
REINFORCEMENT LEARNING

ADAM ECK (SUPPLEMENTED BY LEEN-KIAT SOH)

CSCE 990: Advanced MAS August 25-30, 2016

Machine Learning

2

 3 Primary Types of Machine Learning

 Supervised Learning

 Learning how to prediction and classify

 Decision trees, neural networks, SVMs

 Unsupervised Learning

 Learning how to grouping and find relationships

 Clustering: k-Means, spectral

 Reinforcement Learning (RL)

 Learning how to act and make decisions

 Q-learning, Rmax, REINFORCE

Reinforcement Learning

3

 Learn rewards based on environment feedback

Positive Rewards Negative Rewards

Single Agent Reinforcement Learning

4

 Framework: Markov Decision Process

 States S – description of environment

 Actions A – action taken to change environment

 Transitions T(s, a, s’) – models dynamic changes in

environment

 Reward R(s,a) – numeric result of action

Single Agent Reinforcement Learning

5

 Reinforcement Learning Problem

 Given S and A

 Need to learn R (and maybe T)

 Mapping of state/action pairs to:

 Reward values

 Probabilities of next states

 From history (state/action/reward sequence)

 H = s0, a0, r0, s1, a1, r1, s2, ….

 Use learned rewards to form policy π

 Plans of actions maximizing rewards

 Determines how agent acts, given current state

Examples

6

 Web server allocation (Tesauro et. al, 2007)

 Learn how many servers to assign to applications based

on incoming requests

 Goal: maximize SLA revenue

Source: (Tesauro et al., 2007)

Examples

7

 Ad hoc networks (Dowling et. al, 2005)

 Learn how to route packets through distributed network

 Goal: maximize packet delivery and adapt to

changing network conditions (e.g., node failure)

Source: (Dowling et al., 2005)

Examples

8

 Smart Grid (O’Neill et. al, 2010)

 Learn how to allocate energy to residences and

optimize schedule of energy usage

 Goal: Reduce cost of energy usage

Source: (O’Neill et al., 2010)

Examples

9

 Modular Robots (Varshavskaya et. al, 2008)

 Each robot module learns how to operate with a team

 Goal: move a robot consisting of multiple modules

across an open space

Source: (Varshavskaya et al., 2008)

Examples

10

 Poker Agents

 Learn how to play based on opponents’ behavior and

available cards

 Goal: maximize winnings

11

Running Example

0.33

0.33

0

0

Example Comparison

12

Web Server

Allocation

Ad Hoc

Networks

Smart Grid Modular

Robots

Poker

Agents

Maze

States

S

incoming

requests

Have

packet?

Packet

transmitted?

Price of

energy, user

demand

Positions of

all robots

Cards,

opponent

model

Grid location

Actions

A

servers to

assign

Transmit, find

neighbors

Allocation of

energy

Move module Raise, check,

fold

Movement:

N, S, E, W

Transitions

T

Change in

requests over

time

Transmission

success

probability

Change in

price and

demand

Change in

team

configuration

Changes in

cards and

model

Change in

location

Rewards

R

Revenue

$$$

Cost of

sending,

decay in

learning

User’s utility

of allocation

+/- if move

in

correct/incor

rect direction

Chips won Inverse of

distance to

goal

Types of RL

13

 Model-free RL

 Learn reward for controller

 Ignore model parameters

 Example: Riding a bicycle

 Model-based RL

 Learn underlying model of environment, then solve

 Often learn MDP

 Example: Playing poker

Types of RL

14

 Use model-free RL when…

 Only care about rewards (and not dynamics)

 Very simple environment with fixed transitions…

…or very complex environment

 More concerned with fast learning than optimal
performance

 Use model-based RL when…

 Want to consider dynamics

 Moderately complex environment with stochastic transitions

 More concerned with optimal performance and can afford
longer learning phase

Types of RL

15

 Web server allocation (Tesauro et. al, 2007)

 Model-free (function approximation with SARSA rule)

 Ad hoc networks (Dowling et. al, 2005)

 Model-based (CRL)

 Smart Grid (O’Neill et. al, 2010)

 Model-free (Q-Learning)

 Modular Robots (Varshavskaya et. al, 2008)

 Model-free (but assume know dynamics a priori)

Types of RL

16

 Poker Agents

 Model-based (if opponent modeling)

 Want to determine how opponent will respond

 Model-free (if focused only on cards)

 Robotic Maze

 Model-free if perfect actuators

 Model-based if actuators can fail

Q-Learning

17

 Q-Learning: classic model-free RL algorithm

(Watkins, 1989)

 Simple but powerful and effective

 Learns reward function as a table, based on current

state and chosen action

 Guaranteed convergence to true reward function with

enough exploration

 Assumes discrete state/action spaces

Q-Learning

18

 Learned rewards stored as a Q-table

 Initialize table

 Equal values

 Random values

 A priori information

Actions

S
ta

te
s

Reward Values

Q(s,a)

