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Motivation for DDABM



Rooftop Solar Adoption

* Solar energy is a clean and renewable resource —it’s good

* Incentive programs increase adoption rates
* Difficult to accurately model how well incentives perform

e “Big Data” presents new opportunities

* Note: DDABM can be applied elsewhere in addition



Predictive Models Flawed

* Traditional, non-ABM models:
* Fail to accurately capture stochasticity of data
* Mimic the aggregate trend, but cannot predict effects of causal influences
* Cannot accurately predict far into the future

e Current ABM models:
* Not developed robustly
 Validation often qualitative
* Quantitative validation uses same data as for calibration



DDABM Advances Current Techniques

* Individual behavior learned offline by machine learning
* Meaningfully quantifies uncertainty about predictions
e Substantially outperforms current models

* Provides quantitative assessment of performance



Data-Driven Agent-Based Modeling



Assumptions

1. Time is discrete
* Decisions at time t = N are only affected by decisions at time t < N, for all N

2. Agents are homogenous
» Suppose h(x) is agent behavior contingent on state x
e Agents use the same h function; x can include personal details
* Heterogeneity through state, not decision-making process

3. Individuals make independent decisions at each time t conditional
on state x



Terminology

* Let i index agents and t index time (to some time horizon T)
* Let x;, represent state of ith agent at time ¢

* Let y;, represent ith agent’s response
* For solar adoption, decision at time t to adopt (1) or not (0)

* Letall data D ={(x;,, ¥; )} 0.7



Step 1 — Data Preparation

* Select a time threshold T
 Split D into past and present data, and future data

* Calibration data = D = {(X;, V; 1)} t<-1c
* Validation data =D, ={(x;,, ¥; )} t> 7



Step 2 — Learn Agent Behavior

* Learn model h on D, such thaty,, = h(x;,)

* Use cross-validation on D for model (e.g., feature) selection



Step 3 — Prepare Model

* Instantiate agents using h in the ABM

* Initialize the ABM to state x; . for all artificial agents i



Step 4 — Validation

* Validate ABM against D, by running the model forward from x.



DDABM as Applied to Solar Adoption



Data From CSI (California Solar Initiative)

* Includes:

* Individual-level adoption characteristics of residential solar projects in San
Diego county

Property assessment for entire San Diego county

Electricity utilization data for most of the San Diego county 12 months prior to
system installation

System size, reported cost, incentive amount, purchased/leased, date of
incentive reservation, date of installation

May 2007 — April 2013 (~6 years, ~8,500 adopters)



Accounting for Own vs Lease

* Net Present Value calculations difficult for own vs lease

* Only care about adoption

* Probability of adoption p(x) = p,(x,) + po(Xo) = (Pu(X) * Po(X0))



Agent Behavior as Logistic Regression

* Designed Logistic Regression models for own versus lease
* Includes both economic impacts and peer effects

* R2 values, p-values, or other measures of reliability not provided



Ownership Logistic Regression Model

(Intercept) -10.45
Owner Occupied (binary) 1.23
Number of Installations within 1 Mile Radius 3.19e-03
Number of Installations within 72 Mile Radius 7.05e-03
Lease Option Available (binary) 0.73
Winter (binary) -0.61
Spring (binary) -0.19
Summer (binary) -0.37
Installation Density in Zipcode 82.02

NPV (Purchase) 9.74e-06



Lease Logistic Regression Model

(Intercept) -14.04
Owner Occupied (binary) 1.00
Number of Installations within 2 Mile Radius 3.26e-03
Number of Installations within 72 Mile Radius 9.58e-03
Lease Option Available (binary) 2.17
Winter (binary) -0.40
Spring (binary) 0.30
Summer (binary) -0.30
Installation Density in Zipcode 45.85

NPV (Lease) 1.03e-05



Performance,
Comparison to State-of-the-Art



Validation

e 1000 sample runs over a
representative zip code (~13000
households)

 Training data through ~04/2011 (not
explicitly stated)

* Testing data from ~04/2011 to
04/2013
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Validation (cont.)

* True future passes through
densest part of predictions

* Also note stochasticity yields
normalized prediction ranges

* Can use stdev as measure of
confidence




Validation Against State-of-the-Art
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Modeling Incentive Budgets

 Simplification instead of running 1000 models completely:

* At each time t, generate t+1 1000 times o
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Modeling Seeding Programs

* Seeding programs take advantage of peer effects
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Conclusions from Paper



Incentives Programs

* Significantly greater adoption possible from seeding programs
* Seeding more responsive to budget increase

« DDABM can provide quantitative estimates of adoption
 DDABM can provide confidence of estimates



DDABM Viability

 Sufficient data features available to design DDABM
* Many applications beyond solar adoption

* Better than state-of-the-art by a magnitude
* Will improve with better data
* May improve with more sophisticated individual models



DDABM Core Advancements

e Quantifiable verification of performance
 Quantifiable confidence measures

* Verification data temporally beyond calibration data
* As opposed to reusing calibration data for validation



Conclusions from Presenters



State-of-the-Art Comparison Flawed

 State-of-the-Art model built on different dataset
* Used more data, because more data available in Italy

e Adapting to San Diego led to a double assumption
e Result: conflating income utility with square feet of house

e Additionally: data drawn from historical mean home sale prices
* Not individual to agents, nor necessarily representative

e Also assumed proximity valid predictor of socioeconomic status

* Calls into doubt observed improvements over State-of-the-Art



Reliability of h in Question

* his the model for agent behavior
* Essentially a logistic regression model

* No analysis of the accuracy of h compared to calibration data
provided

* No analysis of the features used in h provided

» Expected backwards-elimination of parameters and an R? value



Model’s Confidence Unstated

* As a stochastic Bernoulli process, output at time t should be a Normal
distribution

* No analysis of how broad 1 standard deviation is
* From graphs, by the time DDABM surpasses SotA, mean ~125, range ~50

* Unlikely all 1000 results were graphed, uncertain how representative
the graph is

* If stdev = 25 around a mean of 125, confidence intervals prohibitively
large



Model’s Usefulness Limited

* DDABM is only an improvement about 1.4 years out
* Therefore, only superior on problems 1.4 years out

* For shorter-term problems, SotA may be more computationally
efficient

* Especially concerning when SotA crippled in implementation
(mentioned earlier)



Seeding-Incentive Comparison Misleading

* Seeding = giving people solar units
* Incentive = paying people to install solar units

» Seeding produces more adopters than incentives
e Uncertain if (adopters — seeded adopters) > adopters under incentive

e Similarly explains why seeding more responsive to budget; may be
unrelated to model behavior



DDABM Advantages Valid

* More robust evaluation of models to separate calibration and
validation

* Sets up ABM for bagging, and thence for boosting
* Allows XGBoost-level behavior on complex problems

* Confidence measures vital for real-world application
* Confidence measures available; simply not demonstrated in paper



Summary

* Much of the work lacks data to prove its validity

* The conceptual advancements are a solid foundation
* Also pave the way for additional advancements

* Solar adoption proves good sample problem



Questions



