Distributed Constraint
Satisfaction

(Based on Russell, S. and P. Norvig (2010) (3. Edition) Artificial
Intelligence: A Modern Approach, Upper Saddle River, NJ: Pearson
Education.)

Leen-Kiat Soh

Introduction

* A Constraint Satisfaction Problem (CSP) is defined by a set of
variables, domains for each of the variables, and the constraints on
the values that the variables might take on simultaneously.

* The role of the CS algorithms is to assign values to the variables in a
way that is consistent with all the constraints, or to determine that
no such assighment exists.

* Formally speaking, a CSP consists of a finite set of variables X =
{x1, ..., x,}, adomain D; for each variable x;, and a set of constraints
{C4, ..., C,,}. Each constraint is a predicate on some subset of the
variables and the predicate defines a relation that is a subset of the

Cartesian product D; ; X -+ X D; ;.

Introduction | Example

* In the US state four-coloring problem, there are fifty variables, each
variable representing a state

e Each variable has four possible values in its domain:
{red, green, blue, yellow}

* A constraint could be Nogood{Nebraska = red, Kansas = red} or
Nogood{Nebraska = blue, Kansas = blue}
e Or, Not-equal(Nebraska, Kansas)

* The CSP then finds a solution such that all variables are assigned each
a value and all constraints are satisfied

Introduction | Algorithms

* In distributed CSP, each variable is owned by a different agent

* There are 2 types of algorithms:

* Filtering: Embody a least-commitment approach and attempt to rule out
impossible variable values without losing any possible solutions

* Heuristic Search: Embody a more adventurous spirit and select tentative
variable values, backtracking when those choices prove unsuccessful

\ P 4
~
Pros and cons?

Filtering Algorithms | Domain-Pruning

* Each node (or agent) communicates with its neighbors—i.e., message
passing—in order to eliminate values from their domains

* Filtering Algorithms

* Each node communicates its domain to its neighbors, eliminates from its
domain the values that are not consistent with the values received from the
neighbors, and the process repeats

v !

\ P 4
~
Do we do this?

Filtering Algorithms | Domain-Pruning 2

* Filtering Algorithms, cont’d ...

 Specifically, each node x; with domain D; repeatedly executes the procedure
Revise(x;. x;) for each neighbor x;.

* For example, first write the constraints as forbidden value combinations, called nogoods.
Nogood{x{, x,} means that x4, x, cannot take the same value.

* So, if agent X; announces that x; = red, then agent X, derives Nogood{x; = red, x, =

procedure Revise(z;, ;)
forall v, € D, do

if there is no value v; € D, such that v, is consistent with v; then
| delete v; from D,

Filtering Algorithms | Domain-Pruning 3

* Filtering Algorithms, cont’d ...

* Known also “arc consistency”, terminates when no further elimination takes
place, or when one of the domains becomes EMPTY (in which case the
problem has no solution)

* May not terminate in some problems (e.g., 3-state 2-coloring problem)

* |f the process terminates with one value in each domain, that set of values
constitutes a solution

* In general, filtering is a very weak method, and at best, is used as a
preprocessing step for more sophisticated methods

Filtering Algorithms | Hyper-Resolution

* A More Powerful Algorithm; hyper-resolution is both sound and
complete

* Each agent

* (1) repeatedly generates new constraints using hyper-resolution for its
neighbors,

* (2) notifies them of these new constraints, and

* (3) prunes its own domain based on new constraints passed to it by its
neighbors.

v !

\ 4
~
What is hyper-resolution?

Filtering Algorithms | Hyper-Resolution 2

* NG; = the set of all Nogoods of which agent i is aware and NG]fk = set
of new Nogoods communicated from agent j to agent J.

procedure ReviseHR(NG;, NG7Y)
repeat
let NG denote the set of new Nogoods that 7 can derive from NG; and
his domain using hyper-resolution
if NG is nonempty then

send the Nogoods NG to all neighbors of %

if {} € NG then

| stop

until there is no change in i’s set of Nogoods NG,

A VA,V -V A,
_'(AIAAI,I/\AI,2/\"')
(A2 AN Ag 1 ANAga A-++)

(Ap ANAmi NApa A---)

_'(Al,l/\"'/\A2,1/\"'/\Am,1/\"')

Heuristic Search Algorithms | Back-Tracking

 Note: The term
backtracking
search is used for
a DFS that
chooses values
for one variable
at a time and
backtracks when
a variable has no
legal values left to
assign.

Function BACKTRACKING-SEARCH(csp) returns a solution, or failure
Return RECURSIVE-BACKTRACKING({},csp)

End function

Function RECURSIVE-BACKTRACKING(assignment,csp) returns a solution, or failure
If assignment 1s complete then return assignment
var € SELECT-UNASSIGNED-VARIABLE(VARIABLES|csp],assignment,csp)
For each value in ORDER-DOMAIN-VALUES(var,assignment,csp) do
add {var = value} to assignment
result € RECURSIVE-BACKTRACKING(assignment,csp)
if result <> failure then return result
remove {var = value} from assignment \ ’
End for loop What is Depth-First Search?
Return failure

End Function

Heuristic Search Algorithms | But ... questions?

