
	

1	
	

CSCE475/875 Multiagent Systems 

Handout 2.  Distributed Constraint Satisfaction 

January 14, 2020 
(Based on Russell, S. and P. Norvig (2010) (3rd. Edition) Artificial Intelligence: A Modern 

Approach, Upper Saddle River, NJ: Pearson Education.) 
1.         Introduction 
A Constraint Satisfaction Problem (CSP) is defined by a set of variables, domains for each of the 
variables, and the constraints on the values that the variables might take on simultaneously. 

The role of the CS algorithms is to assign values to the variables in a way that is consistent 
with all the constraints, or to determine that no such assignment exists. 

Formally speaking, a CSP consists of a finite set of variables 𝑋 = 𝑥$, … , 𝑥' , a domain 𝐷) for 
each variable 𝑥), and a set of constraints 𝐶$, … , 𝐶+ .  Each constraint is a predicate on some 
subset of the variables and the predicate defines a relation that is a subset of the Cartesian 
product 𝐷),$×…×𝐷),'. 
 
Example:  In the US state four-coloring problem, there are fifty variables, each variable 
representing a state.  Each variable has four possible values in its domain: 
𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒, 𝑦𝑒𝑙𝑙𝑜𝑤  .  A constraint could be Nogood{Nebraska = red, Kansas = red} or 

Nogood{Nebraska = blue, Kansas = blue}. Or, Not-equal(Nebraska, Kansas).  The CSP then 
finds a solution such that all variables are assigned each a value and all constraints are satisfied. 
 
In distributed CSP, each variable is owned by a different agent.  There are 2 types of algorithms: 
• Filtering:  Embody a least-commitment approach and attempt to rule out impossible variable 

values without losing any possible solutions 
• Heuristic Search: Embody a more adventurous spirit and select tentative variable values, 

backtracking when those choices prove unsuccessful 
 
2.   Domain-pruning algorithms 
 
Each node—or each agent—communicates with its neighbors—i.e., message passing—in order 
to eliminate values from their domains. 
 
Filtering Algorithms.     Each node communicates its domain to its neighbors, eliminates from 
its domain the values that are not consistent with the values received from the neighbors, and the 
process repeats.  Specifically, each node 𝑥)	 with domain  𝐷) repeatedly executes the procedure 
Revise(𝑥). 𝑥:) for each neighbor  𝑥:.  For example, first write the constraints as forbidden value 
combinations, called nogoods.  Nogood{𝑥$, 𝑥=}  means that 𝑥$, 𝑥=	cannot take the same value.  
So, if agent 𝑋$ announces that 𝑥$ = 𝑟𝑒𝑑	then, agent 𝑋= updates its domain based on that and 
Nogood{𝑥$ = 𝑟𝑒𝑑, 𝑥= = 𝑟𝑒𝑑} and have to conclude that ~(𝑥= = 𝑟𝑒𝑑) and thus removes it from 
its domain accordingly. 
 
 



	

2	
	

Procedure Revise(𝑥). 𝑥:) 
Forall 𝑣) ∈ 𝐷) do 
  If there is no value 𝑣: ∈ 𝐷: such that 𝑣) is consistent with 𝑣: then 
      Delete 𝑣) from 𝐷) 
 

• Known also “arc consistency”, terminates when no further elimination takes place, or 
when one of the domains becomes EMPTY (in which case the problem has no solution) 

• May not terminate in some problems (e.g., 3-state 2-coloring problem) 
• If the process terminates with one value in each domain, that set of values constitutes a 

solution 
• In general, filtering is a very weak method, and at best, is used as a preprocessing step for 

more sophisticated methods 
 
A More Powerful Algorithm.  Hyper-resolution is both sound and complete.  Each agent 
repeatedly generates new constraints for its neighbors, notifies them of these new constraints, 
and prunes its own domain based on new constraints passed to it by its neighbors.  𝑁𝐺) = the set 
of all Nogoods of which agent i is aware and 𝑁𝐺:∗ = set of new Nogoods communicated from 
agent j to agent i.  The number of Nogoods can grow unmanageably large. 
 
Procedure ReviseHR(𝑁𝐺), 𝑁𝐺:∗) 
Repeat 
     𝑁𝐺) ← 𝑁𝐺) ∪ 𝑁𝐺:∗ 
     Let 𝑁𝐺)∗ denote the set of new Nogoods that i can derive from 𝑁𝐺) and its domain using      
         hyper resolution 
     if 𝑁𝐺)∗ is nonempty then 
          𝑁𝐺) ← 𝑁𝐺) ∪ 𝑁𝐺)∗ 
          Send 𝑁𝐺)∗ to all neighbors of i 
          If ∅ ∈ 𝑁𝐺)∗  then 
               stop 
Until there is no change in agent i’s set of Nogoods 𝑁𝐺) 
 
3. The Basic Backtracking Search for CSP 
The term backtracking search (A*!) is used for a DFS that chooses values for one variable at a 
time and backtracks when a variable has no legal values left to assign. 
 

