
Planning and Acting in Partially 
Observable Stochastic Domains

Leslie Pack Kaelbling and Michael L. Littman and Anthony R. 
Cassandra (1998).  Planning and Acting in Partially Observable 

Stochastic Domains, Artificial Intelligence, 101:99-134.



Introduction

Consider the problem of a robot navigating in a large office 
building.  The robot can move from hallway intersection to 
intersection and can make local observations of its world.  Its 
actions are not completely reliable, however.  Sometimes, 
when it intends to move, it stays where it is or goes too far; 
sometimes, when it intends to turn, it overshoots.  It has 
similar problems with observation.  Sometimes a corridor looks 
like a corner; sometimes a T-junction looks like an L-junction.  
How can such an error-plagued robot navigate, even given a 
map of the corridors?

Consider the problem of a robot navigating in a large office 
building.  The robot can move from hallway intersection to 
intersection and can make local observations of its world.  Its 
actions are not completely reliable, however.  Sometimes, 
when it intends to move, it stays where it is or goes too far; 
sometimes, when it intends to turn, it overshoots.  It has 
similar problems with observation.  Sometimes a corridor looks 
like a corner; sometimes a T-junction looks like an L-junction.  
How can such an error-plagued robot navigate, even given a 
map of the corridors?



Introduction 2

In general, the robot will have to remember something about 
its history of actions and observations and use this 
information, together with its knowledge of the underlying 
dynamics of the world (the map and other information) to 
maintain an estimate of its location.  Many engineering 
applications follow this approach, using methods like the 
Kalman filter …  expressed as an ellipsoid or normal 
distribution in Cartesian space.  This approach will not do for 
our robot, though.  Its uncertainty may be discrete: it might be 
almost certain that it is in the north-east corner of either the 
fourth or the seventh floors, though it admits a chance that it 
is on the fifth floor, as well.

In general, the robot will have to remember something about 
its history of actions and observations and use this 
information, together with its knowledge of the underlying 
dynamics of the world (the map and other information) to 
maintain an estimate of its location.  Many engineering 
applications follow this approach, using methods like the 
Kalman filter …  expressed as an ellipsoid or normal 
distribution in Cartesian space.  This approach will not do for 
our robot, though.  Its uncertainty may be discrete: it might be 
almost certain that it is in the north-east corner of either the 
fourth or the seventh floors, though it admits a chance that it 
is on the fifth floor, as well.



Introduction 3

Then, given an uncertain estimate of its location, the robot has 
to decide what actions to take.  In some cases, it might be 
sufficient to ignore its uncertainty and take actions that would 
be appropriate for the most likely location.  In other cases, it 
might be better for the robot to take actions for the purpose of 
gathering information, such as searching for a landmark or 
reading signs on the wall.  In general, it will take actions that 
fulfill both purposes simultaneously.

Then, given an uncertain estimate of its location, the robot has 
to decide what actions to take.  In some cases, it might be 
sufficient to ignore its uncertainty and take actions that would 
be appropriate for the most likely location.  In other cases, it 
might be better for the robot to take actions for the purpose of 
gathering information, such as searching for a landmark or 
reading signs on the wall.  In general, it will take actions that 
fulfill both purposes simultaneously.



Introduction 4

Partially Observable Markov Decision Process 
(POMDP)
To solve problems of choosing optimal actions in partially 
observable stochastic domains
• Essentially a planning problem: given a complete and 

correct model of the world dynamics and a reward 
structure, find an optimal way to behave.

