Voting: Paradoxes

(Based on Shoham and Leyton-Brown (2008). Multiagent Systems:
Algorithmic, Game-Theoretic, and Logical Foundations, Cambridge.)
Leen-Kiat Soh

Social choice is NOT a straightforward matter

Which one is less ambiguous, ranking or non-ranking voting?

Introduction

- Even when a voting scheme makes sense, it can still fail, resulting in unexpected (undesired) emergent behavior!
- Consider a situation in which there are 1,000 agents with three different sorts of preferences:

$$
\begin{gathered}
499 \text { agents: } a>b \succ c \\
3 \text { agents: } b \succ c \succ a \\
498 \text { agents: } c>b \succ a
\end{gathered}
$$

- Observe that 501 people out of 1,000 prefer b to a, and 502 prefer b to c

Condorcet Winner: $b \quad$ Plurality: $a \quad$ Plurality with Elimination: $c \quad$ Borda: b

Sensitivity to Losing Candidates

- Consider the following preferences by 100 agents:

$$
\begin{aligned}
& 35 \text { agents: } a>c>b \\
& 33 \text { agents: } b \succ a \succ c \\
& 32 \text { agents: } c>b \succ a
\end{aligned}
$$

- Plurality would pick candidate a as the winner, as would Borda
- Note: Observe that Borda assigns a, b, and c the scores 103,98 , and 99 respectively
- However, if candidate c did not exist, then
- Plurality would pick b, as would Borda
- Note: With only two candidates, Borda is equivalent to plurality
- A third candidate who stands no chance of being selected can thus act as a "spoiler," changing the selected outcome

Sensitivity to Losing Candidates 2

- Another example demonstrates that the inclusion of a least-preferred candidate can even cause the Borda method to reverse its ordering on the other candidates

$$
\begin{aligned}
& 3 \text { agents: } a>b \succ c>d \\
& 2 \text { agents: } b \succ c>d \succ a \\
& 2 \text { agents: } c>d \succ a>b
\end{aligned}
$$

- Using Borda:
- $c>b>a>d$, with scores of $13,12,11$, and 6 , respectively
- But, If the lowest-ranked candidate d is dropped, $\boldsymbol{a}>\boldsymbol{b} \succ \boldsymbol{c}$ with scores of 8, 7, and 6.

Sensitivity to Agenda Setter

- Consider the pairwise elimination method, and the following preferences:

$$
\begin{aligned}
& 35 \text { agents: } a>c>b \\
& 33 \text { agents: } b>a>c \\
& 32 \text { agents: } c>b>a
\end{aligned}
$$

- Consider the order a, b, c
- a is eliminated in the pairing between a and b; then c is chosen in the pairing between b and c
- Consider the order a, c, b
- a is chosen in the pairing between a and c; then b is chosen in the pairing between a and b
- Consider the order b, c, a
- we first eliminate b and ultimately choose a.
- Thus, given these preferences, the agenda setter can select whichever outcome he or she wants by selecting the appropriate elimination order

Difference between Borda \& Pairwise Elimination

- An example showing that Borda is fundamentally different from pairwise elimination, regardless of the elimination ordering. Consider the following preferences:

$$
\begin{aligned}
& 3 \text { agents: } a \succ b \succ c \\
& \text { 2 agents: } b \succ c \succ a \\
& \text { 1 agent: } b \succ a \succ c \\
& 1 \text { agent: } c>a \succ b
\end{aligned}
$$

- Regardless of the elimination ordering
- pairwise elimination will select the candidate a.
- The Borda method
- on the other hand, selects candidate b.

Exercise

Voter	Candidate1	Candidate2	Candidate3	Candidate4	Candidate5
1	4	0	2	1	3
2	0	1	3	2	4
3	1	2	3	4	0
Borda Count	$\mathbf{5}$	$\mathbf{3}$	$\mathbf{8}$	7	7

* 4 is the highest rank, 0 is the lowest rank
- Plurality winner?
- Borda winner?
- Pairwise Elimination with order: 1, 2, 3, 4, 5?
- Candidate 1 vs. Candidate 2, who wins?
- Is there a Condorcet Winner?
- Is there a situation where Candidate A Pareto dominates Candidate B yet A is ranked lower than B? Pareto domination: at least one voter prefers A to B, and all the remaining voters weakly prefer A to B

Connection to MAS?

Which is less ambiguous? Non-ranking voting

Think about your goal: social choice or social welfare?
If just to select the top pick, perhaps don't ask for preference ordering at all