Q-Learning

19

 Update Q-table after every action

 Q’(s,a) = (1 – α)Q(s,a) + α [R(s,a) + γ max Q(s’,a’)]

 α = learning rate

 Balances old knowledge with new information

 γ = discount rate

 Determines how “forward thinking” the agent is

 Myopic vs. non-myopic

 Accounts for uncertainty in future rewards

a ԑ A

Q-Learning

20

 Policy for choosing actions

 Pick action with highest reward in current state

π(s) = argmax Q(s,a)

 Looks myopic, but is actually non-myopic

 Future rewards already considered in Q-table

 Assuming γ > 0

a ԑ A

RMax

21

 RMax: popular model-based RL algorithm

(Brafman and Tennenholtz, 2002)

 Simple but powerful and effective

 Represents learned functions as tables

 Assumes discrete state/action spaces

 Also learns state transitions

 PAC learning algorithm

 Converges in polynomial time

RMax

22

 Maintain tables for both rewards and transitions

 Still based on states/action pairs, like in Q-Learning

 Initialization

 Assume all rewards equal to same value

 Value = maximum possible reward value (RMax)

 Assume fixed transitions to special state

 Don’t know in advance what states lead to other states

RMax

23

 Update tables after k fixed number of interactions with
the environment for a state/action pair

 Often k = 5, 10, 20, etc.

 Reward updates

 Store first reward experienced for a state/action

 Store expected reward over k iterations for a state/action

 Calculate probabilities of different rewards based k
rewards

 Transition updates

 Count number of state transitions after state/action

 Calculate probabilities based on first k transitions

RMax

24

 Policy for choosing actions

 Build a MDP model based on learning and solve

 Maximize current and future rewards from the current

state, considering state transitions

 Discount future rewards since uncertain transitions

V(s) = max R(s, a) + γ∑T(s, a, s’)V(s’)

π(s) = argmax R(s, a) + γ∑T(s, a, s’)V(s’)

 Can limit forward search to n future actions

a ԑ A s’ԑ S

a ԑ A s’ԑ S

Exploration vs. Exploitation

25

 Difficult problem: should I keep learning, or use
what I’ve learned?

 Use what I’ve learned

 More current rewards, less future rewards

 Additional learning

 More future rewards, less current rewards

 Exploration: try to learn about uncertain
state/action pairs

 Exploitation: maximize rewards based on learned
information

Exploration vs. Exploitation

26

 Different methods to balance exploration and

exploitation (Vermorel and Mohri, 2005):

 ε-greedy

 Explore random action with probability ε (e.g., 10%)

 Exploit best action with probability 1-ε

 Softmax

 Choose actions with probabilities based on value of rewards

 Higher rewards = more likely to be chosen

: similar to humans (Daw et. al, 2006)

Continuous RL

27

 Both Q-Learning and RMax assume discrete
state/action spaces

 Valid assumption in many MAS

 Can convert continuous spaces into discrete

 By assigning bins to ranges of continuous values

 What if continuous?

 Need to use function approximation

 Learn a generic model of reward (and maybe transition) function
output based on inputs

 No tables

 Common approach: neural networks

Neural Networks

28

X1

X2

X3

f(X1,X2,X3)

Inputs

Output

Hidden Layer

Weights

…

Continuous RL

29

 REINFORCE (Williams, 1992)

 Train neural network to learn both reward function R

and policy π

 Reward function predicts rewards based on current state

and action inputs

 Policy probabilistically chooses actions given current state

input based on learned rewards

 Similar to Softmax, but done implicitly within the neural network

 Use eligibility backpropagation to train the policy

 Different from neural network use in supervised learning

Summary

30

 Use RL to learn how to act and make decisions

 Maximize rewards learned from interactions with the
environment

 Different types of algorithms

 Model-free: focus just on rewards

 e.g., Q-Learning

 Model-based: learn full model of environment, then
solve the model

 e.g., RMax

 Exploration vs. Exploitation

 Control learning vs. using learning

More on RL: Model-free vs. Model-

based

31

 the main difference between model-free and model-
based RL is that

 model-based also learns the underlying dynamics of the
environment (the stochastic T function in fully observable
environments), whereas …

 that knowledge is ignored in model-free
 T is very rarely deterministic in the real-world, but learning

updates do not happen until s' is known in Q-learning, so there is
no need to consider T

 The other advantage of learning T explicitly is that the
agent can actually do planning in model-based RL

 with T, it can project possible future states during planning

 That isn't explicitly possible with model-free algorithms such
as Q-learning

More on RL: Model-free vs. Model-

based

32

 In Shoham's book, belief-based learning is when the agent
considers the probabilities of each possible action of the
other agents

 This is an improvement because often the total reward (and thus
the Q function) depends not just on the agent's own action, but on
the actions of the other agents.

