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Machine Learning
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 3 Primary Types of Machine Learning

 Supervised Learning

 Learning how to prediction and classify

 Decision trees, neural networks, SVMs

 Unsupervised Learning

 Learning how to grouping and find relationships

 Clustering: k-Means, spectral

 Reinforcement Learning (RL)

 Learning how to act and make decisions

 Q-learning, Rmax, REINFORCE



Reinforcement Learning
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 Learn rewards based on environment feedback

Positive Rewards Negative Rewards



Single Agent Reinforcement Learning
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 Framework: Markov Decision Process

 States S – description of environment

 Actions A – action taken to change environment

 Transitions T(s, a, s’) – models dynamic changes in 

environment 

 Reward R(s,a) – numeric result of action



Single Agent Reinforcement Learning
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 Reinforcement Learning Problem

 Given S and A

 Need to learn R (and maybe T)

 Mapping of state/action pairs to:

 Reward values

 Probabilities of next states

 From history (state/action/reward sequence)

 H = s0, a0, r0, s1, a1, r1, s2, ….

 Use learned rewards to form policy π

 Plans of actions maximizing rewards

 Determines how agent acts, given current state



Examples
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 Web server allocation (Tesauro et. al, 2007)

 Learn how many servers to assign to applications based 

on incoming requests 

 Goal: maximize SLA revenue

Source: (Tesauro et al., 2007)



Examples
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 Ad hoc networks (Dowling et. al, 2005)

 Learn how to route packets through distributed network

 Goal: maximize packet delivery and adapt to 

changing network conditions (e.g., node failure)

Source: (Dowling et al., 2005)



Examples

8

 Smart Grid (O’Neill et. al, 2010)

 Learn how to allocate energy to residences and 

optimize schedule of energy usage

 Goal: Reduce cost of energy usage

Source: (O’Neill et al., 2010)



Examples
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 Modular Robots (Varshavskaya et. al, 2008)

 Each robot module learns how to operate with a team

 Goal: move a robot consisting of multiple modules 

across an open space

Source: (Varshavskaya et al., 2008)



Examples
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 Poker Agents

 Learn how to play based on opponents’ behavior and 

available cards

 Goal: maximize winnings
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Types of RL
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 Model-free RL

 Learn reward for controller

 Ignore model parameters

 Example: Riding a bicycle

 Model-based RL

 Learn underlying model of environment, then solve

 Often learn MDP

 Example: Playing poker



Types of RL
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 Use model-free RL when…

 Only care about rewards (and not dynamics)

 Very simple environment with fixed transitions…

…or very complex environment

 More concerned with fast learning than optimal 
performance 

 Use model-based RL when…

 Want to consider dynamics

 Moderately complex environment with stochastic transitions

 More concerned with optimal performance and can afford 
longer learning phase



Types of RL
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 Web server allocation (Tesauro et. al, 2007)

 Model-free (function approximation with SARSA rule)

 Ad hoc networks (Dowling et. al, 2005)

 Model-based (CRL)

 Smart Grid (O’Neill et. al, 2010)

 Model-free (Q-Learning)

 Modular Robots (Varshavskaya et. al, 2008)

 Model-free (but assume know dynamics a priori)



Types of RL
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 Poker Agents

 Model-based (if opponent modeling)

 Want to determine how opponent will respond

 Model-free (if focused only on cards)

 Robotic Maze

 Model-free if perfect actuators

 Model-based if actuators can fail



Q-Learning
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 Q-Learning: classic model-free RL algorithm

(Watkins, 1989)

 Simple but powerful and effective

 Learns reward function as a table, based on current 

state and chosen action

 Guaranteed convergence to true reward function with 

enough exploration

 Assumes discrete state/action spaces



Q-Learning
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 Learned rewards stored as a Q-table

 Initialize table

 Equal values

 Random values

 A priori information

Actions

S
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s

Reward Values 

Q(s,a)



Q-Learning
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 Update Q-table after every action

 Q’(s,a) = (1 – α)Q(s,a) + α [R(s,a) + γ max Q(s’,a’)]