 
 

 
 

 



	

3	
	

Function BACKTRACKING-SEARCH(csp) returns a solution, or failure 
   Return RECURSIVE-BACKTRACKING({},csp) 
End function 
 
Function RECURSIVE-BACKTRACKING(assignment,csp) returns a solution, or failure 

If assignment is complete then return assignment 
var ß SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 
For each value in ORDER-DOMAIN-VALUES(var,assignment,csp) do 
    add {var = value} to assignment 
    result ß RECURSIVE-BACKTRACKING(assignment,csp) 
    if result <> failure then return result 
    remove {var = value} from assignment 
End for loop 
Return failure 

End Function 

4.         But, Here Are the Questions … 

We need to find general-purpose methods that address the following questions: 
1.      Which variable should be assigned next, and in what order should its values be tried? 

(ORDER-DOMAIN-VALUES and SELECT-UNASSIGNED-VARIABLES) 
2.      What are the implications of the current variable assignments for the other unassigned 

variables? 
3.      When a path fails—that is, a state is reached in which a variable has no legal values—can the 

search avoid repeating this failure in subsequent paths? 
4.1.      Variable and Value Ordering 

By default, SELECT-UNASSIGNED-VARIABLE simply selects the next unassigned variable in 
the order given by the list VARIABLES[csp].  However, this static variable ordering seldom 
results in the most efficient search. 
The intuitive idea—choosing the variable with the fewest “legal” values—is called the 
minimum remaining values (MRV) heuristic, aka “most constrained variable” or “fail-first” 
heuristic.  If there is a variable X with zero legal values remaining, the MRV heuristic will select 
X and failure will be detected immediately—avoiding pointless searches through other variables 
which always will fail when X is finally selected. 

The MRV heuristic doesn’t help if every variable has the same number of values.  In this case 
the degree heuristic comes in handy.  It attempts to reduce the branching factor on future choices 
by selecting the variable that is involved in the largest number of constraints on other unassigned 
variables.  MRV is powerful, degree as a tie-breaker. 

Once a variable has been selected, choose the value—least-constraining-value heuristic.  It 
prefers the value that rules out the fewest choices for the neighboring variables in the constraint 
graph. 



	

4	
	

4.2.      Propagating Information through Constraints 
So far, our search algorithm considers the constraints on a variable only at the time that the 
variable is chosen by SELECT-UNASSIGNED-VARIABLE.  But by looking at some of the 
constraints earlier in the search, or even before the search has started, we can drastically reduce 
the search space. 

•        Forward Checking.  Whenever a variable X is assigned, the forward checking process looks 
at each unassigned variable Y that is connected to X by a constraint and deletes from Y’s 
domain any value that is inconsistent with the value chosen for X.  The MRV is a natural 
partner for forward checking.  Forward checking can detect partial assignments that are 
inconsistent with the constraints of the problem, and the algorithm will therefore backtrack 
immediately. 

•        Constraint Propagation.  Although forward checking detects many inconsistencies, it does 
not detect all of them because it does not look far enough. One option is to utilize arc-
consistency.  An arc is a directed arc in the constraint graph.  The arc between X and Y is 
consistent if, for every value x of X, there is some value y of Y that is consistent with x. 

Function AC-3(csp) returns the CSP, possibly with reduced domains 
    Inputs: csp, a binary CSP with variables {𝑋$,	𝑋=,…,	𝑋'} 
    Local variables: queue, a queue of arcs, initially all the arcs in csp 
    While queue is not empty do 
         {𝑋),	𝑋:}ßREMOVE-FIRST(queue) 
         If REMOVE-INCONSISTENT-VALUES(𝑋),	𝑋:) then 

  For each 𝑋I in NEIGHBORS[𝑋)] - {𝑋:}do 
         Add (𝑋I,	𝑋)) to queue 
  End for 

     End while 
End function 

 
Function REMOVE-INCONSISTENT-VALUES(𝑋),	𝑋:) returns true iff remove a value 
      removed ß false 
      For each x in DOMAIN[𝑋)] do 
            If no value y in DOMAIN[𝑋:] allows (x,y) to satisfy the constraint btw. 𝑋)	& 𝑋: 
                  Then delete x from DOMAIN[𝑋:]; removed ß true 
            End for 
      Return removed 
End function 

After applying AC-3, either every arc is arc-consistent, or some variable has an empty domain, 
indicating that the CSP cannot be made arc-consistent (and thus the CSP cannot be solved). 

 



	

5	
	

5.         Local Search for Constraint Satisfaction Problems 
The min conflicts algorithm is a search algorithm to solve constraint satisfaction problems 
(CSP problems). 
It assigns random values to all the variables of a CSP. Then it selects randomly a variable, whose 
value conflicts with any constraint of the CSP. Then it assigns to this variable the value with the 
minimum conflicts. If there are more than one minimum, it chooses one among them randomly. 
After that, a new iteration starts again until a solution is found or a pre-selected maximum 
number of iterations is reached. 

Because a CSP can be interpreted as a local search problem when all the variables have assigned 
a value (complete states), the min conflicts algorithm can be seen as a heuristic that chooses the 
state with the minimum number of conflicts. 

Function MIN-CONFLICTS(csp,max_steps) returns a solution or failure 
    inputs: csp, a constraint satisfaction problem 
                max_steps, the number of steps allowed before giving up 
    current ß an initial assignment for csp 
    For i = 1 to max_steps do 
        If current is a solution of csp then return current 
        var ß a randomly chosen, conflicted variable from VARIABLES[csp] 
        value ß the value v for var that minimizes CONFLICTS(var,v,current,csp) 
        set var = value in current 
    Return failure 
End Function 


