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Motivation	for	DDABM



Rooftop	Solar	Adoption

• Solar	energy	is	a	clean	and	renewable	resource	– it’s	good

• Incentive	programs	increase	adoption	rates
• Difficult	to	accurately	model	how	well	incentives	perform

• “Big	Data”	presents	new	opportunities

• Note:	DDABM	can	be	applied	elsewhere	in	addition



Predictive	Models	Flawed

• Traditional,	non-ABM	models:
• Fail	to	accurately	capture	stochasticity	of	data
• Mimic	the	aggregate	trend,	but	cannot	predict	effects	of	causal	influences
• Cannot	accurately	predict	far	into	the	future

• Current	ABM	models:
• Not	developed	robustly
• Validation	often	qualitative
• Quantitative	validation	uses	same	data	as	for	calibration



DDABM	Advances	Current	Techniques

• Individual	behavior	learned	offline	by	machine	learning

• Meaningfully	quantifies	uncertainty	about	predictions

• Substantially	outperforms	current	models

• Provides	quantitative	assessment	of	performance



Data-Driven	Agent-Based	Modeling



Assumptions

1. Time	is	discrete
• Decisions	at	time	t =	N	are	only	affected	by	decisions	at	time	t <	N,	for	all	N

2. Agents	are	homogenous
• Suppose	h(x) is	agent	behavior	contingent	on	state x
• Agents	use	the	same	h function;	x can	include	personal	details
• Heterogeneity	through	state,	not	decision-making	process

3. Individuals	make	independent	decisions	at	each	time	t conditional	
on	state	x



Terminology

• Let	i index	agents	and	t index	time	(to	some	time	horizon	T)

• Let	xi,t represent	state	of	ith agent	at	time	t

• Let	yi,t represent	ith agent’s	response
• For	solar	adoption,	decision	at	time	t to	adopt	(1)	or	not	(0)

• Let	all	data	D =	{(xi,t,	yi,t)}i,	t=0…T



Step	1	– Data	Preparation

• Select	a	time	threshold	TC

• Split	D into	past	and	present	data,	and	future	data

• Calibration	data	=	Dc =	{(xi,t,	yi,t)}i,	t<=Tc
• Validation	data	=	Dv =	{(xi,t,	yi,t)}i,	t	>	Tc



Step	2	– Learn	Agent	Behavior

• Learn	model	h on	DC such	that	yi,t = h(xi,t)

• Use	cross-validation	on	DC for	model	(e.g.,	feature)	selection



Step	3	– Prepare	Model

• Instantiate	agents	using	h in	the	ABM

• Initialize	the	ABM	to	state	xi,Tc for	all	artificial	agents	i



Step	4	– Validation	

• Validate	ABM	against	Dv by	running	the	model	forward	from	xTc



DDABM	as	Applied	to	Solar	Adoption



Data	From	CSI	(California	Solar	Initiative)

• Includes:
• Individual-level	adoption	characteristics	of	residential	solar	projects	in	San	
Diego	county
• Property	assessment	for	entire	San	Diego	county
• Electricity	utilization	data	for	most	of	the	San	Diego	county	12	months	prior	to	
system	installation
• System	size,	reported	cost,	incentive	amount,	purchased/leased,	date	of	
incentive	reservation,	date	of	installation
• May	2007	– April	2013	(~6	years,	~8,500	adopters)



Accounting	for	Own	vs	Lease

• Net	Present	Value	calculations	difficult	for	own	vs	lease

• Only	care	about	adoption

• Probability	of	adoption	p(x)	=	pL(xL)	+	pO(xO)	– (pL(xL)	*	pO(xO))



Agent	Behavior	as	Logistic	Regression

• Designed	Logistic	Regression	models	for	own	versus	lease

• Includes	both	economic	impacts	and	peer	effects

• R2 values,	p-values,	or	other	measures	of	reliability	not	provided



Ownership	Logistic	Regression	Model

Predictor Coefficient

(Intercept) -10.45

Owner	Occupied	(binary) 1.23

Number	of	Installations	within	1	Mile	Radius 3.19e-03

Number	of	Installations	within	¼	Mile	Radius 7.05e-03

Lease	Option	Available	(binary) 0.73

Winter	(binary) -0.61

Spring	(binary) -0.19

Summer	(binary) -0.37

Installation	Density	in	Zipcode 82.02

NPV	(Purchase) 9.74e-06



Lease	Logistic	Regression	Model

Predictor Coefficient

(Intercept) -14.04

Owner	Occupied	(binary) 1.00

Number	of	Installations	within	2	Mile	Radius 3.26e-03

Number	of	Installations	within	¼	Mile	Radius 9.58e-03

Lease	Option	Available	(binary) 2.17

Winter	(binary) -0.40

Spring	(binary) 0.30

Summer	(binary) -0.30

Installation	Density	in	Zipcode 45.85

NPV	(Lease) 1.03e-05



Performance,
Comparison	to	State-of-the-Art



Validation

• 1000	sample	runs	over	a	
representative	zip	code	(~13000	
households)

• Training	data	through	~04/2011	(not	
explicitly	stated)
• Testing	data	from	~04/2011	to	
04/2013



Validation	(cont.)