 α = learning rate

 Balances old knowledge with new information

 γ = discount rate

 Determines how “forward thinking” the agent is

 Myopic vs. non-myopic

 Accounts for uncertainty in future rewards

a ԑ A



Q-Learning
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 Policy for choosing actions

 Pick action with highest reward in current state

π(s) = argmax Q(s,a)

 Looks myopic, but is actually non-myopic

 Future rewards already considered in Q-table

 Assuming γ > 0

a ԑ A



RMax
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 RMax: popular model-based RL algorithm

(Brafman and Tennenholtz, 2002)

 Simple but powerful and effective

 Represents learned functions as tables

 Assumes discrete state/action spaces 

 Also learns state transitions

 PAC learning algorithm

 Converges in polynomial time



RMax
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 Maintain tables for both rewards and transitions

 Still based on states/action pairs, like in Q-Learning

 Initialization

 Assume all rewards equal to same value

 Value = maximum possible reward value (RMax)

 Assume fixed transitions to special state

 Don’t know in advance what states lead to other states



RMax
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 Update tables after k fixed number of interactions with 
the environment for a state/action pair

 Often k = 5, 10, 20, etc.

 Reward updates

 Store first reward experienced for a state/action

 Store expected reward over k iterations for a state/action

 Calculate probabilities of different rewards based k
rewards

 Transition updates

 Count number of state transitions after state/action

 Calculate probabilities based on first k transitions



RMax
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 Policy for choosing actions

 Build a MDP model based on learning and solve

 Maximize current and future rewards from the current 

state, considering state transitions

 Discount future rewards since uncertain transitions

V(s) = max R(s, a) + γ∑T(s, a, s’)V(s’)

π(s) = argmax R(s, a) + γ∑T(s, a, s’)V(s’)

 Can limit forward search to n future actions

a ԑ A s’ԑ S

a ԑ A s’ԑ S



Exploration vs. Exploitation

25

 Difficult problem: should I keep learning, or use 
what I’ve learned?

 Use what I’ve learned

 More current rewards, less future rewards

 Additional learning

 More future rewards, less current rewards

 Exploration: try to learn about uncertain 
state/action pairs

 Exploitation: maximize rewards based on learned 
information



Exploration vs. Exploitation
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 Different methods to balance exploration and 

exploitation (Vermorel and Mohri, 2005):

 ε-greedy

 Explore random action with probability ε (e.g., 10%)

 Exploit best action with probability 1-ε

 Softmax

 Choose actions with probabilities based on value of rewards

 Higher rewards = more likely to be chosen

: similar to humans (Daw et. al, 2006)



Continuous RL
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 Both Q-Learning and RMax assume discrete 
state/action spaces

 Valid assumption in many MAS

 Can convert continuous spaces into discrete 

 By assigning bins to ranges of continuous values

 What if continuous?

 Need to use function approximation 

 Learn a generic model of reward (and maybe transition) function 
output based on inputs

 No tables

 Common approach: neural networks



Neural Networks
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Continuous RL
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 REINFORCE (Williams, 1992)

 Train neural network to learn both reward function R 

and policy π

 Reward function predicts rewards based on current state 

and action inputs

 Policy probabilistically chooses actions given current state 

input based on learned rewards

 Similar to Softmax, but done implicitly within the neural network

 Use eligibility backpropagation to train the policy

 Different from neural network use in supervised learning



Summary

30

 Use RL to learn how to act and make decisions

 Maximize rewards learned from interactions with the 
environment

 Different types of algorithms

 Model-free: focus just on rewards

 e.g., Q-Learning

 Model-based: learn full model of environment, then 
solve the model

 e.g., RMax

 Exploration vs. Exploitation

 Control learning vs. using learning



More on RL: Model-free vs. Model-

based
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 the main difference between model-free and model-
based RL is that 

 model-based also learns the underlying dynamics of  the 
environment (the stochastic T function in fully observable 
environments), whereas …

 that knowledge is ignored in model-free
 T is very rarely deterministic in the real-world, but learning 

updates do not happen until s' is known in Q-learning, so there is 
no need to consider T

 The other advantage of learning T explicitly is that the 
agent can actually do planning in model-based RL

 with T, it can project possible future states during  planning

 That isn't explicitly possible with model-free algorithms such 
as Q-learning



More on RL: Model-free vs. Model-

based
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 In Shoham's book, belief-based learning is when the agent 
considers the probabilities of each possible action of the 
other agents

 This is an improvement because often the total reward (and thus 
the Q function) depends not just on the agent's own action, but on 
the actions of the other agents. 