• But: stochastic domains  depart from traditional  AI 
planning model
– Rather than taking plans to be sequences of actions (which may 

only rarely execute as expected): mappings from situations to 
actions that specify the agent’s behavior no matter what may 
happen



Introduction 5

Partially Observable Markov Decision Process 
(POMDP)

No distinction drawn between actions taken to change 
the state of the world and actions taken to gain 
information

• Thus, optimal performance involves something akin 
to a “value of information” calculation
– Amount of information an action provides

– Amount of reward an action produces

– How an action changes the state of the world



Background

Many real world applications are both non-
deterministic and partially observable
• Autonomous robot control

– Imperfect actions, observations

• Decision Support Systems
– Incomplete knowledge of user’s cognitive states

– Local view of external environment

• Industrial Control Systems
– Noisy sensors

– Undiagnosed faults



Background: Markov Chains

• Markov Chains to model the environment
– Handle non-determinism with probabilities

• 2 Tuple
– S = {s} set of states

– P(s’ | s) state transitions

• Application: Network Loss
– (Nguyen et al., 1996)



Background: Hidden Markov Model

• Hidden Markov Model (HMM) to model the 
environment
– Incomplete knowledge of states

• 4 Tuple
– S = {s} set of states
– P(s’ | s) state transitions
– Ω = {o} set of observations
– O(s, o) = P(o | s)      observation function

• Application: Bioinformatics
– DNA sequences 
– (Durbin et al., 1998) ATCGTCATTGCCATATACC

GGCTATCATTTCCCAGGA
TCTTACCTTTAAGTCTATAC

ATCGTCATTGCCATATACC
GGCTATCATTTCCCAGGA
TCTTACCTTTAAGTCTATAC



Background: Recap 1

Markov Chain Hidden Markov 
Model

Fully Observable Partially Observable

States

Actions



Markov Decision Processes (MDPs)



MDPs 2

Although there may be a great deal of uncertainty 
about the effects of an agent’s actions, there is never 
any uncertainty about the agent’s current state

• it has complete and perfect perceptual abilities (MDP only!)

The next state and the expected reward depend only 
on the previous state and the action taken

• even if we were to condition on additional previous states, 
the transition probabilities and the expected rewards would 
remain the same

• The Markov property—the state and reward at time t + 1 is 
dependent only on the state at time t and the action at time t.



MDPs:  Acting Optimally

Maximizing some measure of the long-run 
reward received

• E.g., finite-horizon optimality 
– Maximizing expected sum of immediate rewards of k

steps

– But, what is k?

• E.g., infinite-horizon discounted model
– Summing the rewards over the infinite lifetime of the 

agent, but discount them geometrically using a 
discount factor

– Why discounted?  



MDPs:  Acting Optimally 2

Policy = Description of the behavior of an agent

Two kinds of policies: stationary and non-stationary

• A stationary policy is a situation-action mapping that 
specifies for each state, an action to be taken.  
– The choice of action depends only on the state and is 

independent of the time step.

• A non-stationary policy is a sequence of situation-action 
mappings, indexed by time



MDPs:  Acting Optimally 3

Horizon’s impact on optimal policy

• Finite: typically non-stationary as the way an agent chooses 
its actions on the last step of its life is generally going to be 
very different from the way it chooses them when it has a 
long life ahead of it

• Infinite: typically stationary as an agent has a constant 
expected amount of time remaining  no reason to change 
action strategies



MDPs:  Acting Optimally 4
Finite-Horizon

Evaluate a policy based on the long-run value that the 
agent expects to gain from executing it

Recursively defined

Immediate 
reward

Immediate 
reward

Transition 
probability 
from s to s’

Transition 
probability 
from s to s’

Value of s’ (but 
now only with 
remaining t-1 

steps)

Value of s’ (but 
now only with 
remaining t-1 

steps)

Discount 
factor

Discount 
factor



MDPs:  Acting Optimally 4
Infinite-Horizon Discounted

Evaluate a policy based on the expected discounted sum 
of future reward agent expects to gain from executing it

Recursively defined as well

Immediate 
reward

Immediate 
reward

Transition 
probability 
from s to s’

Transition 
probability 
from s to s’

Value of s’Value of s’Discount 
factor

Discount 
factor



MDPs:  Acting Optimally 5
Greedy Policy

For the finite horizon:

Policy obtained by, at every step, taking the action that 
maximizes expected immediate reward plus the 
expected discounted value of the next state, as 
measured by V



