REINFORCEMENT LEARNING

ADAM ECK (SUPPLEMENTED BY LEEN-KIAT SOH)

3 Primary Types of Machine Learning

Supervised Learning
Learning how to prediction and classify
Decision trees, neural networks, SVMs

Unsupervised Learning
Learning how to grouping and find relationships
Clustering: k-Means, spectral

Reinforcement Learning (RL)

Learning how to act and make decisions
Q-learning, Rmax, REINFORCE

Reinforcement Learning
N

1 Learn rewards based on environment feedback

Positive Rewards Negative Rewards

Framework: Markov Decision Process
States S — description of environment
Actions A — action taken to change environment

Transitions T(s, a, s’) — models dynamic changes in
environment

Reward R(s,a) — numeric result of action

Reinforcement Learning Problem
Given S and A

Need to learn R (and maybe T)
Mapping of state/action pairs to:

Reward values

Probabilities of next states
From history (state/action/reward sequence)
H = sy, Qg ror S1s Qqs Fiy Spp eees
Use learned rewards to form policy &
Plans of actions maximizing rewards

Determines how agent acts, given current state

Web server allocation (Tesauro et. al, 2007)

Learn how many servers to assign to applications based
on incoming requests

Goal: maximize SLA revenue

ServerlList , Resource Ser".feri_is:-,t2
Arbiter
SLA, $$ Vi(ny) Vo(ny) SLA, $3
' r
Application Application
HTTP Manager 1 Manager 2 HTTP
requests requests

Source: (Tesauro et al., 2007)

Ad hoc networks (Dowling et. al, 2005)

Learn how to route packets through distributed network

Goal: maximize packet delivery and adapt to
changing network conditions (e.g., node failure)

Internal External
',xS?tates State

- Causally-

Connected

.-~ States™.._

Source: (Dowling et al., 2005)

Smart Grid (O’Neill et. al, 2010)

Learn how to allocate energy to residences and
optimize schedule of energy usage

Goal: Reduce cost of energy usage

L I pit) z{t) ! User |

o, I

Source: (O’Neill et al., 2010)

1 Modular Robots (Varshavskaya et. al, 2008)

Each robot module learns how to operate with a team

Goal: move a robot consisting of multiple modules
aCross an open space

(b)
Source: (Varshavskaya et al., 2008)

-1 Poker Agents

Learn how to play based on opponents’ behavior and
available cards

Goal: maximize winnings

10

Running Example
—

0.33

0.33

11

States
S

Actions
A

Transitions
T

Rewards
R

incoming
requests

servers to
assign

Change in
requests over
time

Revenue

$$$

Have
packet?
Packet
transmitted?

Transmit, find
neighbors

Transmission
success
probability

Cost of

sending,
decay in
learning

Price of
energy, user
demand

Allocation of
energy

Change in
price and
demand

User’s utility
of allocation

Positions of
all robots

Move module

Change in
tfeam
configuration

+ /- if move
in

correct /incor
rect direction

Cards,
opponent
model

Raise, check,
fold

Changes in
cards and
model

Chips won

Grid location

Movement:

N, S, E, W

Change in
location

Inverse of
distance to
goal

Model-free RL

Learn reward for controller
Ignore model parameters

Example: Riding a bicycle

Model-based RL

Learn underlying model of environment, then solve
Often learn MDP

Example: Playing poker

13

Use model-free RL when...
Only care about rewards (and not dynamics)
Very simple environment with fixed transitions...
...or very complex environment

More concerned with fast learning than optimal
performance

Use model-based RL when...
Woant to consider dynamics
Moderately complex environment with stochastic transitions

More concerned with optimal performance and can afford

longer learning phase
14

Web server allocation (Tesauro et. al, 2007)
Model-free (function approximation with SARSA rule)

Ad hoc networks (Dowling et. al, 2005)
Model-based (CRL)

Smart Grid (O’Neill et. al, 2010)
Model-free (Q-Learning)

Modular Robots (Varshavskaya et. al, 2008)

Model-free (but assume know dynamics a priori)

15

Poker Agents
Model-based (if opponent modeling)

Woant to determine how opponent will respond

Model-free (if focused only on cards)

Robotic Maze
Model-free if perfect actuators

Model-based if actuators can fail

16

Q-Learning: classic model-free RL algorithm
(Watkins, 1989)
Simple but powerful and effective

