups according to the Duncan’s multiple range test
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Simulation results - corridor

https://www.uv.es/agentes/RL/crossingcorridor_iterative.htm

9/29/2016
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Simulation results - other

https://www.uv.es/agentes/RL/shortvsquick.htm

https://www.uv.es/agentes/RL/crossing_sarsa.htm
https://www.uv.es/agentes/RL/maze.htm
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Conclusion

 MARL provides several advantages for
pedestrian simulation:

1.

2
3.
4

9/29/2016

Independent learning with unique behaviors

. Offline learning and low computation execution

Avoids hand-coded domain knowledge

. Allows for incorporating external knowledge through

knowledge transfer techniques
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Conclusion

» Successfully addressed goals:

— Demonstrated that VQQL, ITVQQL, and INVQQL are
convergent in two pedestrian scenarios

— Learned basic rules of pedestrian dynamics
(confirmed from micro and macro perspective)

— Learned behaviors scale robustly in the first scenario

— Similarity to Helbing model supports behavior
plausibility
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Conclusion

* Future work:
— Complex environments
— More realistic physics interactions (friction)
— Increased detail in the agent physical representation

— Additional state space generalization methods (tile
coding)
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