MDPs:  Acting Optimally 6
Optimal Policy

Note: Optimal policy = a sequence of actions that at each step 
maximizes the immediate rewards plus the discounted expected 
gain in value for the next time interval



MDPs:  Acting Optimally 7
Optimal Policy’s Value

Note: An optimal policy π* is just a greedy policy with respect to 
V*



MDPs: Computing an Optimal Policy



MDPs:  Summary

• 4 Tuple 
– S = {s} set of environment states

– A = {a} set of possible actions

– T(s, a, s’) = P(s’ | s, a)  next state function

– R(s, a) reward function

• Autonomous robot example
– S set of locations

– A movements (N, S, E, W, X)

– T movement to new location

– R inverse distance to goal



MDP: Recap 2

Markov Chain Hidden Markov 
Model

Fully Observable Partially Observable

States

Actions
Markov 
Decision 
Process



Partial Observability

For MDPs we can compute the optimal policy π and use it to act by simply 
executing π(s) for current state s.  What happens if the agent is no longer 
able to determine the state it is currently in with complete reliability?

A naïve approach would be for the agent to map the most recent 
observation directly into an action without remembering anything from the 
past
• Performing the same action in every location that looks the same—hardly a 

promising approach

Better?  Adding randomness to the agent’s behavior: a policy can be 
a mapping from observations to probability distributions over 
actions
• Randomness allows the agent to sometimes choose different actions in 

different locations with the same appearance

For MDPs we can compute the optimal policy π and use it to act by simply 
executing π(s) for current state s.  What happens if the agent is no longer 
able to determine the state it is currently in with complete reliability?

A naïve approach would be for the agent to map the most recent 
observation directly into an action without remembering anything from the 
past
• Performing the same action in every location that looks the same—hardly a 

promising approach

Better?  Adding randomness to the agent’s behavior: a policy can be 
a mapping from observations to probability distributions over 
actions
• Randomness allows the agent to sometimes choose different actions in 

different locations with the same appearance



POMDP

Note: uncertain about observation  observation function to 
capture the probability distribution that if an agent observes o, 
what is the probability that it is because of performing a to state s?



POMDP vs. MDP

A POMDP is an MDP in which the agent is unable to observe the current 
state.  Instead, it makes an observation based on the action and resulting 
state using an estimator.  The agent’s goal remains to maximize expected 
discounted future reward.

MDP

POMDP = state estimator (SE) + policy (π) 

What is b?What is b?



POMDP: Problem Structure

The agent makes 
observations and 
generates actions
• An internal belief state, 

b, that summarizes its 
previous experience (is 
this still Markov?)

• SE: responsible for 
updating the belief state 
based on the last action, 
the current observation, 
and the previous belief 
state

• π: responsible for generating 
actions, but as a function of the 
agent’s belief state instead of 
the state of the world



POMDP: Belief States

One choice might be the most probable state of the world, given 
the past experience.
• Plausible … is it sufficient in general?
• In order to act effectively, an agent must take into account its own degree of 

uncertainty and reason with that uncertainty
• E.g., If lost or confused, might be appropriate for an agent to take sensing 

actions 

Probability distributions over state of the world
• Encode an agent’s subjective probability about the state of the 

world and provide a basis for acting under uncertainty
• Sufficient statistic for the past history and initial belief state of 

the agent: given the agent’s current belief state, no additional 
data about its past actions or observations would supply any 
further information about the current state of the world
• The process over belief states is Markov!



POMDP: Computing Belief States

Bayes TheoremBayes Theorem



POMDP: Example

Four states (S)
• One goal state (star)

Two possible observations (O)
• One is always made when the agent is in state 1, 2, or 4
• One is made when the agent is in the goal state (3)

Two possible actions (A)
• EAST, WEST

Transitions (T)
• If no movement is possible in a particular direction, then the agent stays put
• The above actions succeed with p = 0.9
• When actions fail (i.e., with p = 0.1), the movement is in the opposite direction



POMDP: Example, Cont’d

• Its initial belief state is [0.333  0.333  0  0.333]
• If the agent takes action EAST and does not observe the goal, then the new 

belief state becomes?
• Note that O(s’, a, o) = 1 if non-goal state, and 0 if goal state.

