Swarm Intelligence

Leen-Kiat Soh Computer Science & Engineering University of Nebraska Lincoln, NE 68588-0115 Iksoh@cse.unl.edu http://www.cse.unl.edu/agents

Introduction

- Swarm intelligence was originally used in the context of cellular robotic systems to describe the self-organization of simple mechanical agents through nearest-neighbor interaction
- It was later extended to include "any attempt to design algorithms or distributed problem-solving devices inspired by the collective behavior of social insect colonies and other animal societies"
- This includes the behaviors of certain ants, honeybees, wasps, cockroaches, beetles, caterpillars, and termites

Introduction 2

- Many aspects of the collective activities of social insects, such as ants, are self-organizing
 - Complex group behavior **emerges** from the interactions of individuals who exhibit simple behaviors by themselves: finding food and building a nest
 - Self-organization come about from interactions based entirely on local information
- Local decisions, global coherence
- Emergent behaviors, self-organization

Videos

- <u>https://www.youtube.com/watch?v=dDsmbwOrHJs</u>
- <u>https://www.youtube.com/watch?v=QbUPfMXXQIY</u>
- <u>https://www.youtube.com/watch?v=M028vafB0l8</u>

Why Not Centralized Approach?

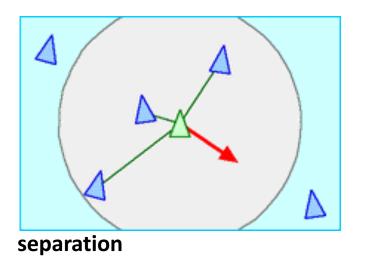
- Requires that each agent interacts with every other agent
- Do not possess (environmental) obstacle avoidance capabilities
- Lead to *irregular* fragmentation and/or collapse
- Unbounded (externally predetermined) forces are used for collision avoidance
- Do not possess distributed tracking (or migration) capabilities for groups

Fundamental Questions 1

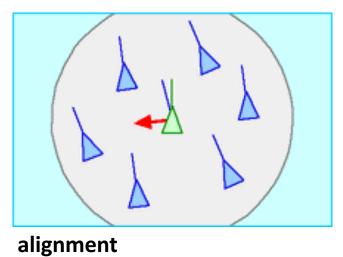
- How do we design scalable flocking algorithms and guarantee their convergence?
 - Computational efficiency and guarantee
- What does cohesion mean for groups and how is it achieved in a distributed way?
 - Global coherence yet locally driven (with distributed autonomy)
- What are the stability analysis problems related to flocking?
 - Emergence, Convergence
- What types of order exist in flocks?
 - Local interaction rules

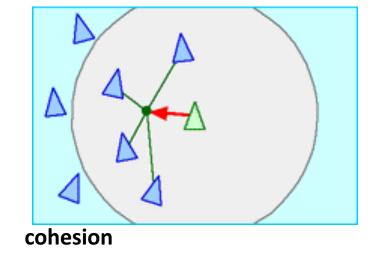
Fundamental Questions 2

- How do agents in flocks perform obstacle avoidance?
 - Problem solving
- How do flocks perform split/rejoin maneuvers or pass through narrow spaces?
 - Problem solving
- How do flocks migrate from point A to B?
 - Problem solving
- Do they need any leaders?
 - Self-organization
- What is a flock? and what constitutes flocking?
 - Self-organization, emergent behaviors


Flocking 1

C. W. Reynolds (1987). Flocks, Herds, and Schools: A Distributed Behavioral Model, *Computer Graphics*, **21**(4), July 1987, pp. 25-34.


- Behaviors of *Boids* that lead to simulated flocking are:
 - **Collision Avoidance**: avoid collisions with nearby flockmates
 - Velocity Matching: attempt to match velocity with nearby flockmates (both speed and direction)
 - Flock Centering: attempt to stay close to nearby flockmates


Flocking 2

- Collision Avoidance
- Velocity Matching
- Flock Centering

http://www.red3d.com/cwr/boids/

https://www.youtube.com/watch?v=M028vafB018

Local Decisions vs. Global Coherence

- All computations are based on relatively simple observations and interactions with local neighbors: Collision Avoidance, Velocity Matching, Flock Centering
 - Distributed
 - Computationally efficient
 - Scalable
 - Dynamic, incomplete, uncertain, non-episodic, continuous environment
- Emergent behaviors: Flocking or swarming behaviors
 - No collision, matched velocity, flock cohesion

www.swarm.org

				A 4	
Read View source View history Search Q	Read	Discussion	Main page		
Main Page					
ontents [hide]	Contents [hide] 1 WWW.SWARM.ORG is back!			Main page Recent changes Random page Help	
ective-C Swarm for Windows t-based Modeling ed Modeling Resources	 2.1 Swarmfest 2016: University of Vermont, July 31 – August 3 2.2 New version of Objective-C Swarm for Windows 3 Swarm Software for Agent-based Modeling 4 Agent- and Individual-based Modeling Resources 5 Swarm Development Group 6 Help 				
ack! niversity of Vermont, July 31 – August 3 ective-C Swarm for Windows t-based Modeling ed Modeling Resources	Content à is back! 16: Universi of Objective- Agent-base I-based Mo	the MediaWiki I V.SWARM.ORG i Swarmfest 2016 New version of 0 m Software for Ag	Consult 1 WWW 2 News 2.1 2.2 3 Swarr 4 Agent 5 Swarr	Main page Recent changes	

WWW.SWARM.ORG is back!

www.swarm.org

Agent- and Individual-based Modeling Resources

Resources for agent-based modeling. This area of the wiki is for information on agentbased modeling in general. **This area is no longer maintained and we refer interested people to more up-to-date sites such as www.OpenABM.org**

There is still information on:

- Agent-based modeling community resources
- Software (information on alternative platforms; learning materials; template models; integrated development environments)
- "How and why to do agent-based modeling": techniques and theory
- Resources specific to different scientific domains