• True	future	passes	through	
densest	part	of	predictions

• Also	note	stochasticity	yields	
normalized	prediction	ranges
• Can	use	stdev as	measure	of	
confidence



Validation	Against	State-of-the-Art

• Similar	to	the	state-of-the-art	
model	in	short-term

• At	~1.4	years	into	the	future,	
performance	relative	to	state-of-
the-art	jumps	an	order	of	
magnitude

• Cause:	Predicting	based	on	
individuals	versus	aggregates	



Modeling	Incentive	Budgets

• Simplification	instead	of	running	1000	models	completely:
• At	each	time	t,	generate	t+1	1000	times
• Discard	all	but	MLE
• Reduces	computational	complexity	
• Maintains	mean	behavior

• Model	versions	of	CSI	incentive	
budget,	from	0x	(no	rebate)	to	8x
• Difference	in	adoption	small



Modeling	Incentive	Programs



Modeling	Seeding	Programs

• Seeding	programs	take	advantage	of	peer	effects

• Incentive	to	seed	early:	
• let	peer	effects	last	longer

• Incentive	to	seed	later:	
• can	produce	more	“seeds”	for	same	budget



Conclusions	from	Paper



Incentives	Programs

• Significantly	greater	adoption	possible	from	seeding	programs
• Seeding	more	responsive	to	budget	increase

• DDABM	can	provide	quantitative	estimates	of	adoption
• DDABM	can	provide	confidence	of	estimates



DDABM	Viability

• Sufficient	data	features	available	to	design	DDABM
• Many	applications	beyond	solar	adoption

• Better	than	state-of-the-art	by	a	magnitude
• Will	improve	with	better	data
• May	improve	with	more	sophisticated	individual	models



DDABM	Core	Advancements

• Quantifiable	verification	of	performance
• Quantifiable	confidence	measures
• Verification	data	temporally	beyond	calibration	data
• As	opposed	to	reusing	calibration	data	for	validation



Conclusions	from	Presenters



State-of-the-Art	Comparison	Flawed

• State-of-the-Art	model	built	on	different	dataset
• Used	more	data,	because	more	data	available	in	Italy

• Adapting	to	San	Diego	led	to	a	double	assumption
• Result:	conflating	income	utility	with	square	feet	of	house
• Additionally:	data	drawn	from	historical	mean	home	sale	prices

• Not	individual	to	agents,	nor	necessarily	representative
• Also	assumed	proximity	valid	predictor	of	socioeconomic	status

• Calls	into	doubt	observed	improvements	over	State-of-the-Art



Reliability	of	h in	Question

• h is	the	model	for	agent	behavior
• Essentially	a	logistic	regression	model

• No	analysis	of	the	accuracy	of	h compared	to	calibration	data	
provided
• No	analysis	of	the	features	used	in	h provided

• Expected	backwards-elimination	of	parameters	and	an	R2 value



Model’s	Confidence	Unstated

• As	a	stochastic	Bernoulli	process,	output	at	time	t should	be	a	Normal	
distribution

• No	analysis	of	how	broad	1	standard	deviation	is
• From	graphs,	by	the	time	DDABM	surpasses	SotA,	mean	~125,	range	~50

• Unlikely	all	1000	results	were	graphed,	uncertain	how	representative	
the	graph	is
• If	stdev =	25	around	a	mean	of	125,	confidence	intervals	prohibitively	
large



Model’s	Usefulness	Limited

• DDABM	is	only	an	improvement	about	1.4	years	out
• Therefore,	only	superior	on	problems	1.4	years	out

• For	shorter-term	problems,	SotA may	be	more	computationally	
efficient
• Especially	concerning	when	SotA crippled	in	implementation	
(mentioned	earlier)



Seeding-Incentive	Comparison	Misleading

• Seeding	=	giving	people	solar	units
• Incentive	=	paying	people	to	install	solar	units

• Seeding	produces	more	adopters	than	incentives
• Uncertain	if	(adopters	– seeded	adopters)	>	adopters	under	incentive

• Similarly	explains	why	seeding	more	responsive	to	budget;	may	be	
unrelated	to	model	behavior



DDABM	Advantages	Valid

• More	robust	evaluation	of	models	to	separate	calibration	and	
validation
• Sets	up	ABM	for	bagging,	and	thence	for	boosting
• Allows	XGBoost-level	behavior	on	complex	problems

• Confidence	measures	vital	for	real-world	application
• Confidence	measures	available;	simply	not	demonstrated	in	paper



Summary

• Much	of	the	work	lacks	data	to	prove	its	validity
• The	conceptual	advancements	are	a	solid	foundation
• Also	pave	the	way	for	additional	advancements

• Solar	adoption	proves	good	sample	problem



Questions