 Belief-based learning could be considered model-based 
learning if the agent learns the Pr_i function while it 
operates in the environment

 If Pr_i is fixed from the start (e.g., to a uniform distribution, or 
some informed prior), then it wouldn't be model-based learning

 Although, some might argue  that any RL is model-based if the 
agent has a model of the environment, not necessarily only if it 
learns that model …



More on RL: Model-free vs. Model-

based
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 Even more philosophical …

 In a stochastic game setting (Shoham’s book), the transition 
function represents which normal-form game (i.e., which 
payout table) appears next after the agents choose and 
execute their actions 

 In single agent learning, the agent is really playing a game 
against nature (so there is only one column in the payout 
table for the agent itself), and nature determines the 
stochastic next game (i.e., state of the environment).  

 So in that case, learning the T function in a single agent 
learning problem is equivalent to learning the Pr_i
function—might be “altogether”—describing what nature 
will play

 Model-based?



More on RL
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 Videos of AlphaGo: explanatory clips before it 

beat the Go world champion—Lee Sedol

 https://deepmind.com/alpha-go

 Videos of Deep Mind playing Atari games earlier, 

before it moved on to Go

 https://www.youtube.com/watch?v=V1eYniJ0Rnk

 https://www.youtube.com/watch?v=r3pb-ZDEKVg

 http://www.theverge.com/2016/6/9/11893002/goo

gle-ai-deepmind-atari-montezumas-revenge

https://deepmind.com/alpha-go
https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=r3pb-ZDEKVg
http://www.theverge.com/2016/6/9/11893002/google-ai-deepmind-atari-montezumas-revenge


More on RL: Learning vs. Planning?
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 Difference between RL and planning (specifically Q-

Learning vs. MDP or POMDP planning)?

 The internal math looks very similar:

 for both, we create a Q-table (also the Value network 

learned by AlphaGo) … 

 from which we determine a policy of actions to take (also 

the Policy network learned by AlphaGo) …

 As they work longer and longer, both improve over time  

 The difference between the two is what powers the 

improvement, and which direction through time they gain 

that improvement



More on RL: Learning vs. Planning?
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 Mitchell's definition of learning: A computer program is said to learn from 
experience E with respect to some class of tasks T and performance 
measure P, if its performance at tasks in T, as measured by P, improves with 
experience E

 In RL, the tasks T are whatever the agent is trying to do, the performance 
measure P is usually discounted cumulative rewards, and the experience E
are the (s', r) pairs of state transitions and rewards the agent observes 
after it takes action a in state s.  The more experience E, the better the 
agent performs by learning how the environment changes and how it is 
rewarded for those changes

 In planning, T and P are the same, but the experience E isn't necessary --
the agent already knows what (s', r) it can get after taking action a in state 
s.  Instead, the agent improves from having more *time* to consider future 
(s', r) pairs -- that is, more contingencies of what it what it might encounter

 So the difference is planning for more possible experiences *in the future*, 
rather than gaining information from the experiences *it recently saw in the 
past*



More on RL: Learning vs. Planning?
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 So the difference is planning for more possible 

experiences *in the future*, rather than gaining 

information from the experiences *it recently saw 

in the past*



More Information
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Great general reference:

Sutton, R.S. and Barto, A.G. 1998. Reinforcement 

learning: an introduction. MIT Press:Cambridge, MA.

Available online free at:

http://webdocs.cs.ualberta.ca/~sutton/book/the-

book.html

http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html
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