S1 S2 S3 S4

T = 0 0.333 0.333 0 0.333

T = 1 ? ? ? ?

T = 2



POMDP: Example, Cont’d

b’(s1) = O(s1, EAST, o)*[ T(s1,EAST,s1)b(s1) + T(s2,EAST,s1)b(s2) + T(s3,EAST,s1)b(s3) + 
T(s4,EAST,s1)b(s4) ]  
=  1*[0.1*0.333 + 0.1*0.333 + 0*0 + 0*0.333]
=  0.0667 (un-normalized)

S1 S2 S3 S4

T = 0 0.333 0.333 0 0.333

T = 1 ? ? ? ?

T = 2

S1 S2 S3 S4

T = 0 0.333 0.333 0 0.333

T = 1
0.0667 (un-
normalized) ? ? ?

T = 2



POMDP: Example, Cont’d

b’(s2) = O(s2, EAST, o)*[ T(s1,EAST,s2)b(s1) + T(s2,EAST,s2)b(s2) + T(s3,EAST,s2)b(s3) + 
T(s4,EAST,s2)b(s4) ]  
=  1*[0.9*0.333 + 0.0*0.333 + 0.1*0 + 0*0.333]
=  0.2997 (un-normalized)

S1 S2 S3 S4

T = 0 0.333 0.333 0 0.333

T = 1
0.0667 (un-
normalized) ? ? ?

T = 2

S1 S2 S3 S4

T = 0 0.333 0.333 0 0.333

T = 1
0.0667 (un-
normalized)

0.2997 (un-
normalized) ? ?

T = 2



POMDP: Example, Cont’d

b’(s3) = O(s3, EAST, o)*[ T(s1,EAST,s3)b(s1) + T(s2,EAST,s3)b(s2) + T(s3,EAST,s3)b(s3) + 
T(s4,EAST,s3)b(s4) ]  
=  0*[0.0*0.333 + 0.1*0.333 + 0.1*0 + 0.9*0.333]
=  0

S1 S2 S3 S4

T = 0 0.333 0.333 0 0.333

T = 1
0.0667 (un-
normalized)

0.2997 (un-
normalized) ? ?

T = 2

S1 S2 S3 S4

T = 0 0.333 0.333 0 0.333

T = 1
0.0667 (un-
normalized)

0.2997 (un-
normalized) 0 ?

T = 2



POMDP: Example, Cont’d

b’(s4) = O(s4, EAST, o)*[ T(s1,EAST,s4)b(s1) + T(s2,EAST,s4)b(s2) + T(s3,EAST,s4)b(s3) + 
T(s4,EAST,s4)b(s4) ]  
=  1*[0.0*0.333 + 0.0*0.333 + 0.9*0 + 0.9*0.333]
=  0.2997 (un-normalized)

S1 S2 S3 S4

T = 0 0.333 0.333 0 0.333

T = 1
0.0667 (un-
normalized)

0.2997 (un-
normalized) 0 ?

T = 2

S1 S2 S3 S4

T = 0 0.333 0.333 0 0.333

T = 1
0.0667 (un-
normalized)

0.2997 (un-
normalized) 0

0.2997 (un-
normalized)

T = 2



POMDP: Example, Cont’d

Now to normalize:
• Sum the values Pr(o|a,b) = 0.0667 + 0.2997 + 0 + 0.2997 = 0.6667

S1 S2 S3 S4

T = 0 0.333 0.333 0 0.333

T = 1
0.0667 (un-
normalized)

0.2997 (un-
normalized) 0

0.2997 (un-
normalized)

T = 2

S1 S2 S3 S4

T = 0 0.333 0.333 0 0.333

T = 1 0.1 0.45 0 0.45

T = 2



POMDP: Example, Cont’d

If we take action EAST again

How the belief states evolve depends on our choice of actions
• How should we explore our actions?

