CSCE 475/875 Multiagent Systems Handout 22: Revenue Equivalence in Auctions

October 24, 2017 (Based on Shoham and Leyton-Brown 2011)

Revenue Equivalence

Of the large (in fact, infinite) space of auctions, which one should an auctioneer choose? To a certain degree, the choice does not matter, a result formalized by the following important theorem.

Theorem 11.1.4 (Revenue equivalence theorem) Assume that each of n risk-neutral agents has an independent private valuation for a single good at auction, drawn from a common cumulative distribution F(v) that is strictly increasing and atomless on $[v_, \bar{v}]$. Then any efficient auction mechanism in which any agent with valuation v_h has an expected utility of zero yields the same expected revenue, and hence results in any bidder with valuation v_i making the same expected payment.

The theorem states that any allocation mechanism/auction in which

- 1. the bidder with the highest type/signal/valuation always wins
- 2. the bidder with the lowest possible type/signal/valuation expects zero surplus
- 3. all bidders are risk neutral, and
- 4. all bidders are drawn from a strictly increasing and atomless distribution will lead to the same expected revenue for the seller (and player *i* of type *v* can expect the same surplus across auction types). (*based on Wikipedia*)

Thus, when bidders are risk neutral and have independent private valuations, English, Japanese, Dutch, and all sealed bid auction protocols are revenue equivalent.

Risk Attitudes

One of the key assumptions of the revenue equivalence theorem is that agents are risk neutral. It turns out that many auctions *cease to be revenue-equivalent when agents' risk attitudes change*.

(*Note*: Risk averse agents prefer the sure thing; risk-neutral agents are indifferent; risk-seeking agents prefer to gamble.)

To illustrate how revenue equivalence breaks down when agents are not risk neutral, consider an auction environment involving n bidders with IPV valuations drawn uniformly from [0, 1]. Bidder *i*, having valuation v_i , must decide whether it would prefer to engage in a first-price auction or a second-price auction. Regardless of which auction it chooses (presuming that the bidder, along with the other bidders, follows the chosen auction's equilibrium strategy), *i* knows that it will gain positive utility only if it has the highest utility.

In the case of the first-price auction, *i* will always gain $\frac{1}{n}v_i$ when it has the highest valuation.

In the case of having the highest valuation in a second-price auction, *i*'s *expected* gain will be $\frac{1}{n}v_i$, but because he or she will pay the second-highest actual bid, the amount of *i*'s gain will *vary* based on the other bidders' valuations.

Thus, in choosing between the first-price and second-price auctions and conditioning on the belief that it will have the highest valuation, *i* is presented with the choice between *a sure payment and a risky payment with the same expected value*.

If *i* is *risk averse*, it will value the sure payment more highly than the risky payment, and hence will bid more aggressively in the first-price auction, causing it to yield the auctioneer a higher revenue than the second-price auction. (*Note* that it is *i*'s behavior in the first-price auction that will change: the second-price auction has the same dominant strategy regardless of *i*'s risk attitude.)

If *i* is *risk seeking* it will bid *less* aggressively in the first-price auction, and the auctioneer will derive greater profit from holding a second-price auction.

(Note: Implications for an auctioneer?)

The strategic equivalence of Dutch and first-price auctions continues to hold under different risk attitudes; likewise, the (weaker) equivalence of Japanese, English, and second-price auctions continues to hold as long as bidders have IPV valuations. These conclusions are summarized in Table 11.1.

Risk-neutral, IPV	Japanese	=	English	=	2 nd	=	1 st	=	Dutch
Risk-averse, IPV		=		=		<		Π	
Risk-seeking, IPV		=		=		>		Π	

 Table 11.1: Relationships between revenues of various single-good auction protocols. ('>' = more money for auctioneer)

Addendum: Why $\frac{1}{n}v_i$?

Proposition 11.1.2 In a first-price auction with two risk-neutral bidders whose valuations are drawn independently and uniformly at random from the interval [0, 1], $(\frac{1}{2}v_1, \frac{1}{2}v_2)$ is a Bayes-Nash equilibrium strategy profile. (Note: That is: bidder 1's best response to bidder 2's strategy is $\frac{1}{2}v_1$.)

Theorem 11.1.3 In a first-price sealed-bid auction with *n* risk-neutral agents whose valuations are independently drawn from a uniform distribution on the same bounded interval of the real numbers, the **unique symmetric equilibrium** is given by the strategy profile $\left(\frac{n-1}{n}v_1, \ldots, \frac{n-1}{n}v_n\right)$.

(In other words, the unique equilibrium of the auction occurs when each player bids $\frac{n-1}{n}$ of its valuation.)

Thus the gain is the utility (or valuation of the good) minus the amount paid for the good: $v_i - \frac{n-1}{n}v_i = \frac{1}{n}v_i$.