Learns reward function as a table, based on current
state and chosen action

Guaranteed convergence to true reward function with
enough exploration

Assumes discrete state /action spaces

17

Q-Learning
N

1 Learned rewards stored as a Q-table

Reward Values

Q(s,a)

States

1 Initialize table
o Equal values
=1 Random values

o1 A priori information
18

Update Q-table after every action
Q’(s,a) = (1 — a)Q(s,a) + a [R(s,a) + v ma/i(Q(s’,a’)]

a = learning rate
Balances old knowledge with new information

Y = discount rate

Determines how “forward thinking” the agent is
Myopic vs. non-myopic

Accounts for uncertainty in future rewards

19

Policy for choosing actions
Pick action with highest reward in current state
n(s) = argmax Q(s,a)
agA
Looks myopic, but is actually non-myopic
Future rewards already considered in Q-table

Assuming Y > ()

20

RMax: popular model-based RL algorithm
(Brafman and Tennenholtz, 2002)

Simple but powerful and effective
Represents learned functions as tables

Assumes discrete state /action spaces

Also learns state transitions
PAC learning algorithm

Converges in polynomial time

21

Maintain tables for both rewards and transitions

Still based on states/action pairs, like in Q-Learning

Initialization

Assume all rewards equal to same value

Value = maximum possible reward value (RMax)

Assume fixed transitions to special state

Don’t know in advance what states lead to other states

22

Update tables after k fixed number of interactions with
the environment for a state /action pair

Often k = 5, 10, 20, etc.

Reward updates
Store first reward experienced for a state/action
Store expected reward over k iterations for a state /action

Calculate probabilities of different rewards based k
rewards

Transition updates
Count number of state transitions after state /action

Calculate probabilities based on first k transitions e

Policy for choosing actions
Build a MDP model based on learning and solve

Maximize current and future rewards from the current
state, considering state transitions

Discount future rewards since uncertain transitions
V(s) = max R(s, a) + YD T(s, a, s')V(s')
a €

'€ S

n(s) = argmax R(s, a) + y> T(s, a, s')V(s’)

acA s'’e S

Can limit forward search to n future actions

24

Difficult problem: should | keep learning, or use
what I've learned?
Use what I've learned
More current rewards, less future rewards

Additional learning

More future rewards, less current rewards

Exploration: try to learn about uncertain
state /action pairs

Exploitation: maximize rewards based on learned
information

25

Different methods to balance exploration and
exploitation (Vermorel and Mohri, 2005):
e-greedy
Explore random action with probability € (e.g., 10%)
Exploit best action with probability 1-¢
Softmax: similar to humans (Daw et. al, 2006)
Choose actions with probabilities based on value of rewards
[(5.a)

g T
Q2sa’ |

Pla|s) =

Earcat
Higher rewards = more likely to be chosen

26

Both Q-Learning and RMax assume discrete
state /action spaces
Valid assumption in many MAS

Can convert continuous spaces into discrete

By assigning bins to ranges of continuous values

What if continuous?

Need to use function approximation

Learn a generic model of reward (and maybe transition) function
output based on inputs

No tables

Common approach: neural networks

27

Neural Networks
=

Hidden Layer

REINFORCE (Williams, 1992)

Train neural network to learn both reward function R
and policy
Reward function predicts rewards based on current state
and action inputs

Policy probabilistically chooses actions given current state
input based on learned rewards

Similar to Softmax, but done implicitly within the neural network

Use eligibility backpropagation to train the policy
Different from neural network use in supervised learning

29

Use RL to learn how to act and make decisions

Maximize rewards learned from interactions with the
environment

Different types of algorithms
Model-free: focus just on rewards
e.g., Q-Learning

Model-based: learn full model of environment, then
solve the model

e.g., RMax
Exploration vs. Exploitation

Control learning vs. using learning

30

the main difference between model-free and model-
based RL is that

model-based also learns the underlying dynamics of the

environment (the stochastic T function in fully observable
environments), whereas ...

that knowledge is ignored in model-free

T is very rarely deterministic in the real-world, but learning

updates do not happen until s'is known in Q-learning, so there is
no need to consider T

The other advantage of learning T explicitly is that the
agent can actually do planning in model-based RL
with T, it can project possible future states during planning

That isn't explicitly possible with model-free algorithms such
as Q-learning

31

In Shoham's book, belief-based learning is when the agent
considers the probabilities of each possible action of the
other agents

This is an improvement because often the total reward (and thus

the Q function) depends not just on the agent's own action, but on
the actions of the other agents.