S1 S2 S3 S4

T = 0 0.333 0.333 0 0.333

T = 1 0.1 0.45 0 0.45

T = 2 ? ? ? ?

S1 S2 S3 S4

T = 0 0.333 0.333 0 0.333

T = 1 0.1 0.45 0 0.45

T = 2 0.1 0.167 0 0.736



POMDP: Finding an Optimal Policy

Estimating …Estimating …



POMDP: Finding an Optimal Policy

The reward function: the agent appears to be 
rewarded for merely believing that it is in good 
states
• However, because the state estimator is constructed from a 

correct observation and transition model of the world, the 
belief state represents the true occupation probabilities for 
all states s
• And therefore, the reward function represents the true expected 

reward to the agent

Reward is now based 
on belief + action, not 

state + action

Reward is now based 
on belief + action, not 

state + action



POMDP: Finding an Optimal Policy
Policy Tree

When an agent has one step remaining, all it can do 
is take a single action

With two steps to go, it can take an action, make an 
observation, then take another action, perhaps 
depending on the previous observation

In general, an agent’s non-stationary t-step policy 
can be represented by a policy tree



POMDP: Finding an Optimal Policy
Policy Tree 2



POMDP: Finding an Optimal Policy
Policy Tree 3



POMDP: Finding an Optimal Policy
Policy Tree 4



POMDP: Finding an Optimal Policy
Policy Tree 5

Now we have the value of executing the policy tree p in every 
possible belief state.  To construct an optimal t-step policy, 
however, it will generally be necessary to execute different 
policy trees from different initial belief states.  Let P be the 
finite set of all t-step policy trees. Then



The Tiger Problem

Imagine an agent standing in front of two closed doors

• Behind one door: a tiger; behind the other: a large 
reward

• If the agent opens the door with the tiger, then a large 
penalty is received.

• Or the agent can listen, in order to gain some 
information about the location of the tiger. 
• not free 

• not entirely accurate
• There is a chance that the agent will hear a tiger behind the left-

hand door when the tiger is really behind the right-hand door, and 
vice versa.



The Tiger Problem 2

States S:

• { s0, s1 }  s0 = tiger is on the left, s1 = tiger is on the right

Actions A:
• { OPEN-LEFT, OPEN-RIGHT, LISTEN }

Rewards R:  
• Open correct door = + 10, Open wrong door = -100, Cost of 

listening = -1  

Two possible observations O:  
• { TIGER-LEFT, TIGER-RIGHT }

Immediately after the agent opens a door and receives a 
reward/penalty, the problem resets, randomly relocating 
the tiger behind one of the two doors



The Tiger Problem 2

Transitions T:
• The LISTEN action does not change the state of the world.

– T(s0, LISTEN, s0) = 1
– T(s0, LISTEN, s1) = 0
– T(s1, LISTEN, s0) = 0
– T(s1, LISTEN, s1) = 1

• The OPEN-LEFT and OPEN-RIGHT actions cause a transition to 
world state s0 with probability 0.5 and to state s1 with 
probability 0.5 (after observation & reward)
– essentially resetting the problem
– T(s0, OPEN-LEFT, s0) = 0.5, T(s0, OPEN-LEFT, s1) = 0.5
– T(s1, OPEN-LEFT, s0) = 0.5, T(S1, OPEN-LEFT, s1) = 0.5
– T(s0, OPEN-RIGHT, s0) = 0.5, T(s0, OPEN-RIGHT, s1) = 0.5
– T(s1, OPEN-RIGHT, s0) = 0.5, T(S1, OPEN-RIGHT, s1) = 0.5