 Belief-based learning could be considered model-based
learning if the agent learns the Pr_i function while it
operates in the environment

 If Pr_i is fixed from the start (e.g., to a uniform distribution, or
some informed prior), then it wouldn't be model-based learning

 Although, some might argue that any RL is model-based if the
agent has a model of the environment, not necessarily only if it
learns that model …

More on RL: Model-free vs. Model-

based

33

 Even more philosophical …

 In a stochastic game setting (Shoham’s book), the transition
function represents which normal-form game (i.e., which
payout table) appears next after the agents choose and
execute their actions

 In single agent learning, the agent is really playing a game
against nature (so there is only one column in the payout
table for the agent itself), and nature determines the
stochastic next game (i.e., state of the environment).

 So in that case, learning the T function in a single agent
learning problem is equivalent to learning the Pr_i
function—might be “altogether”—describing what nature
will play

 Model-based?

More on RL

34

 Videos of AlphaGo: explanatory clips before it

beat the Go world champion—Lee Sedol

 https://deepmind.com/alpha-go

 Videos of Deep Mind playing Atari games earlier,

before it moved on to Go

 https://www.youtube.com/watch?v=V1eYniJ0Rnk

 https://www.youtube.com/watch?v=r3pb-ZDEKVg

 http://www.theverge.com/2016/6/9/11893002/goo

gle-ai-deepmind-atari-montezumas-revenge

https://deepmind.com/alpha-go
https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=r3pb-ZDEKVg
http://www.theverge.com/2016/6/9/11893002/google-ai-deepmind-atari-montezumas-revenge

More on RL: Learning vs. Planning?

35

 Difference between RL and planning (specifically Q-

Learning vs. MDP or POMDP planning)?

 The internal math looks very similar:

 for both, we create a Q-table (also the Value network

learned by AlphaGo) …

 from which we determine a policy of actions to take (also

the Policy network learned by AlphaGo) …

 As they work longer and longer, both improve over time

 The difference between the two is what powers the

improvement, and which direction through time they gain

that improvement

More on RL: Learning vs. Planning?

36

 Mitchell's definition of learning: A computer program is said to learn from
experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves with
experience E

 In RL, the tasks T are whatever the agent is trying to do, the performance
measure P is usually discounted cumulative rewards, and the experience E
are the (s', r) pairs of state transitions and rewards the agent observes
after it takes action a in state s. The more experience E, the better the
agent performs by learning how the environment changes and how it is
rewarded for those changes

 In planning, T and P are the same, but the experience E isn't necessary --
the agent already knows what (s', r) it can get after taking action a in state
s. Instead, the agent improves from having more *time* to consider future
(s', r) pairs -- that is, more contingencies of what it what it might encounter

 So the difference is planning for more possible experiences *in the future*,
rather than gaining information from the experiences *it recently saw in the
past*

More on RL: Learning vs. Planning?

37

 So the difference is planning for more possible

experiences *in the future*, rather than gaining

information from the experiences *it recently saw

in the past*

More Information

38

Great general reference:

Sutton, R.S. and Barto, A.G. 1998. Reinforcement

learning: an introduction. MIT Press:Cambridge, MA.

Available online free at:

http://webdocs.cs.ualberta.ca/~sutton/book/the-

book.html

http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

References

39

 Brafman, R.I. and Tennenholtz, M. 2002. R-max – A general polynomial time
algorithm for near-optimal reinforcement learning. Journal of Machine Learning
Research. 3. 213-231.

 Daw, N.D. et. al, 2006. Cortical substrates for exploratory decisions in humans,
Nature. 441. 876-879.

 Dowling, J., et al. 2005. Using Feedback in Collaborative Reinforcement Learning to
Adaptively Optimize MANET Routing”, IEEE Transactions on SMC, Part A, 35(3).
360-372.

 O’Neill, D. et. al. 2010. Residental demand response using reinforcement learning.
Proc. of SmartGridComm’10. 409-414.

 Tesauro et. al. 2007. On the user of hybrid reinforcement learning for autonomic
resource allocation, Cluster Computing, 10. 287-299.

 Vermorel, J. and Mohri, M. 2005. Multi-armed bandit algorithms and empirical
evaluation, Proc. of ECML’05, 437-448.

 Varshavskaya, P. et. al. 2008. Automated Design of Adaptive Controllers for
Modular Robots Using Reinforcement Learning. IJRR. 27. 505-526.

 Watkins, C.J. 1989. Learning from delayed rewards. Ph.D thesis, Cambridge
University.

 Williams, R.J. 1992. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8, 229-256.