Belief-based learning could be considered model-based

learning if the agent learns the Pr_i function while it
operates in the environment

If Pr_iis fixed from the start (e.g., to a uniform distribution, or
some informed prior), then it wouldn't be model-based learning

Although, some might argue that any RL is model-based if the
agent has a model of the environment, not necessarily only if it
learns that model ...

32

Even more philosophical ...

In a stochastic game setting (Shoham’s book), the transition
function represents which normal-form game (i.e., which
payout table) appears next after the agents choose and
execute their actions

In single agent learning, the agent is really playing a game
against nature (so there is only one column in the payout
table for the agent itself), and nature determines the
stochastic next game (i.e., state of the environment).

So in that case, learning the T function in a single agent
learning problem is equivalent to learning the Pr_i
function—might be “altogether’—describing what nature
will play

Model-based?

33

Videos of AlphaGo: explanatory clips before it
beat the Go world champion—Lee Sedol

Videos of Deep Mind playing Atari games earlier,
before it moved on to Go

34

https://deepmind.com/alpha-go
https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=r3pb-ZDEKVg
http://www.theverge.com/2016/6/9/11893002/google-ai-deepmind-atari-montezumas-revenge

Difference between RL and planning (specifically Q-
Learning vs. MDP or POMDP planning)?

The internal math looks very similar:

for both, we create a Q-table (also the Value network
learned by AlphaGo) ...

from which we determine a policy of actions to take (also
the Policy network learned by AlphaGo) ...

As they work longer and longer, both improve over time
The difference between the two is what powers the

improvement, and which direction through time they gain
that improvement

35

Mitchell's definition of learning: A computer program is said to learn from
experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves with
experience E

In RL, the tasks T are whatever the agent is trying to do, the performance
measure P is usually discounted cumulative rewards, and the experience E
are the (s, r) pairs of state transitions and rewards the agent observes
after it takes action a in state s. The more experience E, the better the
agent performs by learning how the environment changes and how it is
rewarded for those changes

In planning, T and P are the same, but the experience E isn't necessary --

the agent already knows what (s', r) it can get after taking action a in state
s. Instead, the agent improves from having more *time™ to consider future
(s', r) pairs -- that is, more contingencies of what it what it might encounter

So the difference is planning for more possible experiences *in the future®,
rather than gaining information from the experiences *it recently saw in the
past™®

36

So the difference is planning for more possible
experiences *in the future™, rather than gaining
information from the experiences *it recently saw
in the past™

37

Great general reference:

Sutton, R.S. and Barto, A.G. 1998. Reinforcement
learning: an introduction. MIT Press:Cambridge, MA.

Available online free at:

38

http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

Brafman, R.Il. and Tennenholtz, M. 2002. R-max — A general polynomial time
algorithm for near-optimal reinforcement learning. Journal of Machine Learning

Research. 3. 213-231.

Daw, N.D. et. al, 2006. Cortical substrates for exploratory decisions in humans,
Nature. 441. 876-8709.

Dowling, J., et al. 2005. Using Feedback in Collaborative Reinforcement Learning to
Adaptively Optimize MANET Routing”, IEEE Transactions on SMC, Part A, 35(3).
360-372.

O’Neill, D. et. al. 2010. Residental demand response using reinforcement learning.
Proc. of SmartGridComm’10. 409-414.

Tesauro et. al. 2007. On the user of hybrid reinforcement learning for autonomic
resource allocation, Cluster Computing, 10. 287-299.

Vermorel, J. and Mohri, M. 2005. Multi-armed bandit algorithms and empirical
evaluation, Proc. of ECML'05, 437-448.

Varshavskaya, P. et. al. 2008. Automated Design of Adaptive Controllers for
Modular Robots Using Reinforcement Learning. IJRR. 27. 505-526.

Watkins, C.J. 1989. Learning from delayed rewards. Ph.D thesis, Cambridge
University.

Williams, R.J. 1992. Simple statistical gradient-following algorithms for connectionist ,
reinforcement learning. Machine Learning, 8, 229-256.