The Tiger Problem 3

Observations O:
• When the world is in s0, LISTEN  Observation of TIGER-LEFT with 

probability 0.85 and observation of TIGER-RIGHT with probability 0.15; 
and vice versa for s1
– O( s0, LISTEN, TIGER-LEFT) = 0.85, O ( s0, LISTEN, TIGER-RIGHT) = 0.15
– O( s1, LISTEN, TIGER-LEFT) = 0.15, O ( s1, LISTEN, TIGER-RIGHT) = 0.85

• With no knowledge of the world state, OPEN-LEFT  either 
observation with probability 0.5; OPEN-RIGHT  either observation 
with probability 0.5
– Essentially any observation without the listen action is uninformative
– O( s0, OPEN-LEFT, TIGER-LEFT) = 0.5, O ( s0, OPEN-LEFT, TIGER-RIGHT) = 0.5
– O( s0, OPEN-RIGHT, TIGER-LEFT) = 0.5, O ( s0, OPEN-RIGHT, TIGER-RIGHT) = 

0.5
– O( s1, OPEN-LEFT, TIGER-LEFT) = 0.5, O ( s1, OPEN-LEFT, TIGER-RIGHT) = 0.5
– O( s1, OPEN-RIGHT, TIGER-LEFT) = 0.5, O ( s1, OPEN-RIGHT, TIGER-RIGHT) = 

0.5



The Tiger Problem 4

Rewards R:

• R(s0, LISTEN) = -1

• R(s1, LISTEN) = -1

• R(s0, OPEN-LEFT) = -100 

• R(s1, OPEN-LEFT) = +10

• R(s0, OPEN-RIGHT) = +10

• R(s1, OPEN-RIGHT) = -100



The Tiger Problem
Finite Horizon Policies
If only one step

• If the agent believes with high probability that the 
tiger is on the left  best action = OPEN-RIGHT; 
and vice versa

• But what if the agent is highly uncertain about 
the tiger’s location?

– Best action = LISTEN (-1)

– Why? 

• Guessing correctly = +10; guessing incorrectly = -100

• Expected reward = (-100 + 10)/2 = -45!



The Tiger Problem
Finite Horizon Policies 2
Horizon = 1 step

The belief interval is specified in terms of b(s0) only since b(s1) = 1-
b(s0)

open open



The Tiger Problem
Finite Horizon Policies 3
If only two steps

• LISTEN?  Or opening a door?

• Opening a door at t = 2, the tiger would be 
randomly placed behind one of the doors 
agent’s belief state = (0.5, 0.5)
– Then with only one step left = LISTEN would be the best action

• Best action = LISTEN (-1)



The Tiger Problem
Finite Horizon Policies 4
Horizon = 2 steps

open open



The Tiger Problem
Finite Horizon Policies 5
Horizon = 3 steps

The optimal nonstationary policy for t = 3 also 
consists solely of policy trees with the LISTEN action 
at their roots. If the agent starts from the uniform 
belief state, b = (0.5, 0.5), listening once does not 
change the belief state enough to make the expected 
value of opening a door greater than that of listening. 
The argument for this parallels that for the t = 2 case.



The Tiger Problem
Finite Horizon Policies 6
Horizon = 4 
steps



The Tiger Problem
Finite Horizon Policies 7
Policy trees

Choose actions based on observations

• Conditional plans

Define value function over trees

• Expected utility of following tree

• Optimize to build plan

One tree per state
a2

o1

a3a1

a3

o2
o3



The Tiger Problem
Discounted Infinite Horizon
Finite Approximation
• Approximate with many step policy tree

• Stop when adding a new step offers little improvement

Plan Graph
• Policy tree 

converges to 
stationary policy

• Similar to Finite 
State 
Machines/Automata



Discussion

• Problem: difficult to plan in partially 
observable, nondeterministic environments

• Solution: state estimation, probabilistic 
transitions, utility maximization

• MDPs work great if environment is fully 
observable

• POMDPs handle “hidden” states but are 
harder to solve



Acknowledgments

Professor Adam Eck of Oberlin College, for his 
discussions and several slides