 Which variable should be assigned next, and in what order should its

values be tried?
e ORDER-DOMAIN-VALUES and SELECT-UNASSIGNED-VARIABLES

* What are the implications of the current variable assignments for the
other unassigned variables?

* When a path fails—that is, a state is reached in which a variable has
no legal values—can the search avoid repeating this failure in

subsequent paths?
v !

\ P 4
~
What is heuristic search? What are heuristics? Brute-force search vs. heuristic search?

Heuristic Search Algorithms | Variable Ordering

* By default, SELECT-UNASSIGNED-VARIABLE simply selects the next
unassigned variable in the order given by the list VARIABLES[csp]

* However, this static variable ordering seldom results in the most efficient search.

* The minimum remaining values (MRV) heuristic
* aka “most constrained variable” or “fail-first” heuristic
* Choose the variable with the fewest “legal” values

* If there is a variable X with zero legal values remaining, the MRV heuristic will select
X and failure will be detected immediately—avoiding pointless searches through
other variables which always will fail when X is finally selected

* The MRV heuristic doesn’t help if every variable has the same number of

values.

* Tie-breaker: the degree heuristic that chooses the variable that is involved in the
largest number of constraints on other unassigned variables

* Reduces branching factor

Heuristic Search Algorithms | Value Ordering

* Once a variable has been selected, choose the value

* The least-constraining-value heuristic

* |t prefers the value that rules out the fewest choices for the neighboring
variables in the constraint graph

Heuristic Search Algorithms | Propagating Info

* So far, the search algorithm considers the constraints on a variable
only at the time that the variable is chosen by SELECT-UNASSIGNED-

VARIABLE o
\ ’

.BUt! ! ! Do we do this?

*By looking at some of the constraints
earlier in the search, or even before the
search has started, we can drastically
reduce the search space

Heuristic Search Algorithms | Propagating Info 2

* Forward Checking

 Whenever a variable X is assigned, (1) looks at unassigned variable Y that is
connected to X by a constraint and (2) deletes from Y’s domain any value that
is inconsistent with the value chosen for X.

 The MRV is a natural partner for forward checking

* Forward checking can detect partial assignments that are inconsistent with
the constraints of the problem, and the algorithm will therefore backtrack

immediately
\ P 4
Sudoku? (~)

Heuristic Search Algorithms | Propagating Info 3

* Constraint Propagation

* Although forward checking detects many inconsistencies, it does not detect
all of them because it does not look far enough

* One option is to utilize arc-consistency
* Anarcis a directed arc in the constraint graph
 The arc between X and Y is consistent if, for every value x of X, there is some value y of Y

that is consistent with x
\ V4
Sudoku again? (~)

Heuristic Search Algorithms

| Propagating Info 4

Function AC-3(csp) returns the CSP, possibly with reduced domains
Inputs: csp, a binary CSP with variables {X;, X5, ..., X, }
Local variables: queue, a queue of arcs, initially all the arcs in csp
While gueue is not empty do
{Xi, X;}$< REMOVE-FIRST(queue)
If REMOVE-INCONSISTENT-VALUES(X;, X;) then
For each X in NEIGHBORS[X;] - {X;}do
Add (X, X;) to queue
End for
End while
End function

Function REMOVE-INCONSISTENT-VALUES(X;, X;) returns true iff remove a value
removed < false
For each x in DOMAINI[X;] do
If no value y in DOMAIN[X;] allows (x,y) to satisfy the constraint btw. X; & X;

Then delete x from DOMAIN[X;]; removed € true
End for

Return removed
End function

Sudoku again?

Heuristic Search Algorithms | Min Conflicts

* The min conflicts algorithm is a search algorithm to solve CSPs
e (1) assigns random values to all the variables of a CSP

* (2) selects randomly a variable, whose value conflicts with any constraint of
the CSP

 (3) assigns to this variable the value with the minimum conflicts
* if there are more than one minimum, it chooses one among them randomly

* (4) a new iteration starts again until a solution is found or a pre-selected
maximum number of iterations is reached

* Local search: the min conflicts algorithm can be seen as a heuristic
that chooses the state with the minimum number of conflicts

Heuristic Search Algorithms | Min Conflicts 2

Function MIN-CONFLICTS(csp,max_steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem
max_steps, the number of steps allowed before giving up
current € an initial assignment for csp
For 1=1 to max steps do
If current 1s a solution of csp then return current
var € a randomly chosen, conflicted variable from VARIABLES|csp]
value < the value v for var that minimizes CONFLICTS(var,v,current,csp)
set var = value in current
Return failure
End Function

Connection to MAS?

Each variable takes care of its “domain”?

Distributed Problem Solving

